bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.445065; this version posted February 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Fides: Reliable Trust-Region Optimization for
Parameter Estimation of Ordinary Differential Equation

Models

Fabian Frohlich *, Peter K. Sorger *

1 Laboratory of Systems Pharmacology and Department of Systems Biology,
Harvard Medical School, Boston, MA 02115, USA

* To whom correspondence should be addressed:
fabian_froehlich@hms.harvard.edu and peter_sorger@hms.harvard.edu

Ordinary differential equation (ODE) models are widely used to describe biochemical
processes, since they effectively represent mass action kinetics. Optimization-based calibration
of ODE models on experimental data can be challenging, even for low-dimensional problems.
However, reliable model calibration is a prerequisite for uncertainty analysis, model com-
parison, and biological interpretation. Multiple hypotheses have been advanced to explain
why optimization based calibration of biochemical models is challenging, but there are few
comprehensive studies that test these hypotheses, likely because tools for performing such
studies are also lacking.

We implemented an established trust-region method as a modular Python framework
(fides) to enable systematic comparison of different approaches to ODE model calibra-
tion involving various Hessian approximation schemes. We evaluated fides on a set of
benchmark problems for which real experimental data are available. Unexpectedly, we ob-
served high variability in optimizer performance among different implementations of the
same algorithm. Overall, fides performed most reliably and efficiently. Our investigation
of possible sources of poor optimizer performance identified drawbacks in the widely used
Gauss-Newton, BFGS and SR1 Hessian approximations. We address these drawbacks by
proposing a novel hybrid Hessian approximation scheme that enhances optimizer perfor-
mance and outperforms existing hybrid approaches. We expect fides to be broadly useful
for ODE constrained optimization problems and to enable future methods development.
Availability: fides is published under the permissive BSD-3-Clause license with source
code publicly available at https://github.com/fides-dev/fides. Citeable releases are
archived on Zenodo. Code to reproduce results presented in this manuscript is available at
https://github.com/fides-dev/fides-benchmark.

fabian_froehlich@hms.harvard.edu
peter_sorger@hms.harvard.edu
https://github.com/fides-dev/fides
https://github.com/fides-dev/fides-benchmark
https://doi.org/10.1101/2021.05.20.445065
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.445065; this version posted February 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

1 Introduction

Mass action biochemical systems can be accurately described in the continuous approximation
(i.e., with a large number of molecules per reaction compartment) by ordinary differential
equation (ODE) models. Although cells are not well-mixed systems, ODE modeling can be
highly effective in describing biochemical processes in both eukaryotic and prokaryotic cells [1].
To ensure these ODEs recapitulate and predict experimental observations, model parameters
must be estimated from data. This estimation problem can be formulated as optimization
problem, where the objective function describes the discrepancy between a given solution
to the ODE and experimental data. Minimizing this discrepancy can be computationally
demanding due to the numerical integration required when evaluating the objective function
and its derivatives [2]. Optimized parameter values are often used to initialize model analysis
such as uncertainty quantification via the profile likelihood or sampling approaches [3}4].
Similarly, parameter optimization is required when models are compared based on goodness
of fit, using measures such as AIC or BIC, or when other complexity penalizing methods
are applied [5,/6]. Thus, reliably and efficiently finding robust solutions to the optimization
problem is of critical importance in many aspects of ODE model analysis.

In general, the optimization problem for ODE models is non-convex, resulting in few
theoretical guarantees of convergence when numerical optimization is employed. It is therefore
typically necessary to rely on empirical evidence to select appropriate optimization algorithms
for any specific class of problems [2,/7]. The optimization problem for ODE models of
biochemical systems belongs to an uncommon class of problems having four characteristic
properties: (i) the optimization problem is often ill-posed due to parameter non-identifiability;
(i) with tens to hundreds of estimated parameters, they are computationally intensive, but do
not qualify as high-dimensional problems in the optimization literature as, e.g., problems of
that size do not raise concerns about storage of the Hessian in memory; (iii) computation time
of numerically solving the optimization problem is dominated by evaluation of the objective
function and its derivatives, i.e., the computation time for the proposed parameter update
itself is negligible; (iv) since models are inexact and experimental data is noisy, the residual
values between simulation and data may be much larger than zero, even at the global minimum
of the optimization problem (such problems are commonly called non-zero residual problems).
The existing benchmarks for general purpose optimization, such as the CUTE(r/st) [8-10] set
of benchmarks, do not cover models having these four characteristics. Thus, domain-specific
benchmarks need to be considered.

For a broad set of biochemical ODE models, trust-region methods initialized from a large
number of random initial parameter values have performed well [11,/12]. Trust-region methods
use local (quadratic) approximations of the objective function to propose parameter updates
and then iteratively refine the local neighborhood in which the local approximation is expected
to adequately recapitulate the shape of the true objective function, i.e. the trust-region [13].
Popular implementations of trust-region methods are available in the MATLAB optimization
toolbox and the scipy Python optimization module. However, for a large fraction of problems,
including low dimensional biochemical models with as few as 20 parameters, these optimizers
do not consistently converge to parameter values that yield similar values for the objective
function [11], strongly suggesting that the global optimum - and possibly even a local
optimum - has not been reached. For example, the benchmark study by Hass et al. performed

https://doi.org/10.1101/2021.05.20.445065
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.445065; this version posted February 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

A B premature termination multiple critical points
S| consistent
[inconsistent 0,0 o 8
c [a\) o0 o o
o — o
B 2
o
3 £ %
g @ %0 o
2 o) o o\ °g
@
o
[s]
local optimization repeat parameter 1 parameter 1

Fig 1: Ilustration of final objective function values consistency and possible objective function
landscapes. A: Waterfall plot with examples of consistent (blue) and inconsistent (red) final
objective function values. B: Possible objective function landscapes that could explain the
waterfall plots in A.

optimization for a model based on work of Fujita et al. [14], which describes Endothelial
Growth factor mediated activation of the Protein Kinase B pathway (commonly known as
AKT pathway). They found that the difference in negative log-likelihood between the best
and second best parameter values was > 20, exceeding the statistical threshold for model
rejection according to AIC and BIC criteria |15]. For such problems, model selection is a
challenge, because poor optimizer performance may erroneously lead to the rejection of a
model.

More generally, the presence of "optimal” solutions of parameter values that yield incon-
sistent values for the objective function (Fig[lJA) can indicate either (i) that optimization
converged on a few of the many critical points (local minima, saddle points) (Fig|1B right) or
(ii) that optimization terminated before convergence to any (local) minimum was achieved
(Fig|IB left). However, many of the problems of interest in biochemistry and cell biology have
multiple local minima, which can be a result of curvature of the model manifold [16]. In these
cases, repeated convergence of multiple optimization runs on a small set of similar objective
function values may not represent a problem with the optimization problem itself, but rather
arise from model non-identifiability. This setting contrasts with the situation in which the
objective function values are inconsistent, despite a large number of runs (setting rigorous
thresholds for what can be considered ”consistent” is a tricky problem in and of itself, which
we revisit later in this manuscript). In such a situation, it is unclear whether optimization is
non-convergent or the objective function is very "rugged” [2] with many local minima, not
all of which have been identified.

Non-convergent optimization results can be the consequence of noisy model simulations,
in which lax integration tolerances result in inaccurate numerical evaluation of the objective
function value and its gradient [17]. Inaccurate gradients often result in poor parameter
update proposals, slowing the search in parameter space. Inaccurate objective function values
may result in incorrect rejection of parameter updates, both of which can erroneously suggest
convergence to a minimum and thus lead to premature termination of optimization. For
example, Tonsing et al. [17] found that optimization runs with similar, but inconsistent
objective function values were often located in the neighborhood of the same local minima,
consistent with the idea that optimizer runs had been prematurely terminated. They suggested
that a nudged elastic band method, which aims to identify shortest connecting paths between
optima, might be effective in improving consistency. Premature termination can also arise from

https://doi.org/10.1101/2021.05.20.445065
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.445065; this version posted February 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

problems with the optimization method itself. Dauphin et al. [18] found that saddle points are
prevalent in the objective functions of neural network models and that optimization methods
that do not account for directions of negative curvature may perform poorly in the vicinity of
saddle points. However, neither the prevalence of saddle points nor their impact on premature
optimizer termination have been investigated in the case of biochemical ODE models. Lastly,
Transtrum et al. [16] have suggested that the use of Gauss-Newton Hessian approximations
may not work well for sloppy models. Sloppiness is encountered when the objective function
Hessian has a broad eigenvalue spectrum, suggesting non-identifiability of parameters and an
ill-posed optimization problem. Sloppiness is believed to be a universal property of biochemical
models [19]. However, the geodesic acceleration proposed by Transtrum et al. [16] to address
the limitations of Gauss-Newton Hessian approximation has not been widely adopted, likely
due to the implementation complexity and computational cost of determining directional
second-order derivatives.

Overall, the results described above show that early optimizer termination is a recurrent
issue and may have a variety of causes. Yet, a comprehensive evaluation of this issue on
many benchmark problems, as well as development and testing of methods to identify or
resolve the underlying causes are missing. In principle, this could be addressed by adapting
optimization algorithms. For example, it might be possible to resolve issues with the Gauss-
Newton Hessian approximation by using alternative approximation schemes, such as the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) [20-23] scheme. Issues with saddle points could
be resolved by employing symmetric rank-one (SR1) [24] approximations that account for
negative curvature directions. However, many optimization algorithms were written decades
ago, are difficult to customize or extend, and do not provide the user with statistics about
individual optimization traces. These limitations make it difficult to diagnose problems with
optimization and to resolve them with algorithmic improvements.

