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Abstract

Signaling pathways control cellular behavior. Dysregulated pathways, for example due to mutations that
cause genes and proteins to be expressed abnormally, can lead to diseases, such as cancer. We introduce a
novel computational approach, called Differential Causal Effects (dce), which compares normal to cancerous
cells using the statistical framework of causality. The method allows to detect individual edges in a signaling
pathway that are dysregulated in cancer cells, while accounting for confounding. Hence, artificial signals
from, for example, batch effects have less influence on the result and dce has a higher chance to detect
the biological signals. We show that dce outperforms competing methods on synthetic data sets and on
CRISPR knockout screens. In an exploratory analysis on breast cancer data from TCGA, we recover known
and discover new genes involved in breast cancer progression.

1 Introduction
The complexity of cancer makes finding reliable diagnosis and treatment options a difficult task. Decades of
research made the intractable disease better understood. However, many challenges remain due to its high
variability and context specificity, e.g., regarding tissue and cell type [1]. Patients with common cancer types
in early stages show promising survival rates, even though rare subtypes still show low survival rates due to
different traits like a more aggressive disease progression [2–4].

It has been hypothesized that cancer diversity can at least in part be explained by heterogeneous mutational
patterns. These patterns influence the activity of biological pathways at the cellular level [5, 6]. For example,
signaling pathways consist of several genes, which regulate certain cell programs, such as growth or apoptosis.
The programs are driven by the causal interaction of the genes, e.g., the up-regulation of one causes the up-
regulation of another gene. The causal effect (CE) determines the strength of this causal interaction, e.g., by
increasing the expression of gene X two-fold, the expression of its child Y increases four-fold. Thus, X has a
causal effect on Y of 2 [7]. Understanding how these causal networks are perturbed in tumors is necessary for
prioritizing drug targets, understanding inter-patient heterogeneity, and detecting driver mutations [8].

Traditionally, perturbed pathways are detected by assessing whether differentially expressed genes are mem-
bers of the respective pathway more often than expected by chance. More sophisticated methods measure
whether genes belonging to a pathway are localized at certain positions of a rank-ordered set of differentially ex-
pressed genes [9]. In such cases, a pathway is interpreted as a simple set of genes and all topological information
concerning the functional interconnectivity of genes is ignored. It has been recognized that interactions among
genes can have a significant effect on the computation of pathway enrichments. Some tools consider, for exam-
ple, gene expression correlations to account for confounding effects and control the type I error while retaining
good statistical power [10]. The underlying structure of gene interactions can thus be either estimated from the
data used for the enrichment analysis, or obtained from existing databases. Canonical pathway databases such
as the Kyoto Encyclopedia of Genes and Genomes (KEGG) [11] can then be incorporated as prior knowledge
to guide the enrichment analysis using topological information of gene connectivity [12–14].

While such enrichment methods go beyond treating pathways as plain gene sets and incorporate topological
information of molecular interactions, they often only report a global pathway dysregulation score [14]. An
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Figure 1: A causal network of genetic interactions in a biological pathway (A) is responsible for the observed wild type expression
levels in a cell (B: wild type). A disease can lead to perturbations of these pathways and in turn generate altered expression levels
(B: mutant). Pathway databases such as KEGG [11], PharmGKB [20] and Panther [21] curate genetic interaction data (C) and thus
provide networks of putative causal interactions (D). Given the observed wild type and disease expression levels as well as the causal
structure, dce fits a GLM for each edge to estimate causal effects (E). These correspond to causal perturbations (i.e., differential
causal effects), e.g., an increase of causal effect strength from wild type to mutant is marked in blue. Negative differential causal
effects are marked in red. The transparency of an edge corresponds to the magnitude of the associated effect) of the biological
pathway caused by the disease and are important for diagnosis and treatment design (F).

exception is PARADIGM, which records an inferred activity for each entity in the pathway under consideration
for a given patient sample [15]. It does, however, not model causal effects, but only quantifies whether there
is some general association among the genes like correlation. Differential causal effects (DCEs) on biological
pathways have already been investigated in a formal setting [16–18], where a DCE is modeled as the difference
between CEs for the same edge under two conditions. These methods infer the gene network from observational
data, which is a difficult task due to the combination of typically low sample size and noise of real data. An
incorrect network can result in biased estimation of CEs and DCEs. Additionally, none of these methods make
use of the DCEs to compute a pathway enrichment score.