To tackle these and other challenges associated with optimization of biochemical models
based on ODEs, this paper re-implements a standard trust-region algorithm in Python
and uses it to investigate several hypotheses about causes and potential solutions for poor
optimizer performance. We find that the use of an inaccurate Hessian approximation is one
important contributor to poor optimization performance and propose a novel hybrid Hessian
approximation scheme. We demonstrate that this scheme outperforms existing approaches on
a set of benchmark problems.

2 Materials and Methods

For the purpose of this study, we considered four different optimizers that all implement the
interior-trust-region algorithm proposed by Coleman and Li [25]: fmincon, referring to the
MATLAB function of the same name and with trust-region-reflective as algorithm and
1ldl-factorize as subproblem algorithm, lsqnonlin, referring to the MATLAB function of
the same name, 1s_trf, referring to the scipy function least_squares with trf algorithm,
and fides, the new implementation developed in the current manuscript. Below we describe
algorithmic and implementation details of fides (a summary is provided in Table[l), and of
the benchmark problems we used to evaluate these algorithms.

https://doi.org/10.1101/2021.05.20.445065
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.445065; this version posted February 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Table 1: Feature overview for different trust-region optimization implementations. The
non least-squares column indicates whether the method is applicable to non least-squares
problems. The free column indicates whether the implementation is freely available or
proprietary software.

o . Non least- | BFGS/ | Programming
Optimizer | Subspace squares SR1 Language free
lsgnonlin Sop O [l MATLAB O
fmincon Sop v’] MATLAB O
1s trf R" . Sop U 0 Python v’
fides R™ Sop v’ v’ Python v’

2.1 Model Formulation

When applied to a biochemical system, an ODE model describes the temporal evolution of
abundances of n, different molecular species z;. The temporal evolution of x is determined
by the vector field f and the initial condition xg:

x = f(t,x,0), x(ty) = %X0(0). (1)

Both f and xy depend on the unknown parameters @ € © C R™ such as catalytic rates or
binding affinities. Restricting optimization to the parameter domain © can constrain the
parameter search space to values that are realistic based on physicochemical theory and helps
prevent numerical integration failures associated with extreme parameter values. For most
problems, © is the tensor product of scalar search intervals (I;, u;) with lower and upper
bounds I; < u; that satisfy [;,u; € RU{—00, 00} for every parameter 6;.

Experiments usually provide information about observables y which depend on abundances
x and parameters 8. A direct measurement of x is usually not possible. Thus, the dependence
of observables on abundances and parameters is described by

y(t,0) = h(x(t,0),0). (2)

Implementation in this Study

All methods described here use CVODES from the SUNDIALS suite [26] for numerical
integration of model equations. CVODES is a multi-step implicit solver for stiff- and non-stiff
ODE initial value problems.

2.2 Optimization Problem

To generate models useful in the study of actual biological systems, model parameters 6
must be inferred from experimental data, which are typically incomplete and subject to
measurement noise. A common assumption is that the measurement noise for n; time-points
t; and n, observables y; is additive, independent and normally distributed for all time-points:

_ id
Ui = yi(t;,0) + €5, €5 ~ N(0,05(0)). (3)

https://doi.org/10.1101/2021.05.20.445065
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.445065; this version posted February 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Thus, model parameters can be inferred from experimental data by maximizing the likelihood,
yielding a maximum likelihood estimate (MLE). However, the evaluation of the likelihood
function involves the computation of several products of large terms, which can be numerically
unstable. Thus, the negative log-likelihood

10005323 s o 0) + (L) :

i=1 j=1

is typically used as objective function that is minimized. As the logarithm is a strictly
monotonously increasing function, the minimization of J(@) is equivalent to the maximization
of the likelihood. Therefore, the corresponding minimization problem

0" = arg min J(0), (5)

will infer the MLE parameters. If the noise variance afj does not depend on the parameters
0, the objective function has a weighted least-squares formulation. As we discuss later,
properties of a least-squares formulation can be exploited in specialized optimization meth-
ods. Optimizers that do not require least-squares structure can also work with other noise
models [27].

Implementation in this Study

For the MATLAB optimizers fmincon and 1sqnonlin, the objective function and its deriva-
tives were evaluated using data2dynamics [28] (commit ble6acd), which was also used in
the study by Hass et al. |11]. For the Python optimizers 1s_trf and fides, the objective
function and its derivates were evaluated using AMICI [29] (version 0.11.23) and pyPESTO
(version 0.2.10).

2.3 Trust-Region Optimization

Trust-region methods minimize the objective function J by iteratively updating parameter
values 0,1 = 0 + A, according to the local minimum
A0y = pj, = argminmyi(p) st |]p|| < Ay (6)
p
of an approximation m; to the objective function. Ay is the trust-region radius that restricts
the norm of parameter updates. The optimization problem @ is known as the trust-region
subproblem. In most applications, a local, quadratic approximation

1
mi(p) = fr + gip+ §pTka (7)

is used, where f;, = J(0},) is the value, g = V.J(0y) is the gradient and By, = V2.J(0},) is the
Hessian of the objective function evaluated at 6.

The trust-region radius A, is updated in every iteration depending on the ratio py
between the predicted decrease —my(p;) and actual decrease in objective function value
AJ = J(0y) — J(0r+p;) |13]. The step is accepted if py, exceeds some threshold p > 0. When
boundary constraints (on parameter values) are applied, the predicted decrease is augmented
by an additional term that accounts for the parameter transformation (see Section [25].

6

https://doi.org/10.1101/2021.05.20.445065
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.445065; this version posted February 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Implementation in this Study

All optimizers evaluated in this study use ¢ = 0 as acceptance threshold. They all increase the
trust-region radius Ay by a factor of 2 if the predicted change in objective function value is
accurate (pg > 0.75) and the local minimum is at the edge of the trust region (||pi|| > 0.9A
for fmincon, 1sqnonlin and fides, ||p}|| > 0.95A for 1s_trf). All optimizers decrease the
trust-region radius if the predicted change in objective function value is inaccurate (p < 0.25),

min(AellPelD) while 1s_trf

but fmincon, 1sqnonlin and fides set the trust-region radius to 1

sets it to %.

When the predicted objective function decrease is negative (—my(py) < 0, i.e., an increase
in value is predicted) fides and ls_trf set p; to 0.0. Positive values for mg(p}) may arise
from the augmentation accounting for boundary constraints. Setting pi to 0.0 prevents
inadvertent increases to Ay or step acceptance when —my(p;) and AJ are both negative.
However, in contrast to fides, 1s_trf does not automatically reject respective step proposals
and only does so if AJ < 0. fmincon and 1sqnonlin only reject step proposals with AJ < 0,
but do not take the sign of my(p;) into account when updating Ag.

When the objective function cannot be evaluated — for ODE models this is typically the
result of an integration failure — all optimizers decrease the trust-region radius by setting it
to W (fmincon and lsqnonlin), w (fides) or % (1s_trf). These subtly
nuanced differences in the implementation are likely the result of incomplete specification of
the algorithm in the original publication [25]. In particular, handling of m(p}) > 0, which
does not occur for standard trust-region methods, was not described and developers needed
to independently work out custom solutions.

2.4 Hessian Approximation

Constructing the local approximation (7)) that defines the trust-region subproblem () requires
the evaluation of the gradient gp and Hessian By of the objective function at the current
parameter values ;. While the gradient g, can be efficiently and accurately computed using
first order forward or adjoint sensitivity analysis [30], it is computationally more demanding
to compute the Hessian By, [31]. Therefore several approximation schemes have been proposed
that approximate Bj using first order sensitivity analysis. In the following we will provide a
brief description of approximation schemes considered in this study, an overview of schemes
and their characteristics is provided in Table 2]

Gauss-Newton Approximation

The Gauss-Newton (GN) approximation B,gGN) is based on a linearization of residuals r;;

Yij — vi(t;, 0) v 1l em
r(0) = = 0= BIY =0 Y V(04 Vr(0). (8)
7i;(6) i=1 j=1
which yield a symmetric and positive semi-definite approximation to By and does not account
for negative curvature. At the maximum likelihood estimate, B(¢™) is equal to the negative

empirical Fisher Information Matrix assuming o;; does not depend on parameter values 6.

https://doi.org/10.1101/2021.05.20.445065
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.445065; this version posted February 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

For parameters dependent o, the log(o) term in cannot be assumed to be constant, which
results in a non least-squares optimization problem. For non least-squares problems, the
adequateness and formulation of the GN approximation is not well established. Thus, Raue [32]
proposed to transform the problem into a least-squares form by introducing additional error
residuals rf; and adding a corresponding correction to the Gauss-Newton approximation B (GN)

from , yielding B(ENe).

r5(8) = \/2log(04(6)) + C

ovo _ pom o)

B, =B + LTk :

i 5 05(0)*(2log(05(0)) + C)
where C' is some arbitrary, but sufficiently large constant so that 2log(c;;(@)) + C > 0. This
condition ensures that residuals are real-valued and the approximation B(“N¢ is positive
semi-definite, but inherently makes optimization a non-zero residual problem. Adding the
constant C' to residuals adds a constant to the objective function value and, thus, neither
influences its gradient and Hessian nor the location of its minima. However, C' does enter the
GNe approximation, with unclear implications. Instead, Stapor et al. [31] suggested that one

ignores the second order derivative of the log(¢) term in (4)), which corresponds to the limit
(GNe) — B(GN),

Iterative Approximations

In contrast to the GN approximation, Broyden-Fletcher-Goldfarb-Shanno (BFGS) or Sym-
metric Rank-one (SR1) are iterative approximation schemes, in which the approximation in

the next step
Bjs1 = By + A(s, z, BY)

is constructed based on the approximation in the current step By, and some update A(z, s, B¥),
where s = A@;, and z = gr11 — Gi-

The BFGS update scheme

A(BFGS)(S, z, M) _ ZiT B (MS; (Ms)T
zls st Ms

guarantees a positive semi-definite approximation as long as a curvature condition z’s > 0 is
satisfied and the initial approximation B((]BFGS) is positive semi-definite [13]. Thus, the update
scheme is usually only applied with line search methods that guarantee satisfaction of the
curvature condition by selecting the step length according to (strong) Wolfe conditions |13].
However, BFGS can also be used in trust-region methods by rejecting updates when the
curvature condition is not satisfied, although this invalidates some theoretical convergence
guarantees [13].

The SR1 update scheme

(z — Ms) (z — Ms)"
(z— Ms)"s

can also yield indefinite approximations, incorporating negative curvature information, and
has no step requirements beyond ensuring that the denominator of the update is non-zero.

ABEY (s 7 M) =

https://doi.org/10.1101/2021.05.20.445065
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.445065; this version posted February 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Structured Secant Approximations

The accuracy of the GN approximation depends on the magnitude of the residuals, since the
approximation error is the sum of products of the residuals and the residual Hessians

Ny Nt
Bk = BI(CGN) + %Z Z?"”(ek)VQ’l“”(ek) (10)
i=1 j=1
For non-zero residual problems, in which there are indices 4, j such that r;;(8*) > 0, or in the
presence of strong non-linearities, the second order term in does not vanish and the GN
approach is known to perform poorly; it can even diverge [33,[34]. This issue is addressed
in structured secant methods [33}35,36], which combine the pointwise GN approximation
with an iterative BFGS approximation A, of the second order term. In the Structured Secant
Method (SSM) [36], the matrix Ay is update using a BFGS scheme:

SSM GNe
Bl(c-i—l) = Bl(c—i-l)+ Akt

App1 = Ay + ABFES) (Sa z”, B}(ﬁzlv@) + Ak)
2% = (Vr(0ps1) — Vr(0)) r(0)s1).

Similarly, the Totally Structured Secant Method (TSSM) [37] scales Ay with the residual
norm, to mimic the product structure in the second order term in , and, accordingly,
scales the update to A, with the inverse of the residual norm:

TSSM GNe
B = B 4 (e (01) || A
AEFES) (5,21, BIEY) + [r(8hs)| | Ar)

[Ir (0141

0:1)]]
:B(GNe) #||I‘(E+1 .
S0,

Despite the use of a BFGS updating scheme, the SSM and TSSM approximations do
not preserve positive semi-definiteness, as the matrix B,(CGNe) is updated at every iteration
without any additional safeguards. Structured secant approximations have been popularized
by the NL2SOL toolbox [38], but are not featured in the standard optimization libraries in

MATLAB or Python.

Appr = Ay +

il

Hybrid Schemes

Other hybrid schemes can dynamically switch between GN approximations and iterative
updates when some metric indicates that the considered problem has non-zero residual
structure. For example, Fletcher and Xu [39] proposed an approach to detect non-zero
residuals by computing the normalized change in the residual norm and applying BFGS
updates when the change is smaller than some tolerance epx:

i aN [[r(0x)l]
B(e)

B(FX) _ B}(CFX) + A(BFGS)(S,Z,B,(gFX)) if e (@) || =Ir(Ok+1)]| < €rx
Pl otherwise.

https://doi.org/10.1101/2021.05.20.445065
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.445065; this version posted February 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Table 2: Overview of properties of different Hessian approximation schemes. BFGS is the
Broyden-Fletcher-Goldfarb-Shannon algorithm. SR1 is the Symmetric Rank-one update.
GN is the Gauss-Newton approximation. SSM is the Structured Secant Method. TSSM
is the Totally Structured Secant Method. FX is the hybrid method proposed by Fletcher
and Xu [39]. GNSBFGS is the Gauss-Newton Structured BFGS method. The construction
column indicates whether pointwise evaluation is possible or whether iterative construction is
necessary. The positive semi-definite column indicates whether the approximation preserves
positive semi-definiteness given a positive semi-definite initialization.

Scheme Comstruction | g B0 | Requrenent | Least Squares
BFGS iterative v’ v O
SR1 iterative OJ v’ O
GN pointwise v’ ||lr(60%)|] =0 v
SSM pointwise + iterative 0 v’ v
TSSM pointwise + iterative O v’ v’
FX pointwise + iterative Ve v’ v
GNSBFGS | pointwise + iterative v Amin(V2J(0%)) >0 v

As B,EGNG) is positive semi-definite and the BFGS updates preserve this property, the FX
approximations are always positive semi-definite.

To address the issue of possibly indefinite approximations in the SSM and TSSM approaches,
Zhou and Chen proposed a Gauss-Newton structured BFGS method (GNSBFGS) [34].

GN . oT
(GNSBFGS) B;E;H) 4 Apps if L s e onsBrGS
B - GN St
B,i+1) 4 ||r(0pi1)||I otherwise
(BFGS) (g 40 if ZhpaShit
Apsy = A+ A (s, 2% Ag) if ST, 501~ CGNSBFGS
& otherwise
o alr]
|Ir(6))
that combines the TSSM approach with the dynamic updating of the FX approach. As sum of
s i . (GNSBFGS) . . e
two positive semi-definite matrices, B;.J is always positive semi-definite. The authors

oT
Zk+1sk+1

demonstrate that the term e I term in the
k+1

s CIRILCTEY;
- plays a similar role as the TG

FX algorithm. However, they only prove convergence if the tolerance 2eanyspras is smaller
than the smallest eigenvalue Ay, (V2J(60%)) of the Hessian at the optimal parameters and if
V2J(6%) is positive definite. This condition is not met for problems with singular Hessians,
which are often observed for non-identifiable problems.

Implementation in this Study

fmincon and 1sqnonlin were only evaluated using the GNe approximation, as implemented
in data2dynamics. 1s_trf can only be applied using the GNe approximation. Fides was

10

https://doi.org/10.1101/2021.05.20.445065
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.445065; this version posted February 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

evaluated using BFGS and SR1 using respective native implementations in addition to GN
and GNe, as implemented in AMICI. We used the default value of C' = 50 for the computation
of GNe in both data2dynamics and AMICI. We provide implementations for BFGS, SR1,
SSM, TSSM, FX and GNSBFGS schemes in fides. FX, SSM, TSSM and GNSBFGS were
applied using GNe, as they require a least-squares problem structure. Hyperparameters
erx = 0.2 and egnspras = 107¢ were picked based on recommended values in respective
original publications.

2.5 Solving the Trust-Region Subproblem

In principle, the trust-region subproblem (6] can be solved exactly [13]. Moré proposed an
approach using eigenvalue decomposition of By [40]. Yet, Byrd et al. [41] noted the high
computational cost of this approach and suggested an approximate solution by solving the
trust-region problem over a two dimensional subspace Sap, spanned by gradient g, and Newton
B, Lgi search directions, instead of R™. Yet, for objective functions requiring numerical
integration of ODE models, the cost of eigenvalue decomposition is generally negligible for
problems involving fewer than 10® parameters.

A crucial issue for the two-dimensional subspace approach are problems with indefinite
(approximate) Hessians. For an indefinite By, the Newton search direction may not represent
a direction of descent. This can be addressed by dampening By [13], but for boundary-
constrained problems additional considerations arise and require the identification of a
direction of strong negative curvature [25|.

Implementation in this Study

fmincon and lsqnonlin implement optimization only over Sop, where the Newton search
direction is computed using preconditioned direct factorization. For preconditioning and
direct factorization, fmincon and lsgnonlin employ Cholesky and QR decomposition re-
spectively, which both implement dampening for numerically singular By. fides and 1s_trf
implement optimization over Syp (denoted by 2D in text and figures) and R"™ (denoted by
ND in text and figures). For 1ls_trf, we specified tr_solver="1smr" for optimization over
Sop. To compute the Newton search direction, 1s_trf and fides both use least-squares
solvers, which is equivalent to using the Moore-Penrose pseudoinverse. fides uses the direct
solver scipy.linalg.lstsq, with gelsd as LAPACK driver, while 1s_trf uses the iterative,
regularized scipy.sparse.linalg.lsmr solver. In fides, the negative curvature direction
of indefinite Hessians is computed using the eigenvector to the largest negative eigenvalue
(computed using scipy.linalg.eig).

2.6 Handling of Boundary Constraints

The trust-region region subproblem @ does not account for boundary constraints, which
means that 8 + A@y may not satisfy these constraints. For this reason, Coleman and Li [25]
introduced a rescaling of the optimization variables depending on how close the current values

11

https://doi.org/10.1101/2021.05.20.445065
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.445065; this version posted February 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

are to the parameter boundary 00©. This rescaling is realized through a vector

0; —u; ifVJ(O); <0 andwu; < oo
! -1 ifVJ(0); <0 andwu; =o0
1 ifvVJ(@), >0 andl; =-—o0

which yields transformed optimization variables
01 = D0, = diag(|v(6,))]2) "6,
and a transformed Hessian
By = DBy Dy + diag(gi) Vo (6y). (11)

As the second term in is positive semi-definite, this handling of boundary constraints
can also regularize the trust-region sub-problem, although this is not its primary intent.

Coleman and Li [25] also propose a stepback strategy in which solutions to @ are reflected
at the parameter boundary 00. Since this reflection defines a one-dimensional search space,
the local minimum can be computed analytically at negligible computational cost. To ensure
convergence, Afy, is then selected based on the lowest my(p) value among (i) the reflection of
p* at the parameter boundary (ii) the constrained Cauchy step, which is the minimizer of
along the gradient that is truncated at the paramtere boundary and (iii) p* truncated at the
parameter boundary.

Implementation in this Study

fmincon, 1sqnonlin and 1s_trf all implement rescaling, but only allow for a single reflection
at the boundary [42]. In contrast, fides implements rescaling and also allows for a single
or arbitrarily many reflections until the first local minimum along the reflected path is
encountered.