Here, we separate the problem of estimating the causal network and the CEs by replacing the former with
the addition of prior knowledge in the form of biological pathways readily available in public databases [11,
19–22]. We make use of the general concept of causal effects in order to define differential CEs. Specifically,
we estimate the CE of gene X on gene Y in normal samples and cancer samples and define the DCE as their
difference. In particular, we compare the causal effects between two conditions, such as a malignant tissue from
a tumor and a healthy tissue, to detect differences in the gene interactions. We propose Differential Causal
Effects (dce), a new method which computes the DCE for every edge (i.e., molecular interaction) of a pathway
for two given conditions based on gene expression data (fig. 1).

This allows us to identify pathway perturbations at the individual edge level while controlling for confounding
factors using the statistical framework of causality. By including the additional covariates constructed from the
principal components of the design matrix, we also provide a methodological extension of our method to handle
potential confounding that is unobserved in our data. For example, batch effects from different experimental
laboratories are not necessarily known, but accounted for automatically. Our approach allows for computing
pathway enrichments in order to rank all networks in large pathway databases to identify cancer specific dys-
regulated pathways. In this manner, we can detect pathways which play a prominent role in tumorigenesis and
pinpoint specific interactions in the pathway that make a large contribution to its dysregulation and the disease
phenotype.

We show that dce can recover significant DCEs and outperforms competitors in simulations. In a validation
on real data we apply dce to a public CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)
data set to recover differential effects in the network. In an exploratory study, we apply dce to breast cancer
samples and compare the DCEs among different cancer stages. We identify dysregulated edges common across
stages as well as stage-specific edges.
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(a) Network size. The accuracy decreases as the number of pathway
genes increases. The whiskers of the boxplot correspond to the min-
imum and maximum of the data, the box denotes the first and third
quartiles and the horizontal line within the box describes the median.
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Figure 2: Performance benchmark. dce is compared to several competitors for varying network size (a) and effect magnitude (b)
over 100 synthetic data sets each. dce achieves the highest accuracy, which decreases for large networks G and very large or small
differential effects. The whiskers of the boxplot correspond to the minimum and maximum of the data, the box denotes the first
and third quartiles and the horizontal line within the box describes the median.

2 Results
In this section, we first show the performance of dce and its competitors on simulated data and a CRISPR data
set. Then, we use dce for an exploratory analysis of breast cancer data from TCGA and show the progression
of pathway dysregulation over different cancer stages.

2.1 Simulation study
Pathway databases contain networks of different sizes. Hence, we first investigate how much the size of the net-
work influences performance. dce achieves the highest accuracy for all three network sizes considered (50, 100, 150
genes). Methods which do not account for confounding variables perform similar to random guessing for large
networks (fig. 2a). However, dce also outperforms pcor with an AUC of 0.62 versus 0.56.

Second, we assess how the size of the effect magnitude affects the identification of significant differences. We
varied the effect magnitude in the set {0.1, 1, 2}. For example, for an effect magnitude of 1 the edge weights
between the network of the wild type samples and the disease samples differ by at most 1. dce has difficulty
estimating large differences as well as very small differences. However, it still significantly outperforms all other
methods, which again show similar performance to random guessing for large effects (fig. 2b).

In additional simulations, dce shows increasing accuracy for decreasing dispersion and increasing number of
samples (figs. S1 and S2) as is expected due to decreasing noise. We found constant accuracy of dce over varying
ranges of library size (fig. S3). Different prevalence of positive edges has little effect on the accuracy of dce
(fig. S4). dce with latent variable adjustment performs similarly to dce without latent variable integration if we
do not simulate any latent variables. But dce significantly outperforms dce without latent variable integration
for five and ten latent variables influencing the data set (fig. S5). This is because without latent confounding
adjustment one has a large number of false positives due to the confounding bias (fig S6).

dce relies heavily on the given network G. Hence, we investigate how well dce performs if G contains false
edges or is missing true edges. We find that dce is robust to additional false edges in the network, but starts
breaking down if true edges are missing in larger fractions (fig. S7).

2.2 Validation experiments using CRISPR knockout data
To benchmark our method using real-life data generated by Perturb-seq [23], we ask whether we can recover
the CRISPR knockout from single-cell RNA-seq data using the pathway "Protein processing in endoplasmic
reticulum" (hsa04141) from KEGG. Hence we assume that hsa04141 captures the causal gene interactions
governing the response of the cell to the experimental intervention. As seen in the synthetic benchmark, slight
deviations of the observed network from the true underlying network have no major impact on the performance
of our method (fig. S7). We then run dce on the single-cell gene expression data for each of the 14 conditions
independently. By interpreting a CRISPR knockout as an intervention of the causal pathway, we define the
positive class to consist of all edges adjacent to a knocked-out gene, and the negative class as all other genes.
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(a) Protein processing in the endoplasmic reticulum pathway
for Homo Sapiens from KEGG (id hsa04141). Each node cor-
responds to a gene and each edge to an interaction between
two genes. Each edge is colored according to the effects size
of DCEs computed for the experimental data for knocking out
ATF6 and using DMSO control. Black dashed edges are drawn
when one of the two connected nodes has zero coverage (and
thus no DCE can be estimated). The gene knocked out in the
CRISPR experiment is highlighted in red.
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(b) Zoomed-in version of fig. 3a with focus on the genes ATF6,
ATF6B, NFE2L2, XBP1, DDIT3, EIF2AK3, EIF2S1. These
genes constitute the neighborhood of the knocked-out gene
ATF6 and illustrate the edge classification scheme used in the
performance evaluation. Assume an effect size threshold of
|0.5|. The edge ATF6→DDIT3 has a DCE of ∼ 1.3 and is
adjacent to the knocked-out gene. Consequently, it is classi-
fied as a true positive. Both the edge EIF2AK3→EIF2S1 and
NFE2L2→DDIT3 have a DCE whose absolute value is larger
than 0.5 and are not adjacent to the knocked-out gene. They
are thus classified as false positives. All remaining edges are
classified as true negatives.
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(c) Summary of the performance of the dce, cor and pcor meth-
ods in the form of ROC-AUCs for the recovery of the knocked-
out genes in hsa04141. The whiskers of the boxplot correspond
to the minimum and maximum of the data, the box denotes the
first and third quartiles and the horizontal line within the box
describes the median. The method dce shows the best per-
formance with a ROC-AUC of 0.66 (standard deviation (std):
0.20) compared to 0.50 (std: 0.23) for cor and 0.53 (std: 0.14)
for pcor.

Figure 3: Overview of the CRISPR benchmark.

Consequently, a true positive occurs when an edge adjacent to a CRISPR knocked-out gene is (significantly)
associated to a non-zero DCE.

Figure 3a shows an example of this procedure for one of the conditions described above. The CRISPR
knockout gene is highlighted in red and a positive DCE of ∼ 1.3 can be observed on the edge connecting ATF6
and DDIT3. This can be seen in more detail in fig. 3b. As this edge is adjacent to the knocked out gene ATF6,
it is classified as a true positive for an effect size threshold of |0.5|. Following an analogous argument, the edge
from EIF2AK3 to EIF2S1 is classified as a false positive.

We find that dce better recovers the knock-out effect with a median ROC-AUC of 0.66 compared to 0.50 for
cor and 0.53 for pcor (fig. 3c). This shows that dce is able to better recover the dysregulations of single as well
as combinatorial knock-outs when compared to methods based on correlations.