2.7 Optimizer Performance Evaluation

To evaluate optimization performance, Hass et al. [11] computed the success count -y, which
represents the number of ”"successful” optimization runs that reached a final objective function
value sufficiently close (difference smaller than some threshold 7) to the lowest objective
function value found by all methods, and divided that by the time to complete all optimization
runs tyorq, & performance metric that was originally introduced by Villaverde et al. [43]. In this
study, we replaced t;,q; With the total number of gradient evaluations across all optimization
IUnS Ngpqq for any specific optimization setting. The resulting performance metric ¢ = v/ngq4
ignores differences in computation time for gradients having different parameter values and
prevents computer or simulator performance from influencing results. This provides a fairer
evaluation of the algorithm or method itself and is particularly relevant when optimization
is performed on computing clusters with heterogeneous nodes or when different number of
threads are used to parallelize objective function evaluation, as it was the case in this study.
Since ¢ ignores potentially higher computation times for step-size computation, we confirmed

12

https://doi.org/10.1101/2021.05.20.445065
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.445065; this version posted February 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

that step-size computation times were negligible as compared to numerical integration of
model and sensitivity equations. For all trust-region optimizers we studied, the number of
gradient evaluations was equal to the number of iterations, with the exception of 1s_trf
which only uses objective function evaluations when a proposed step is rejected. Thus, 1/n444
is equal to the average number of iterations for the optimization to converge (divided by the
number of optimization runs, which is 10? in all settings). We therefore refer to v = 1/n444
as the convergence rate. Performance ¢ is equal to the product of v and v.

To calculate v, we used a threshold of 7 = 4, which corresponds to the upper limit of the
objective function value in cases in which a model cannot be rejected according to the BIC [44].
Similar to Hass et al. |11], we found that changing this convergence threshold did not have
a significant impact on performance comparison, but provide analysis for values 7 = 0.05
(threshold used by Hass et al., divided by two to account for difference in objective function
scaling, Fig S1) and 7 = 20 (the threshold for rejection according to AIC and BIC [15], Fig
S2) in the Supplementary Material.

2.8 Extension of Boundary Constraints

For some performance evaluations, we extended parameter boundaries. Even though initial
points are usually uniformly sampled in ©, we did not modify the locations of initial points
when extending bounds. The Schwen problem required a different approach in which the
bounds for the parameter fragments were not modified, as values outside the standard bounds
were implausible.

As previously reported [11], extending boundaries can expose additional minima having
globally lower objective function values. Thus, success count ~ for optimization settings with
normal boundaries were computed using the lowest objective function Jy;, found among all
settings excluding those with extended boundaries. ~ for optimization settings using extended
boundaries were computed using the minimum of J,,;, and the lowest objective function value
found for that particular setting.

2.9 Statistical Analysis of Optimizer Traces

During the statistical analysis of optimizer traces, we quantified several numerical values
derived from numerical approximation of matrix eigenvalues with limited accuracy (due, for
example, to limitations in floating point precision). It was therefore necessary to account for
this limitation in numerical accuracy:

Singular Hessians: To numerically assess matrix singularity of Hessian approxima-
tions, we checked whether the condition number, computed using the numpy function
numpy . linalg. cond, was larger than the inverse of the floating point precision € =1/numpy.spacing(1).

Negative eigenvalues: To numerically assess whether a matrix has negative eigenvalues
we computed the smallest (Ayin) and largest (Ayayx) eigenvalues of the untransformed Hessian
approximation By using numpy.linalg.eigvals and checked whether the smallest eigenvalue
had a negative value that exceeded numerical noise Apin(Bx) < —€ - [Amax(Br)|-

13

https://doi.org/10.1101/2021.05.20.445065
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.445065; this version posted February 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Table 3: Summary of problem characteristics for benchmark examples, as characterized by
Hass et al. [11].

’ Problem ‘ Ng ‘ Ny ‘ Ny - Ny ‘ sloppy ‘ identifiable ‘
Bachmann | 113 | 36 | 541 v’]
Beer 72 | 4 | 27132 v’]
Boehm 9 8 48 v’ v’
Brannmark | 22 | 9 43 v’ O
Bruno 13 | 7 77 [v’
Crauste 12 | 5 21 v’]
Fiedler 19 | 6 72 v’ [
Fujita 19 19 144 v’ 0
Isensee 46 | 25 687 v’]
Lucarells 84 | 43 | 1755 v’]
Schwen 30 | 11 | 286 v’ O
Weber 36 | 7 135 v’]
Zheng 46 | 15 60 v’ U

2.10 Implementation

fides is implemented as modular, object-oriented Python code. The subproblem, subproblem
solvers, stepback strategies and Hessian approximations all have class-based implementations,
making it easy to extend the code. Internally, fides uses SciPy [45] and NumPy [46] libraries
to store vectors and matrices and perform linear algebra operations. To ensure access to
state-of-the-art simulation and sensitivity analysis methods, we implemented an interface to
fides in the parameter estimation toolbox pyPESTO, which uses AMICI [29] to perform
simulation and sensitivity analysis via CVODES [26]. This approach also enabled import of
biological parameter estimation problems specified in the PEtab [47] format.

2.11 Benchmark Problems

To evaluate the performance of different optimizers, we considered 13 out of the 20 different
benchmark problems (Table 3| introduced by Hass et al. [11]; these problems were reformulated
in the PEtab [47] format. The selection of benchmark problems was based on whether or
not all of the functionality required for the PEtab import was supported and validated in
AMICI and pyPESTO and whether the problems could be encoded in SBML and PEtab
formats. For example the Hass problem was excluded since it includes negative initial
simulation time, which is not supported by PEtab. Other models were excluded for the
following reasons: Raia because it involves state-dependent value for o, which is unsupported
by AMICI; Merkle and Sobotta due to missing SBML implementations; Swameye because
it includes spline functions which are not supported by SBML; Becker because it involves
multiple models, which is not supported by pyPESTO; and Chen because forward sensitivity
analysis is prohibitively computationally expensive for this model. All benchmarks problems
were previously published and included experimental data for model calibration as described by
Table 3| which also provides a brief summary of numerical features of the various benchmarks.

14

https://doi.org/10.1101/2021.05.20.445065
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.445065; this version posted February 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

A more detailed description of the biochemical systems described by these models is available
in the supplemental material of the study by Hass et al. [11].

2.12 Simulation and Optimization Settings

We encountered difficulties reproducing some of the results described by Hass et al. [11] and
therefore repeated evaluations using the latest version of data2dynamics. We deactivated
Bessel correction [11] and increased the function evaluation limit to match the iteration limit.
Relative and absolute integration tolerances were set to 10~%. The maximum number of
iterations for optimization was set to 10°. Convergence criteria were limited to step sizes with
a tolerance of 1079, and 1s_trf code was modified such that the convergence criteria matched
the implementation in other optimizers. For all problems, we performed 10 optimizer runs.
To initialize optimization, we used the initial parameter values provided by Hass et al. [11].

2.13 Parallelization and Cluster Infrastructure

Optimization was performed on the O2 Linux High Performance Compute Cluster at Harvard
Medical School running SLURM. Optimization for each model and each optimizer setting
was run as a separate job. For MATLAB optimizers, optimization was performed using a
single core per job. For Python optimizers, execution was parallelized on up to 12 cores. We
observed severe load balancing issues due to skewed computational cost across optimization
runs for Bachmann, Isensee, Lucarelli and Beer models. To mitigate these issues, optimization
for these models was parallelized over 3 threads using pyPESTOs MultiThreadEngine and
simulation was parallelized over 4 threads using openMP multithreading in AMICI, resulting in
a total parallelization over 12 threads. For the remaining models, optimization was parallelized
using 10 threads without parallelization of simulations. Wall-time for each job was capped at
30 days (about 1 CPU year), which was only exceeded by the GNSBFGS and FX Hessian
approximations for the Lucarelli problem after 487 and 458 optimization runs respectively
and also by the SSM Hessian approximation for the Isensee problem after 973 optimization
runs. Subsequent analysis was performed using partial results for those settings.

3 Results

3.1 Validation and Optimizer Comparison

The implementation of trust-region optimization involves complex mathematical operations
that can result in error-prone implementations. To validate the trust-region methods imple-
mented in fides, we compared the performance of optimization using GN and GNe schemes
against implementations of the same algorithm in MATLAB (fmincon, lsqnonlin) and
Python (1s_trf). In the following, the employed subspace solvers and Hessian approximation
methods are denoted by implementation subspace/hessian.

We found that fides 2D/GN (blue) and fides 2D/GNe (orange) were the only methods
that had non-zero performance (¢ > 0) for all 13 benchmark problems (Fig [2A), with
small performance differences between the two methods (0.72 to 1.12 fold difference, average

15

https://doi.org/10.1101/2021.05.20.445065
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.445065; this version posted February 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

A implementation
B fides 2D/GN mmm fmincon 2D/GNe mmm |s_trf 2D/GNe
I fides 2D/GNe W |sgnonlin 2D/GNe

optimizer
performance

b ['] |hH

o0}

(9]

=1
!

increase [fold]
performance
5 3
. .
b
|
J
J

increase [fold]
convergence rate
2
i
[—
[—
-
S
-

increase [fold]
success count
3 3 3
——
o
—
-
_.
-
——

Fig 2: Comparison of MATLAB and Python optimizers. Colors indicate optimizer setting and
are the same in all panels. A: Performance comparison (¢), absolute values. B: Performance
comparison (¢), values relative to fides 2D/GN. C: Increase in convergence count -, values
relative to fides 2D/GN. D: Increase in convergence rate v, values relative to fides 2D/GN.