2.3 Exploratory analysis of TCGA data
To demonstrate the ability of our method to recover known cancer-related pathway dysregulations as well as
to discover new genes of potential biological and clinical relevance, we compute DCEs using breast cancer gene
expression data from TCGA on the breast cancer pathway obtained from KEGG. The results for each stage are
then visualized on the pathway structure (figs. 4a to 4c). The raw DCE values were transformed to a symmetric
logarithm for greater visibility with the following formula

symlog(DCE) =


log10(DCE) + 1 if DCE > 1
−log10(−DCE)− 1 if DCE < −1

DCE otherwise
.
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Figure 4: DCEs for TCGA-BRCA normal samples versus stage I, stage II, and stage III computed with the hsa05224 pathway.
In (a)-(c), edge thickness and opacity scale with absolute DCE size. More negative DCEs appear red, more positive DCEs appear
blue. The color follows a symmetric logarithmic scale for values |x| ≥ 1 and is linear otherwise. (d) shows a volcano plot for the
symmetric logarithm of DCE against its associated p-value. DCE thresholds of 1 and −1 as well as as p-value threshold of 0.05 are
denoted with grey dashed lines.

Most edges do not show any difference in causal effect strength between normal and stage condition in all
stages (fig. 4d). Throughout all stages, interactions between the WNT and FZD protein complexes exhibit
significantly non-zero DCEs indicating a strong dysregulation of the breast cancer pathway. This pair has been
implicated in disease formation in general [24–26] and in breast cancer in particular [27, 28]. We also observe
a significant dysregulation of the DLL3→NOTCH4 edge in all three stages. The Notch signaling pathway
has been shown to play an important role in Pancreatic ductal adenocarcinoma tumor cells suggesting that
stromal cells located in the breast may play an important role [29]. Though not significant (p-value > 0.05),
interactions between the FGF and FGFR protein complexes show strong negative effect sizes in all three stages
(DCE < −100 for most members of these complexes). This pair has already been recognized as a promising
therapeutic target for breast cancer treatment [30].

3 Discussion
We have presented a new method, dce, to compute differential causal effects between two conditions using a
regression approach. dce enables the edge-specific identification of signaling pathway dysregulations. This piece
of information can help to further our understanding of subtle differences on the molecular level in seemingly
similar cancer types.

dce assumes a linear relationship among pathway genes. The linear model is solved using network information
to account for additional genes confounding the linear relationship between gene pairs. The network information
is included via prior knowledge from literature. dce also includes latent variables in the model accounting, e.g.,
for batch effects, which are unknown and not included in the gene network, as confounders.

Our simulation study emphasizes the need for sufficiently large datasets when dealing with large pathways.
At the same time we have shown that dce is able to detect changes in causal effects even in the presence of
noise and for certain ranges of effect sizes. For a wide array of parameter choices, dce outperforms methods
using (partial) correlation and fggm. Especially in the case of latent confounders we showed that dce with the
integration of latent variables outperforms dce without, except if no latent confounders were used to simulate
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the data. In this case both methods are equally accurate. Hence, we recommend the integration of latent
variables in the model as the default configuration.

In addition to the synthetic benchmark, we have also validated our method on real data derived from
Perturb-seq experiments. We have shown that dce is able to recover the experimental knock-outs with better
performance than correlations and partial correlations.

For breast cancer, we have shown that not all parts of the signaling pathway are perturbed and characteristic
hotspots exist. Some causal effects between two genes are invariant to stage information, while other causal
effects can vary in either magnitude or even sign of their effect size. This indicates that certain areas of such
pathways are more relevant than others. This phenomenon has also been observed in other studies ([31, 32]).
Some parts of a pathway seem to be either more conserved or just not relevant for tumorigenesis. This provides
exciting opportunities to identify drugs which target certain parts of a pathway and might explain their efficacy.
However, the robustness of our method depends on the availability of enough samples. In many cases, few are
available and make our approach infeasible. While dce performs still better than random for even 10 samples,
it is significantly worse than for higher sample sizes.

In summary, we have proposed a novel application of the concept of differential causal effects which describe
the difference in causal effects between two conditions and developed a regression approach to compute those
differences. We demonstrate their robustness in a simulation study, and point out interesting results in applica-
tion to real data, e.g., we show that some dysregulated edges are consistent among breast cancer tumor stages
I-III, but that other dysregulations are unique to each stage.

Future research should focus on modifying the regression to make working with small data sets more robust,
for example, enforcing sparsity by the introduction of L1- or L2-norms on the coefficients to avoid outliers
produced by artifacts in the data.

We have shown the performance of dce on count data from simulations and (single cell) RNA-Seq. However,
dce is also suited to analyze other types of data like Gaussian data from log normal microarray intensities.

4 Methods
In this section, we describe the Differential Causal Effects (dce) method. We briefly review the causality frame-
work and then introduce the model and computation of DCEs, including under potential latent confounding.
We provide implementation details for obtaining both the estimates and their significance levels. Finally, we
describe the generating mechanism for synthetic data used throughout the paper.

Causality of biological pathways. First, we give a quick review of causality in the context of biological
pathways. A gene pathway can be represented as a structural equation model (SEM) consisting of a directed
acyclic graph (DAG) G with nodes X = (Xi)

p
i=1 describing the expression of genes, a set of directed edges

E = (Ei)
m
i=1 representing the causal structure and the structural equations (fi)

n
i=1 describing how each variable

Xi is generated from its parents Xpa(i) in G, Xi ← fi(Xpa(i), εi), where (εi)
p
i=1 are jointly independent noise

variables. The causal interpretation of an edge between any two nodes is as follows: changing the expression
of a parent Xi affects the expression of the child node Xj , which is propagated further to all descendants. The
parental sets are given by the edge set E. Of particular interest are the interventional distributions for the
SEM, in particular their expectations E[Xi | do(Xj = x)], which describe how the expected value of the variable
Xi changes when we intervene and set the variable Xj to some fixed value x. We define the causal effect (CE)
of a variable Xj on its descendant Xi as

CE[Xi | do(Xj = x)] =
d

dx
E[Xi | do(Xj = x)]. (1)

This derivative equals βx if, by changing the value of Xj from x to x+ ∆x, for some small value ∆x, the value
of Xi changes on average by βx · ∆x. In the literature, the CE is often also referred to as the total causal
effect, because it quantifies the overall effect of an intervention at variable Xj on all of its descendants. We
are interested in differential causal effects (DCE) defined as the differences between the causal effects of two
conditions of interest, such as, e.g., two different cancer stages or healthy and cancerous samples.

Linearity of the conditional mean. We model the relationship between the mean of any gene expression
Xi and its parents Xpa(i) by a linear function:

Xi ← γ
(i)
0 +

∑
j∈pa(i)

γ
(i)
j Xj + εi(Xpa(i)), (2)

where, conditionally on Xpa(i), the error term εi(Xpa(i)) has mean zero, variance depending on Xpa(i) and
E[εi(Xpa(i))|Xpa(i)] ≡ 0. A prime example is any generalized linear model (GLM) with identity link function.
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The coefficients γ(i)j correspond to the direct causal effects, whereas the total causal effects (1) measure the
aggregate effect over all directed paths from a certain variable Xj to Xi in G.

Let us consider two arbitrary genes Xi and Xj in the pathway. Under the linearity assumption, we can
compute the causal effect CE[Xi | do(Xj = x)], which does not depend on x, as the coefficient β of the linear
regression of Xi on Xj and an adjustment set Z = (Zk)

|Z|
k=1,

Xi = β0 + βXj +

|Z|∑
k=1

βkZk + η, (3)

where β0 denotes the intercept and η is random noise with mean zero [33, 34]. The adjustment set Z is a set
of nodes in the pathway G which fulfills the Back-door criterion [7]. Hence, it holds that no element of Z is a
descendant of Xj , and Z blocks every path between Xi and Xj that contains an edge with Xj as the child. For
example, the parent set Xpa(j) always fulfills the Back-door criterion and we always use it as adjustment set.