0.96). This established fides 2D/GN as good reference implementation. We will, therefore,
report the performance of other methods relative to fides 2D/GN (Fig [2B). The 1s_trf
method outperformed fides 2D/GN on three problems (1.54 to 22.4-fold change; Boehm,
Crauste, Zheng; purple arrows), had similar performance on one problem (1.15-fold change;
Fiedler), exhibited worse performance on four problems (0.02 to 0.55-fold change; Brannmark,
Bruno, Lucarelli, Weber) and did not result in successful runs (zero performance ¢ = 0)
for the remaining five problems (Bachmann, Beer, Fujita, Isensee, Schwen). Decomposing
performance improvements ¢ into increases in convergence rate v (Fig) and success count
v (Fig) revealed that increase in ¢ was primarily due to higher v, which was observed
for all but four problems (Bachmann, Bruno, Isensee, Schwen). However, in most cases,
improvements in v were canceled out by larger decreases in .

For fmincon (green) and lsgnonlin (red), ¢ was higher for one problem (2.34 to 2.94
-fold change; Fiedler; red/green arrow), similar for two problems (0.92 to 1.00 fold change,

16

https://doi.org/10.1101/2021.05.20.445065
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.445065; this version posted February 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Boehm, Bruno) and worse for the remaining 10 problems (0.00 to 0.80 fold change, Bachmann,
Brannmark, Fujita, Isensee, Lucarelli Schwen, Weber, Zheng), with zero performance on two
problems (Beer, Crauste) (Fig[2B). Since we observed similar ¢ for fides 2D/GN (blue) and
fides 2D/GNe (orange) on all problems, the differences in ¢ between fides 2D/GN and the
other implementations are unlikely to reflect use of GNe as opposed to a GN scheme. Instead
we surmised that the differences were due to discrepancies in implementation of the Newton
direction (this would explain the similarity for the two identifiable problems (Boehm, Bruno,
Table [3)).

Overall, these findings demonstrated that trust-region optimization implemented in fides
was more than competitive with the MATLAB optimizers fmincon and 1sqnonlin and the
Python optimizer 1s_trf, outperforming them on a majority of problems. Simultaneously,
our results demonstrate a surprisingly high variability in optimizer performance among
methods that implement the same algorithm. This variability may explain some of the
conflicting findings in previous studies that assumed distinct implementations would have
similar performance [4849).

3.2 Parameter Boundaries and Stepback Strategies

One of the few changes in implementation that we deliberately introduced into the fides code
was to allow multiple reflections during stepback from parameter boundary conditions [25].
In contrast, 1s_trf, 1sqnonlin and fmincon only allow a single reflection [42]. The modular
design and advanced logging capabilities of fides make it straightforward to evaluate the
impact of such modifications on optimizer performance ¢ and arrive at possible explanations
for observed differences. For example, when we evaluated fides 2D/GN with single (orange)
and multi-reflection (dark-green, Fig —C) implementations and correlated changes to ¢
with statistics of optimization trajectories (Fig ,E), we found that the single reflection
performance ¢ was reduced on four problems (0.59 to 0.65-fold change; Beer, Lucarelli,
Schwen, Zheng; orange arrows Fig) Lower performance was primarily due to a decrease in
convergence rate v (Fig[3B,C). We attributed this behavior to the fact that a restriction on the
number of reflections lowered the predicted decrease in objective function values for reflected
steps. This, in turn, increased the fraction of iterations in which stepback yielded constrained
Cauchy steps (Pearson’s correlation coefficient r = —0.85, p-value p = 2.3 - 107, Fig)
as well as the average fraction of boundary-constrained iterations (r = —0.82, p=6- 107,
Fig), both slowing convergence.

A naive approach to addressing issues with parameter boundaries is to extend or remove
the parameter bounds. Thus, we repeated optimization with fides 2D/GN (multi-reflection)
with parameter boundaries extended by one (blue) or two (pink) orders of magnitude or
completely removed (light green). We found that extending boundaries by one order of
magnitude reduced ¢ for 6 problems (0.12 to 0.74 fold change; Bachmann, Beer, Fiedler,
Isensee, Lucarelli, Weber; blue arrows Fig) and extending boundaries by two orders of
magnitude reduced ¢ for an additional 4 problems (0.13 to 0.85 fold change; Bruno, Crauste,
Schwen, Zheng; pink arrows Fig) We found that decreased ¢ was primarily the result of
lower v (Fig[3B), which we attributed to a larger fraction of iterations in which the transformed
Hessian By, was singular (r = —0.78, p = 1.6 - 1073, Fig) Removing boundaries decreased
¢ for all problems, a result of lower values of v, which we attributed to higher fraction of

17

https://doi.org/10.1101/2021.05.20.445065
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.445065; this version posted February 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

A

O
m

multi-reflection single-reflection

extended bounds extended bounds no bounds
(1 order of magnitude) (2 orders of magnitude)

1000 1000

1022 lower performance extended bounds 1002 1002

-
<
1

10704 10—04

increase [fold]

convergence rate
increase [fold]

increase [fold]
performance
2
convergence rate

—
e
r

1 0-0.6 1 0-0 6

0.1 02 03 0.0 005 0.10 0.15
increase average fraction of increase average fraction of
constrained Cauchy steps boundary constrained iterations

0]
o o
o o
~ o
) L

-
=3
L

increase [fold]
convergence rate
3
-

—
e
r

1000 1000

—

<
o
L

(@)

10-10

_

o
]
|

10»02

2
increase [fold]

success count

10—20

decrease average
iteration count [fold

1004

increase [fold]
success count
2

1024 0.1 02 03 -0.05 0.00 0.05 0.10 0.15
‘ increase average fraction of increase average fraction of
iterations with singular B, iterations with integration failure

Fig 3: Evaluation of stepback strategies. Colors indicate optimizer setting and are the same in
all panels. All increases/decreases are relative to multi-reflection fides 2D/GN with normal
bounds. A: Performance comparison (¢). B: Increase in convergence count 7. C: Increase in
convergence rate v. D: Association between increase in average fraction of constrained Cauchy
steps with respect to total number of boundary constrained iterations and increase in v for
the single-reflection method. E: Association between increase in average fraction of boundary
constrained iterations and increase in v for the single-reflection method. F: Association
between increase in average fraction of iterations with a numerically singular transformed
Hessian By, and decrease in ~ for the multi-reflection method for fides 2D/GN with bounds
extended by two orders of magnitude. G: Association between increase in average fraction of
iterations with integration failures and increase in ~ for multi-reflection fides 2D/GN without
bounds.

iterations with integration failures (r = —0.82, p = 5.7 - 107, Fig)

These findings demonstrate the importance and difficulty of choosing appropriate optimiza-
tion boundaries, since excessively wide boundaries may lead to frequent integration failures
and/or the creation of an ill-conditioned trust-region subproblem. In contrast, too narrow
boundaries may not include the global optimum. When managing boundary constraints the
use of multi-reflection as compared to single-reflection yields a small performance increase,
albeit significantly smaller than the variation we observed (in the previous section) between
different implementations of the same optimization algorithm.

18

https://doi.org/10.1101/2021.05.20.445065
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.445065; this version posted February 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

3.3 Iterative Schemes and Negative Curvature

To further study the positive effect of improving the conditioning of trust-region subproblems
on the optimizer performance ¢, we carried out optimization using BFGS and SR1 Hessian
approximations. BFGS and SR1 can yield full-rank Hessian approximations, resulting in
well-conditioned trust-region subproblems, even for non-identifiable problems. Moreover, in
contrast to GN, these approximations converge to the true Hessian under mild assumptions [13].
The SR1 approximations can also account for directions of negative curvature and might
therefore be expected to perform better when saddle-points are present.

We compared ¢ for fides 2D/GN (blue), fides 2D/BFGS (orange) and fides 2D/SR1
(green) (Fig[4A) and found that fides 2D/BFGS failed to reach the best objective function
value for one problem (Beer) and Fides 2D/SR1 for two problems (Beer, Fujita). Compared
to fides 2D/GN, ¢ for fides 2D/BFGS was higher on three problems (2.02 to 9.88 fold change;
Boehm, Fiedler, Schwen; orange arrows) and four problems for fides 2D/SR1 (1.32 to 7.12 fold
change; Boehm, Crauste, Fiedler; green arrows), it was lower for a majority of the remaining
problems (BFGS 7 of 13 problems, 0.05 to 0.49 fold change; SR1 8 of 13 problems, 0.07 to
0.78 fold change). Decomposing ¢ into improvements in convergence rate v (Fig [4B) and
improvements in success counts y (Fig [4C) revealed that SR1 improved v for 7 problems (2.23
to 5.97 fold change; Beer, Boehm, Crauste, Fiedler, Fujita, Weber, Zheng; green arrows Fig)
Out of these 7 problems, BFGS improved v for only four problems (2.33 to 6.63 fold change;
Beer, Boehm, Fiedler, Zheng; orange arrows Fig) We found that for both approximations,
the increase in v was correlated with the change in average fraction of iterations without trust-
region radius (A) updates (BFGS: r = —0.8, p=1.1-1073; SR1: r = —0.61, p = 2.8 - 1072,
Fig) Ay is not updated when the predicted objective function decrease is in moderate
agreement with the actual objective function decrease (0.25 < pp < 0.75, see Section ,
likely a result of inaccurate approximations to the Hessian. Thus, higher convergence rate
v of SR1 and BFGS schemes was likely due to more precise approximation of the objective
function Hessian.