If the causal effects of the gene expression Xj on the gene expression Xi are denoted as βA and βB under
different conditions A and B, respectively, then the differential causal effect (DCE) δ is obtained as the difference

δ = βB − βA. (4)

Given a graph G describing a biological pathway and observations of the variables, we can compute all differential
causal effects and identify interactions between any such two variables Xj and Xi that are different between
the two conditions (fig. 1).

Coupling the two conditions. We can compute the DCE δ on the edge Xj → Xi by fitting a joint model
for both conditions. Let I be an indicator random variable, which is equal to 1, if the observation comes from
condition A, and 0, if it comes from condition B. The DCE δ can be computed from all samples jointly by
fitting the following linear model

Xi = (βA
0 + (βB

0 − βA
0 )I) + (βA + (βB − βA)I)Xj +

|Z|∑
k=1

(
βA
k + (βB

k − βA
k )I

)
Zk + η (5)

with interaction terms IXj and IZi. The differential causal effect δ = βB − βA can be estimated by using the
coefficient estimate corresponding to the interaction term IXj in (5).

Testing for significance. Another advantage of fitting the joint model (5) over both conditions is that
testing the significance of the estimated DCEs corresponds to the well-known task of testing the significance
of coefficient estimates in a linear model. However, some care is needed if the variances of the error terms
εi(Xpa(i)) in our structural equations (2) indeed depend on the values of the predictors Xpa(i), i.e., if there is a
certain mean-variance relationship for the gene expression levels, as has been described for RNA-seq data [35].
In this case, the linear model (5) is heteroscedastic and the usual formulas for standard errors of the coefficient
estimates, that result in t-tests for the significance, do not apply. We therefore use heteroscedasticity-consistent
standard errors that yield asymptotically valid confidence intervals and p-values regardless of the dependence
of the noise level on predictor values [36–38].

Besides assessing significance of DCE for single edges, we can also calculate a global p-value measuring
the overall dysregulation of a given pathway G: we combine the p-values corresponding to different differential
causal effects δ = (δi)

m
i=1 by taking their harmonic mean [39].

Adjusting for latent confounding. A fundamental assumption in most of the causal inference methods
is that there is no unobserved confounding, i.e., that there are no factors affecting both the cause and the
effect [40, 41]. For example, batch effects due to varying laboratory conditions could act as such unobserved
confounders. Presence of latent confounding can result in spurious correlations and false causal conclusions.
Therefore, adjusting for potential latent confounding is crucial for making the method robust in applications to
biological data [42].

Some information about latent factors can often be obtained from the principal components of the data [43].
This can be made rigorous under the linearity assumption (2), for our structural equation model G, as follows.
We assume that there are q latent variables H1, . . . ,Hq affecting our data. We extend the model (2) to include
the latent confounding as follows:

Xi ← γ
(i)
0 +

∑
j∈pa(i)

γ
(i)
j Xj +

q∑
j=1

δ
(i)
j Hj + εi(Xpa(i), H), (6)
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Figure 5: The screeplot (of synthetic data generated as described in the Methods section) shows that in presence of latent con-
founding as in (6), the first q principal components explain much more variability of the data, which we exploit for confounding
adjustment.

i.e., the latent confounders H1, . . . ,Hq are additional source nodes in the DAG G and affect every gene linearly,
analogously to (2). By writing the structural equations (6) in matrix form with Γ0

ji = γ
(i)
0 , Γji = γ

(i)
j , ∆ji = δ

(i)
j

and E(X,H)ji = εi(Xpa(i), H)j , we obtain

Xn×p ← Γ0
n×p +Xn×pΓp×p +Hn×q∆q×p + E(X,H)n×p,

which gives
X = Γ0︸︷︷︸

intercepts

+H ∆(I − Γ)−1︸ ︷︷ ︸
loadings ∈Rq×p

+ E(X,H)(I − Γ)−1︸ ︷︷ ︸
random noise with mean = 0

,

which is the standard linear factor model with heteroscedastic errors. From this representation, one can see that
H can be determined from the principal components of X (fig. 5). The screeplot for a toy example visualizes the
effect of latent variables having a global effect on the data. The first principle components are clearly separated
from the rest, if latent factors are present (fig. 5, left). Therefore we obtain the confounding proxies Ĥ as the
scores of the first q̂ principal components of the design matrix combining the data from both conditions.

The confounding proxies Ĥ are then simply added to the adjustment set Z, see equations (3) and (5). In
this way, the Back-door adjustment not only adjusts for the confounding variables observed in the DAG G as
before, but also helps reducing the bias induced by latent confounding.

The deconfounding methodology relies on the assumption that every confounding variable affects many
variables in the dataset, i.e., the confounding is dense [44]. In this case, we have a lot of information about
the latent factors in the data and the confounding proxies Ĥ capture the effect of the confounders H well.
Furthermore, the dense confounding assumption ensures that the scree plot, showing the singular values of the
design matrix, has a spiked structure, as several latent factors can explain a relatively large proportion of the
variance (fig. 5). This helps estimating the number q̂ of the confounding proxies used. As a default choice, we
use a permutation method that can be shown to work well under certain assumptions [45] and which compares
the observed value of the variance explained by the principal components with its expected value over many
random permutations of the values in each column of gene expression matrix X.

Algorithm and implementation in R. The presented methods are implemented in the R package dce
which is freely available on Bioconductor. The function dce::dce takes as input the structure of a biological
pathway, i.e., the adjacency matrix of a DAG, and two n × p matrices, with n samples and p genes, storing
gene expression data for each of the two conditions respectively. As output, the function returns the estimated
DCEs, as well as standard errors and two-sided p-values for the DCE at each edge in the pathway. The results
can be easily transformed into a dataframe and plotted for further downstream analyses, together with the
p-value measuring the overall pathway enrichment.

Generating synthetic data and benchmarking methods. We assess the behavior of dce and its com-
petitors in a controlled setting by generating synthetic data with known DCEs (ground truth). We start by
generating a random DAG G. Without loss of generality, we assume the nodes of the DAG to be topologically
ordered, i.e., node Xi can only be parent of node Xj , if i < j. This ensures that the network G is a DAG.
In practice, we sample edges from a binomial distribution with probability p̂ for the upper triangle of G. We
further sample the coefficients γ(i)j for every edge as in (2) from a uniform distribution U (−γmax, γmax). We
generate the data for network G in the following way. For a node Xi, we set the mean expression count

µi = v −~1 ·
(

min
i
vi − ι

)
,
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where each Xj is a vector of counts, corresponding to gene expression values from experiments like RNA-Seq.
γ
(i)
j represents the direct effect of Xj on Xi, v =

∑
j∈pa(i) γ

(i)
j Xj , ι > 0 is a small shift, and ~1 is a vector of

ones. Subtracting the minimum ensures positive values of the mean for each data point. Then, a realization
of Xi is drawn from the Poisson distribution Pois (µXi

). We introduce negative binomial noise by drawing a
realization of each source node in G from the negative binomial distribution NB (µ, θ) with a general mean µ
and dispersion θ. We use this setup to control the variance across all nodes, which can blow up for descendants
with larger means.

After sampling the data DA for the nodes of network G under condition A, we resample a certain fraction
of edge weights in order to generate new data DB under condition B. For an edge weight βA we sample the
new edge weight from a uniform distribution

βB ∼ U
((
βA − δmax, β

A − δmin

)
∪
(
βA + δmin, β

A + δmax

))
.

This ensures that the absolute difference between the two edge weights lies in [δmin, δmax].
We also simulate latent variables. They are neither included in the data nor the network G, but have

(unknown) outgoing edges to all genes in the data set with non-zero effects. Hence, these latent variables have
global effects on the data, e.g., emulating batch effects.