To better understand the performance differences between BFGS and SR1, we analysed
the eigenvalue spectra of SR1 approximations and found that SR1 convergence rate v was
correlated with the average fraction of iterations where the transformed Hessian approximations
By, had negative eigenvalues (r = —0.71, p = 6.7 - 1073, Fig) This correlation suggests
that directions of negative curvature approximated by the SR1 scheme tended not to yield
good search directions; handling of negative curvature is therefore unlikely to explain observed
improvements in convergence rates. In contrast to negative eigenvalues, we found that
difference in v between BFGS and SR1 was correlated with the average fraction of iterations
in which the BFGS approximation did not produce an update (r = —0.88, p = 8.3 - 107°,
Fig) The BFGS approximation is not updated when the curvature condition is violated
(see Section . Such a high fraction of iterations not prompting updates is surprising, since
the violation of the curvature condition is generally considered to be rare [13]. It is nonetheless
a plausible explanation for lower convergence rates, since the BFGS approximation is not
expected to always converge to the true Hessian under such conditions [13].

For three problems, the BFGS (orange arrows, Fig fIC) and/or SR1 (green arrows, Fig [4C)
approximations increased v (1.29 to 3.12 fold change; Boehm, Crauste, Schwen), but for
most problems 7 was reduced by more than two-fold (—oo to 0.46 fold change; SR1+BFGS:

19

https://doi.org/10.1101/2021.05.20.445065
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.445065; this version posted February 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

A D E
B 2D/GN mm 2D/BFGS s 2D/SR1 r=-0.80{p=1.1e-03 1045 r=-0.71, p=6.7e-03
100 r=-0.61,p=2.8¢-02
ND/GN ND/BFGS ND/SR1
o _l higher perforr?zince BFGS ih\gi\e'r pe:f?rmance SR1 , 5‘% 1008 % 1050
5 23 X 8
T o)
S 2 10"+ 26 . S s
=5 II @ D100 [10
PR [R S E—— N JER S S N P S g9 . ¥ o
Rk TT QW™ N &
5 © 107 G 1008 o 100
ce .
102-
B -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
© 10% v increase average fraction of average fraction of iterations
2 YVEovY Viovy v v v g g
TC iterations without A, updates with A, (8)<0
g 8 101 4
=
83 0l . I Iy il w F G
g S I I] 1 I L | LEEAN | r=-0.88, p=8.3e-05
g 2 10 x
£5 = @ 100 1000 .
© =5 —
o T C
102- =q °3
(o] € T 1008 =0
102 £ % §
. . v vy 22 0 510%™ r=0.86, p=1.6e-04
2 510 g S 23 r=0.73, p=4.86-03
= O
;‘ p II |) E § censoring
@ P 10° ¥ L T T] 1015 threshold
g8 | [| ™ 102 :
g S 1074 010 020 0.30 09 -07 -05 -03
=0 , average fraction of increase average fraction of
102) ! ! ! ! ! ! ! | | | | iterations without B, updates iterations with singular B,
S & Q& * @ LN O
SRR 2 U R > PN\ RN A S RV AR
& P & &P Y F 0 E
N & & & @ S & &S 1
& &
1010 I -
o
o g L1 S ————
T
2S00 5o
=9 8 Tgos
26 o 3
LR) =
9 g 1000 g g 1.0
2t 531"
o £ o
1095 3
] 1018
3
[}
0.1 00 01 02 0.0 005 0.10 0.15
increase average fraction of change average fraction of
iterations without A, updates iterations with A (8,)<0

Fig 4: Evaluation of iterative Hessian approximation schemes. Color scheme is the same in
all panels. All increases/decreases are relative to fides 2D/GN unless otherwise noted. A:
Performance comparison (¢). B: Increase in convergence count . C: Increase in convergence
rate v. D: Association between increase in average fraction of iterations without updates to
the trust-region radius Ay and increase in v for fides 2D/SR1 (green) and fides 2D/BFGS
(orange). E: Association between average fraction of iterations where smallest eigenvalue
Amin Of the transformed Hessian B,(CSRH is negative and v for fides 2D/SR1. F': Association
between fraction of iterations without updates to B, and increase in v relative to fides
2D/SR1 for fides 2D/BFGS. G: Association between fraction of iterations with a numerically
singular transformed Hessian By and increase in v for fides 2D/SR1 (green) and fides
2D/BFGS (orange). Change in v was was censored at a threshold of 1072 to visualize models
with «. H: Association between fraction of iterations without updates to Ay and increase
in v for fides ND/GN. I: Association between change in average fraction of iterations where
smallest eigenvalue A, of the transformed Hessian B,(fm) is negative and + relative to fides

2D/SR1 for fides ND/SR1

20

https://doi.org/10.1101/2021.05.20.445065
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.445065; this version posted February 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Beer, Fiedler Fujita, Isensee, Lucarelli Weber, Zheng; BFGS: Bachmann; SR1: Brannmark),
canceling the benefit of faster convergence rate for many of these problems. Paradoxically, we
found that convergence count changes were correlated with changes in the average fraction of
iterations having ill-conditioned trust-region subproblems (BFGS: r = 0.86, p = 1.6 - 107%;
SR1: r =0.73, p = 4.8 - 1073, Fig) Therefore, improved conditioning of the trust-region
subproblem, unexpectedly, came at the cost of smaller regions of attraction for minima having
low objective function values.

We complemented the analysis of 2D methods by evaluating their respective ND methods,
which almost exclusively performed worse than 2D methods. We found that Fides ND/GN
outperformed Fides 2D/GN on two problems (1.43 to 3.25-fold change; Crauste, Zheng) and
performed similarly on one problem (0.99-fold change; Fiedler). Fides ND/BFGS outper-
formed Fides 2D/BFGS on three problems (1.16 to 1.37-fold change; Boehm, Fujita, Schwen)
and performed similarly on three examples (1.01 to 1.06-fold change; Bachmann, Bruno,
Fiedler). Fides ND/SR1 outperformed Fides 2D/SR1 on two problems (1.51 to 1.70-fold
change; Crauste, Schwen). These results were surprising, since the use of 2D methods is gen-
erally motivated by lower computational costs, not better performance; the ND approach gives,
in contrast to the 2D approach, an exact solution to the trust-region subproblem. For GN, the
change in convergence rate v was correlated with the change in average fraction of iterations
in which the trust-region radius A was not updated (r = —0.8, p = 1.1 - 1073, Fig)
For fides SR1/ND, the change in v with respect to fides SR1/2D was correlated with the
change in average fraction of iterations in which By had negative eigenvalues (r = —0.72,
p=12-1072, Fig) This suggests that inaccuracies in Hessian approximations may have
stronger impact on ND methods as compared to 2D methods, thereby mitigating advantages
that are theoretically possible.

Overall these results suggest that BFGS and SR1 approximations can improve optimization
performance through faster convergence, but often suffer from poorer global convergence
properties. Thus, they rarely outperform the GN approximation. BFGS and SR1 perform
similarly on most problems, with the exception of a few problems for which BFGS cannot be
updated due to violation of curvature conditions. We conclude that, while saddle points may
be present in some problems, they do not seem to pose a major issues that can be resolved
using the SR1 approximation.

3.4 Hybrid Switching Approximation Scheme

We hypothesized that the high success count v of the GN approximation primarily arose
in the initial phase of optimization, which determines the basin of attraction on which
optimization will converge. In contrast, we surmised that the high convergence rate v of
the BFGS approximation was due more accurate Hessian approximation in later phases of
optimization, when convergence to the true Hessian is achieved. To test this idea, we designed
a hybrid switching approximation that initially uses a GN approximation, but simultaneously
constructs an BFGS approximation. As soon as the quality of the GN approximation becomes
limiting, as determined by a failure to update the trust-region radius for nsy-¢ consecutive
iterations, the hybrid approximation switches to the BFGS approximation for the remainder
of the optimization run.

We compared the hybrid switching approach using different values of npypriq (25, 50,

21

https://doi.org/10.1101/2021.05.20.445065
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.445065; this version posted February 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

N e e
n.. GN(®) 100 75 50 25 BFGS (0)

hybrid
= maintain GN performance + outperform BFGS and GN (+) outperform GN

o
™
|

= (+) = = + + + = + = +

1 11 (PR P R

=1

performance
3
—

increase [fold]
=

[vy)
S o
™ o
) H

<
L

increase [fold]
convergence rate

32 3

=

L

b
-

-

increase [fold]
success count
3 3 3
e L \ \
-
-

O

overlap score
successful startpoints

© o o o o =

o M B o © O
[

.
)
)

&
kA

Fig 5: Evaluation of hybrid switching approximation. Color scheme is the same in all panels.
All increases/decreases are relative to fides 2D/GN. A: Performance comparison (¢). B:
Increase in convergence count y. C: Increase in convergence rate v. D: Overlap score for
start-points that yield successful optimization runs with respect to fides 2D/GN.

75, 100) to fides 2D/GN (equivalent to npyuiq = 00) and fides 2D/BFGS (equivalent to
Nhyeria = 0). Evaluating optimizer performance ¢, we found that the hybrid approach was
successful for all problems, with 7,4 = 50 performing best, improving ¢ by an average of
1.51 fold across all models (range: 0.56 to 6.34-fold change). The hybrid approach performed
better than fides 2D/GN and fides 2D/BFGS on 5 problems (1.71 to 6.34-fold change; Crauste,
Fiedler, Fujita, Lucarelli, Zheng; + signs Fig) It performed better than fides 2D/GN,
but worse than fides 2D/BFGS only on one problem (Boehm; (+) sign Fig[5A). The hybrid
approach performed similar to fides 2D/GN on 5 out of the 7 remaining problems (0.89 to
1.03-fold change; Beer, Brannmark, Bruno, Isensee, Schwen; = signs Fig) Decomposing ¢
into v and v, we found that hybrid switching resulted in higher v for the four problems in
which fides 2D/BFGS had higher v than fides 2D/GN (Beer, Boehm, Fiedler, Zheng), as well
as three additional problems (Crauste, Fujita, Lucarelli). These were the same three problems
for which SR1 had higher v (Fig @B), but BFGS did not, as a consequence of a high number

22

https://doi.org/10.1101/2021.05.20.445065
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.445065; this version posted February 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

I I D S .
GN hybrid FX SSM TSSM GNSBFGS
¥ best performer(s)

2
10 wWoivy \Ad W \ \ A\ ww A\ \Ad \

increase [fold]
performance
3

o

increase [fold]
convergence rate
2
“h
i

increase [fold]
success count
3
1
||.
=

Fig 6: Evaluation of hybrid switching approximation. Color scheme is the same in all panels.
All increases/decreases are relative to fides 2D/GN. A: Performance comparison (¢). B:
Increase in convergence count . C: Increase in convergence rate v.

of iterations without By updates (Fig) Consistent with this interpretation, we confirmed
that the hybrid approach had very few iterations without Bj updates. In contrast to BFGS,
the hybrid switching approach maintained a similar v as GN, meaning that higher v generally
translated into higher ¢. Evaluating the overlap between start-points that yielded successful
runs for GN showed a higher overlap for the hybrid switching approach as compared to BFGS
(Fig[pD), suggesting that higher v for the hybrid switching was indeed the result of higher
similarity in regions of attraction. These findings further corroborate that local convergence
of fides 2D/GN is slowed by the limited approximation quality of GN.

4 Comparison of Hybrid Approximation Schemes

Inaccuracies in the GN approximation have been previously been discussed in the optimization
literature and are known to lead to slow convergence and even divergence of optimization
runs ,. Several methods have been proposed to address this issue in the context of
non-zero residual problems. These include the Structured Secant Method (SSM) [36], the
Totally Structured Secant Method (TSSM) [37], the hybrid scheme by Fletcher and Xu
(FX) and the Gauss-Newton Structured BFGS (GNSBFGS) approach [34]. All of these
methods combine the GN and BFGS approximations in different ways (see Section .

23

https://doi.org/10.1101/2021.05.20.445065
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.445065; this version posted February 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

We implemented support for these Hessian approximation schemes in fides and compared
optimizer performance ¢ against fides 2D/GN and the best performing hybrid switching
method (npypia = 50). We found that the hybrid switching method was among the best
performing methods (fold change-0.85 to 1.15) on a majority of problems (7 out of 13; Beer,
Brannmark, Bruno, Crauste, Fujita, Lucarelli, Schwen) and was the only method other than
fides 2D/GN that resulted in successful runs for all problems. fides 2D/GN was among
the best performers on 6 problems (Beer, Boehm, Bruno, Isensee, Schwen, Weber) whereas
GNSBFGS was among the best performers for three problems (Beer, Boehm, Zheng) and FX
for one problem (Fiedler). Both GNSBFGS and FX failed for one problem (Lucarelli). SSM and
TSSM were among the best performers on one problem (Bachmann) and failed on one problem
(Isensee). We conclude that the hybrid switching method is the most reliable and efficient
method among all methods that we tested.

5 Discussion

In this paper we evaluated trust-region methods implemented in fides against Python and
MATLAB implementations of the same algorithm on 13 established benchmark optimization
problems. Using the logging capabilities of fides, we were able to link success counts v and
convergence rate v to numerical properties of optimization traces, spurring the development
of a novel hybrid switching scheme that uses two approaches for Hessian approximation:
the Gauss-Newton approximation early in a run (when the basin of attraction is being
determined) and the BFGS approximation later in a run (when a fast convergence rate to the
local minimum is crucial). For many problems, fides in combination with hybrid switching
exhibited the best performance and resolved issues with inconsistent final objective function
values. However, across all problems we studied, there was no single uniformly superior
optimization method. Hybrid switching improved average performance and was superior on a
majority of problems, but there remained a minority of problems where other hybrid methods
performed substantially better. In general, this heterogeneity in optimizer performance is in
line with the infamous "no free lunch” theorem of optimization [7], and suggests the existence
of distinct problem classes that we so far were not able to identify. We anticipate that
future innovation in optimization methods will likely be driven either by better understanding
how performance differences relate to model structure, enabling a priori selection of best
performing optimizers for specific problems, or to numerical properties of optimization traces,
driving the development of new adaptive methods. Thus, the availability of multiple Hessian
approximation schemes and trust-region subproblem solvers within the modular structure of
fides will be of general utility both in optimizing specific models of interest and in future
research on optimization methods.

Our findings suggest that previously encountered issues with fmincon and lsgnonlin are
likely due to premature optimizer termination and not "rugged” objective function landscapes
having many similar local minima. Our results corroborate previous findings from others
showing that the use of Gauss-Newton approximations can be problematic for optimization
problems featuring sloppy models. However, we did not find that methods designed to handle
saddle points improved performance. The inconsistent and often poor performance of BFGS
and SR1 approaches was unexpected, but our findings suggest that the problem arises in the

24

https://doi.org/10.1101/2021.05.20.445065
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.445065; this version posted February 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

global convergence properties of BFGS and SR1, as revealed by lower convergence counts
~. Global convergence properties depend on the shape of the objective function landscape
and are therefore expected to be problem-specific. BFGS and SR1 may therefore perform
better when combined with hybrid global-local methods such as scatter search [50], which
substantially benefit from good local convergence [43], but are less dependent on global
convergence. Moreover, SR1 and BFGS approaches enable the use of trust-region optimization
for problems in wich the GN approximation is not applicable, such as when a non-Gaussian
error model is used [27] or when gradients are computed using adjoint sensitivities [30].

Even though we re-implemented a previously described optimization algorithm, we observed
pronounced differences in optimizer performance across benchmark problems. For many
examples, observed differences in performance among theoretically identical algorithms were
similar or larger in magnitude as differences observed with distinct variants of an algorithm.
One reason for these differences may arise from how numerical edge cases are handled. For
example, fides uses a Moore-Penrose pseudoinverse to compute the Newton search direction
for the 2D subproblem solver, while fmincon uses damped Cholesky decomposition and
warns the user in cases of ill-conditioning. Another possible source of difference is the use of
different simulation and sensitivity computation routines. While both data2dynamics and
AMICI employ CVODES [26] for simulation and computation of parameter sensitivity, there
may be slight differences in implementation of advanced features such as handling of events
and pre-equilibration. Overall, these findings demonstrate the complexity of implementing
trust-region methods and the impact of subtle differences in numerical methods on optimizer
performance. Thus, the benchmarking of algorithms requires consistent implementations.

Overall, our results demonstrate that fides not only finds better solutions to parameter
estimation problems when state-of-the-art algorithms fail, but also performs on par or better
on problems where established methods find good solutions. We expect that the strong
performance shown in our work will generalize to other optimization problems beyond ODE
models. Thus, we expect that the modular and flexible implementation of fides will drive
widespread adoption within and outside the field of systems biology.

Acknowledgements

This work was supported by the Human Frontier Science Program (Grant no. LT000259/2019-
L1; F.F.), and the National Cancer Institute (Grant no. U54-CA225088; P.K.S). We thank
the O2 High Performance Compute Cluster at Harvard Medical School for computing support
and Carolin Loos, Daniel Weindl, Dilan Pathirana, Elba Raimundez, Erika Dudkin, Jan
Hasenauer and Leonard Schmiester for providing Benchmark examples in PEtab format; we
also thank Jan Hasenaur and Edward Novikov for feedback on the manuscript and Daniel
Weindl for feedback on the implementation of fides.

References

1. Klipp E, Herwig R, Kowald A, Wierling C, Lehrach H. Systems biology in practice.
Wiley-VCH, Weinheim; 2005.

25

https://doi.org/10.1101/2021.05.20.445065
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.445065; this version posted February 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

2. Frohlich F, Loos C, Hasenauer J. Scalable Inference of Ordinary Differential Equation
Models of Biochemical Processes. In: Sanguinetti G, Huynh-Thu VA, editors. Gene
Regulatory Networks: Methods and Protocols. Methods in Molecular Biology. New
York, NY: Springer; 2019. p. 385-422.

3. Ballnus B, Schaper S, Theis FJ, Hasenauer J. Bayesian parameter estimation for
biochemical reaction networks using region-based adaptive parallel tempering. Bioin-
formatics. 2018;34(13):1494-1501. doi:10.1093/bioinformatics/bty229.

4. Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmiiller U, et al.
Structural and practical identifiability analysis of partially observed dynamical
models by exploiting the profile likelihood. Bioinformatics. 2009;25(25):1923-1929.
do0i:10.1093 /bioinformatics/btp358.

5. Loos C, Moeller K, Frohlich F, Hucho T, Hasenauer J. A Hierarchical, Data-Driven
Approach to Modeling Single-Cell Populations Predicts Latent Causes of Cell-To-Cell
Variability. Cell Systems. 2018;6(5):593-603.e13. doi:10.1016/j.cels.2018.04.008.

6. Steiert B, Timmer J, Kreutz C. L1 regularization facilitates detection of cell type-
specific parameters in dynamical systems. Bioinformatics. 2016;32(17):i718-726.
doi:10.1093/bioinformatics/btw461.

7. Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Transac-
tions on Evolutionary Computation. 1997;1(1):67-82. doi:10.1109/4235.585893.

8. Bongartz I, Conn AR, Gould N, Toint PL. CUTE: constrained and unconstrained
testing environment. ACM Transactions on Mathematical Software. 1995;21(1):123-160.
do0i:10.1145,/200979.201043.

9. Gould NIM, Orban D, Toint PL. CUTEr and SifDec: A constrained and uncon-
strained testing environment, revisited. ACM Transactions on Mathematical Software.
2003;29(4):373-394. doi:10.1145/962437.962439.

10. Gould NIM, Orban D, Toint PL. CUTEst: a Constrained and Unconstrained Test-
ing Environment with safe threads for mathematical optimization. Computational
Optimization and Applications. 2015;60(3):545-557. doi:10.1007/s10589-014-9687-3.