We compare dce it to correlation (cor), partial correlation (pcor), the method Fast Gaussian Graphical
Models (fggm) tailored to DCEs [17, 46], and random guessing. fggm is based on partial correlation, but
additionally tries to learn the network structure to adjust for confounding effects. We provide pcor with the
same adjustment set of confounding variables as dce. We run all methods on simulated data for various modeling
parameters. The default parameters are a network G of 100 genes, 200 samples for both sample conditions,
an absolute magnitude in effect differences between the two conditions of 1, mean of 100 negative binomial
distributed counts with a dispersion of 1 for the source genes in the network G (no parents), a true positive rate
of 50% (edges which have different effects between the two conditions), and library size factors for each sample
in the interval [1, 10]. The library size factor accounts for different sequencing depth among the samples, i.e.,
for one sample including more reads because more RNA was available even though the gene expression was
the same as in samples with less RNA. We account for different library sizes over all samples by computing
transcripts per million (tpm).

Overall we simulate a full data set of 10, 000 genes including the genes in the network G to allow for the
realistic estimation of the library size. As a performance measure we use the area under the receiver operating
characteristic (ROC-AUC). We count the number of true/false positive and false negative DCEs based on the
edges in the ground truth network and the significant p-values for different significance levels. Based on these
true/false positives we can compute the ROC curve and its AUC. For both correlation methods we use a
permutation test to compute empirical p-values.

Validation using Perturb-seq. Perturb-seq, a CRISPR-Cas9-based gene knockout method, can be used to
inhibit the expression of multiple target genes on a single-cell level [23, 47]. In [23], this approach was used
to systematically analyze the response of an integrated endoplasmic reticulum (ER) stress response pathway
to the combinatorial knockout of the three transmembrane sensor proteins IRE1α, ATF6, and PERK. Each
combinatorial knockout was treated either with a DMSO control, tunicamycin, or thapsigargin. In total, this
yielded 21 conditions. In the following analysis, we used the data sets for transduced cells and excluded the
thapsigargin treatment due to very low coverage (median coverage of knocked-out gene and its neighborhood
for the three treatments: DMSO control: 1.9, tunicamycin: 2.3, thapsigargin: 0.9). We downloaded the raw
data from NCBI GEO (accession: GSE90546) and mapped guide RNA barcodes to cell barcodes to create a
gene expression count matrix of the individual cells labeled by their corresponding knock-outs. We compare
the performance of dce to cor and pcor. We estimate the significance of whether a difference in correlation
is different from zero using a permutation test. The performance of each method is evaluated using the area-
under-curve (AUC) metric for the receiver-operating-characteristic (ROC) curve. The false and true positive
rates for the ROC curve are computed from the p-value per edge as in the synthetic benchmark.

Exploratory analysis with TCGA data. We retrieve gene expression data from The Cancer Genome
Atlas (TCGA) [48] and pathway structures from the Kyoto Encyclopedia of Genes and Genomes (KEGG) [11].
Unlike the Perturb-seq dataset, data obtained from TCGA is observational instead of interventional. We do
thus not have any ground truth information and perform an exploratory analysis. For a given cancer type,
the associated samples are first grouped into normal and tumor samples. The tumor samples are subsequently
stratified according to their stage. In particular, we downloaded all normal and tumor gene expression samples
from TCGA for breast cancer (TCGA-BRCA) and selected all stages with a sufficient number of samples (stage
I : 202 samples, stage II : 697 samples, stage III : 276 samples; normal : 113 samples). We use the breast cancer
pathway (hsa05224 ) from KEGG which contains 147 nodes and 509 edges. We then compute DCEs between
the normal condition and each of the three stages of the tumor condition, respectively.
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5 Data availability
The code used to construct the synthetic data sets is available as part of the R software package dce. The
experimental data used in the Perturb-seq validation is available under the accession GSE90546 from NCBI
GEO. The experimental data used in the exploratory breast cancer analysis is available under the accession
TCGA-BRCA from The Cancer Genome Atlas. The pathway structures have been obtained from the Kyoto
Encyclopedia of Genes and Genome.

6 Code availability
The method dce is freely available as an R package on Bioconductor as well as on https://github.com/
cbg-ethz/dce. The GitHub repository also contains the Snakemake [49] workflows needed to reproduce all
results presented here.
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