11. Hass H, Loos C, Raimundez-Alvarez E, Timmer J, Hasenauer J, Kreutz C. Bench-
mark problems for dynamic modeling of intracellular processes. Bioinformatics.
2019;35(17):3073-3082. doi:10.1093/bioinformatics,/btz020.

12. Raue A, Schilling M, Bachmann J, Matteson A, Schelke M, Kaschek D, et al.
Lessons learned from quantitative dynamical modeling in systems biology. PLoS
ONE. 2013;8(9):€74335. doi:journal.pone.0074335.

13. Nocedal J, Wright S. Numerical optimization. Springer Science & Business Media;
2006.

26

https://doi.org/10.1101/2021.05.20.445065
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.445065; this version posted February 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

14. Fujita KA, Toyoshima Y, Uda S, Ozaki Yi, Kubota H, Kuroda S. Decoupling of Receptor
and Downstream Signals in the Akt Pathway by Its Low-Pass Filter Characteristics.
Science Signaling. 2010;3(132):ra56-ra56. doi:10.1126/scisignal.2000810.

15. Burnham KP, Anderson DR. Model selection and multimodel inference: A practical
information-theoretic approach. 2nd ed. New York, NY: Springer; 2002.

16. Transtrum MK, Machta BB, Sethna JP. Geometry of nonlinear least squares with
applications to sloppy models and optimization. Physical Review E. 2011;83(3):036701.
do0i:10.1103 /PhysRevE.83.036701.

17. Tonsing C, Timmer J, Kreutz C. Optimal Paths Between Parameter Estimates in
Non-linear ODE Systems Using the Nudged Elastic Band Method. Frontiers in Physics.
2019;7. doi:10.3389/fphy.2019.00149.

18. Dauphin YN, Pascanu R, Gulcehre C, Cho K. Identifying and attacking the saddle
point problem in high-dimensional non-convex optimization. In: Advances in Neural
Information Processing Systems 26; 2014. p. 2933-2941.

19. Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, Sethna JP. Universally
sloppy parameter sensitivities in systems biology models. PLOS Computational Biology.
2007;3(10):1871-1878. doi:10.1371/journal.pcbi.0030189.

20. Broyden CG. The Convergence of a Class of Double-rank Minimization Algorithms
1. General Considerations. IMA Journal of Applied Mathematics. 1970;6(1):76-90.
doi:10.1093 /imamat/6.1.76.

21. Fletcher R. A new approach to variable metric algorithms. The Computer Journal.
1970;13(3):317-322. d0i:10.1093/comjnl/13.3.317.

22. Goldfarb D. A Family of Variable-Metric Methods Derived by Variational Means.
Mathematics of Computation. 1970;24(109):23-26.

23. Shanno DF. Conditioning of quasi-Newton methods for function minimization. Mathe-
matics of Computation. 1970;24(111):647-656. doi:10.1090/S0025-5718-1970-0274029-X.

24. Conn AR, Gould NIM, Toint PL. Convergence of quasi-Newton matrices generated
by the symmetric rank one update. Mathematical Programming. 1991;50(1):177-195.
doi:10.1007/BF01594934.

25. Coleman TF, Li Y. On the convergence of interior-reflective Newton methods for

nonlinear minimization subject to bounds. Mathematical Programming. 1994;67(1):189—
224. doi:10.1007/BF01582221.

26. Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, Shumaker DE, et al. SUNDI-
ALS: Suite of Nonlinear and Differential /Algebraic Equation Solvers. ACM Transaction
Mathematical Software. 2005;31(3):363-396. doi:10.1145/1089014.1089020.

27. Maier C, Loos C, Hasenauer J. Robust parameter estimation for dynamical systems
from outlier-corrupted data. Bioinformatics. 2017;33(5):718-725.

27

https://doi.org/10.1101/2021.05.20.445065
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.445065; this version posted February 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

28. Raue A, Steiert B, Schelker M, Kreutz C, Maiwald T, Hass H, et al. Data2Dynamics:
a modeling environment tailored to parameter estimation in dynamical systems. Bioin-

formatics. 2015;31(21):3558-3560. doi:10.1093/bioinformatics/btv405.

29. Frohlich F, Weindl D, Schélte Y, Pathirana D, Paszkowski L, Lines GT, et al. AMICI:
High-Performance Sensitivity Analysis for Large Ordinary Differential Equation Models.
Bioinformatics. 2021;37(20):3676-3677. doi:10.1093/bioinformatics/btab227.

30. Frohlich F, Kaltenbacher B, Theis FJ, Hasenauer J. Scalable parameter estimation for
genome-scale biochemical reaction networks. PLoS Computational Biology. 2017;13(1):1-
18. doi:10.1371/journal.pcbi.1005331.

31. Stapor P, Frohlich F, Hasenauer J. Optimization and profile calculation of ODE models
using second order adjoint sensitivity analysis. Bioinformatics. 2018;34(13):1151-1159.
doi:10.1093 /bioinformatics/bty230.

32. Raue A. Quantitative Dynamic Modeling: Theory and Application to Signal Transduc-
tion in the Erythropoietic System. University of Freiburg; 2013.

33. Al-Baali M, Fletcher R. Variational Methods for Non-Linear Least-Squares. Journal of
the Operational Research Society. 1985;36(5):405-421. doi:10.1057/jors.1985.68.

34. Zhou W, Chen X. Global Convergence of a New Hybrid Gauss—Newton Structured
BFGS Method for Nonlinear Least Squares Problems. STAM Journal on Optimization.
2010;20(5):2422-2441. doi:10.1137/090748470.

35. Dennis J J E, Walker HF. Convergence Theorems for Least-Change Secant Update Meth-
ods. SIAM Journal on Numerical Analysis. 1981;18(6):949-987. doi:10.1137/0718067.

36. Dennis JE, Martinez HJ, Tapia RA. Convergence theory for the structured BFGS
secant method with an application to nonlinear least squares. Journal of Optimization
Theory and Applications. 1989;61(2):161-178. doi:10.1007/BF00962795.

37. Huschens J. On the Use of Product Structure in Secant Methods for Nonlin-
ear Least Squares Problems. SIAM Journal on Optimization. 1994;4(1):108-129.
doi:10.1137,/0804005.

38. Dennis JE, Gay DM, Welsch RE. Algorithm 573: NL2SOL — An Adaptive Nonlinear
Least-Squares Algorithm. ACM Transactions on Mathematical Software. 1981;7(3):369—
383. doi:10.1145/355958.355966.

39. Fletcher R, Xu C. Hybrid Methods for Nonlinear Least Squares. IMA Journal of
Numerical Analysis. 1987;7(3):371-389. doi:10.1093/imanum/7.3.371.

40. Moré JJ. The Levenberg-Marquardt algorithm: Implementation and theory. In: Lecture
Notes in Mathematics. vol. 630. Springer Berlin Heidelberg; 1978. p. 105-116.

41. Byrd RH, Schnabel RB, Shultz GA. Approximate solution of the trust region prob-
lem by minimization over two-dimensional subspaces. Mathematical Programming.

1988:40(1):247-263. doi:10.1007/BF01580735.

28

https://doi.org/10.1101/2021.05.20.445065
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.445065; this version posted February 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

42. Coleman TF, Li Y. An interior trust region approach for nonlinear mini-
mization subject to bounds. SIAM Journal on Optimization. 1996;6(2):418-445.
doi:https://doi.org/10.1137/0806023.

43. Villaverde AF, Frohlich F, Weindl D, Hasenauer J, Banga JR. Benchmarking opti-
mization methods for parameter estimation in large kinetic models. Bioinformatics.

2019;35(5):830-838. doi:10.1093/bioinformatics/bty736.
44. Jeffreys H. Theory of Probability. 3rd ed. Oxford: Oxford University Press; 1961.

45. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al.
SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods.
2020;17(3):261-272. doi:10.1038/s41592-019-0686-2.

46. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, et al.
Array programming with NumPy. Nature. 2020;585(7825):357-362. doi:10.1038/s41586-
020-2649-2.

47. Schmiester L, Schalte Y, Bergmann FT, Camba T, Dudkin E, Egert J, et al.
PEtab—Interoperable specification of parameter estimation problems in systems biology.
PLOS Computational Biology. 2021;17(1):e1008646. doi:10.1371/journal.pcbi.1008646.

48. Schmiester L, Schalte Y, Frohlich F, Hasenauer J, Weindl D. Efficient parameteriza-
tion of large-scale dynamic models based on relative measurements. Bioinformatics.

2020;36(2):594-602. doi:10.1093/bioinformatics/btz581.

49. Degasperi A, Fey D, Kholodenko BN. Performance of objective functions and opti-
misation procedures for parameter estimation in system biology models. npj Systems
Biology and Applications. 2017;3(1):1-9. doi:10.1038/s41540-017-0023-2.

50. Egea JA, Rodriguez-Fernandez M, Banga JR, Marti R. Scatter search for chemical
and bio-process optimization. Journal of Global Optimization. 2007;37(3):481-503.
doi:https://doi.org/10.1007/s10898-006-9075-3.

29

https://doi.org/10.1101/2021.05.20.445065
http://creativecommons.org/licenses/by-nd/4.0/

	Introduction
	Materials and Methods
	Model Formulation
	Optimization Problem
	Trust-Region Optimization
	Hessian Approximation
	Solving the Trust-Region Subproblem
	Handling of Boundary Constraints
	Optimizer Performance Evaluation
	Extension of Boundary Constraints
	Statistical Analysis of Optimizer Traces
	Implementation
	Benchmark Problems
	Simulation and Optimization Settings
	Parallelization and Cluster Infrastructure

	Results
	Validation and Optimizer Comparison
	Parameter Boundaries and Stepback Strategies
	Iterative Schemes and Negative Curvature
	Hybrid Switching Approximation Scheme

	Comparison of Hybrid Approximation Schemes
	Discussion

