bioRxiv preprint doi: https://doi.org/10.1101/2021.05.19.444887; this version posted May 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1	Structures of the human cholecystokinin receptors in complex with agonists
2	and antagonists
3	Xuefeng Zhang ^{1,2,11} , Chenglin He ^{3,11} , Mu Wang ^{1,2,4,11} , Qingtong Zhou ^{5,6,11} , Dehua Yang ^{1,2,7,11} ,
4	Ya Zhu ^{1,11} , Wenbo Feng ³ , Hui Zhang ^{1,2} , Antao Dai ⁷ , Xiaojing Chu ¹ , Jia Wang ⁷ , Zhenlin Yang ¹ ,
5	Yi Jiang ¹ , Ulrich Sensfuss ⁸ , Qiuxiang Tan ¹ , Shuo Han ¹ , Steffen Reedtz-Runge ⁸ , Eric H. Xu ^{1,2} ,
6	Suwen Zhao ^{4,5} *, Ming-Wei Wang ^{1,2,3,4,6,7} *, Beili Wu ^{1,2,4,9} *, Qiang Zhao ^{1,2,9,10} *
7	¹ State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research,
8	Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203,
9	China
10	² University of Chinese Academy of Sciences, Beijing 100049, China
11	³ School of Pharmacy, Fudan University, Shanghai 201203, China
12	⁴ School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
13	⁵ iHuman Institute, ShanghaiTech University, Shanghai 201210, China
14	⁶ School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
15	⁷ The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese
16	Academy of Sciences, 201203 Shanghai, China
17	⁸ Novo Nordisk A/S, Novo Nordisk Park, Måløv 2760, Denmark
18	⁹ School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study,
19	University of Chinese Academy of Sciences, Hangzhou 310024, China
20	¹⁰ Zhongshan Institute for Drug Discovery, the Institutes of Drug Discovery and
21	Development, CAS, Guangdong 528400, China
22	¹¹ These authors contributed equally: Xuefeng Zhang, Chenglin He, Mu Wang, Qingtong Zhou,
23	Dehua Yang, Ya Zhu
24	*e-mail: zhaosw@shanghaitech.edu.cn; mwwang@simm.ac.cn; beiliwu@simm.ac.cn;

25 zhaoq@simm.ac.cn

26 Summary

Cholecystokinin receptors, CCK_AR and CCK_BR, are important neuro-intestinal peptide 27 hormone receptors and play a vital role in food intake and appetite regulation. Here we 28 report three crystal structures of the human CCK_AR in complex with different ligands, 29 including one peptide agonist and two small-molecule antagonists, as well as two cryo-30 electron microscopy structures of CCK_BR-gastrin in complex with G_{i2} and G_a, 31 respectively. These structures reveal the recognition pattern of different ligand types and 32 33 the molecular basis of peptide selectivity in the cholecystokinin receptor family. By comparing receptor structures in different conformational states, a stepwise activation 34 process of cholecystokinin receptors is proposed. Combined with pharmacological data, 35 36 our results provide atomic details for differential ligand recognition and receptor activation mechanisms. These insights will facilitate the discovery of potential 37 therapeutics targeting cholecystokinin receptors. 38

Biologically active peptides often present in families whose members display sequence and 39 structural similarity. Cholecystokinin (CCK) and gastrin, however, are the only two members 40 41 of the dityrosyl-sulfated peptide family that exists in mammals and share the same carboxylterminal octapeptide-amide^{1,2}. They are the most abundant peptides in the gastrointestinal tract 42 and the central nervous system acting as physiologically important hormones and 43 neurotransmitters. Among CCK and gastrin peptides of different lengths, CCK-8 and gastrin-44 17 are the major forms with full biological activity³⁻⁵. Cholecystokinin A and cholecystokinin 45 B receptors (CCK_AR and CCK_BR) are the two homologous G protein-coupled receptors 46 (GPCRs) for CCK and gastrin, respectively^{6, 7}. CCK_AR preferentially binds to sulfated CCK. 47 while CCK_BR recognizes both CCK and gastrin with similar affinities and discriminate poorly 48 between sulfated and non-sulfated forms of CCK and gastrin⁷⁻⁹. Previous studies demonstrated 49 that gastrin could activate pertussis toxin-sensitive or phospholipase C-dependent downstream 50

effectors, indicating both $G_{i/o}$ and $G_{q/11}$ signaling are involved in CCK_BR functionality^{10, 11}. When activated, these two receptors engage in fundamental physiological actions such as satiety regulation, pancreatic enzyme secretion and gall bladder contraction^{6, 12}. They are also implicated in behavioral processes including anxiety, memory and drug addiction^{13, 14}.

In line with the important roles of CCKRs, their ligands have shown therapeutic potential 55 for anxiety, obesity and type 2 diabetes^{15, 16}. Highly selective non-peptidic antagonists of 56 such as devazepide [3S(-)-N(2,3-Dihydro-1-methyl-2-oxo-5-phenyl-1H-1,4-57 CCK_AR benzodiazepine-3-yl)-1H-indole-2-carboxamide] and lintitript [1-([2-(4-(2-Chlorophenyl) 58 thiazole-2-yl)aminocarbonyl]indolyl) acetic acid] (Extended Data Fig. 1) were developed to 59 treat gastrointestinal disorders, neuropathic pain and pancreatic cancer^{17, 18}, while highly 60 selective CCK_AR agonists such as NN9056, a modified CCK-8 with high selectivity and long-61 acting properties, have been proposed as potential treatment for obesity^{19, 20}. Meanwhile, 62 antagonists such as Z-360 or JB95008 and agonists such as ceruletide targeting CCK_BR have 63 been implicated in treating diabetes, anxiety and thyroid cancer, etc^{21, 22}. In addition, 64 antagonists of CCKRs, such as devazepide for CCK_AR or L365,260 for CCK_BR, has exhibit 65 the significant attenuation in drug or stress induced relapse to cocaine seeking in animal model, 66 showing potential in treating drug abuse²³. However, many clinical trials targeting CCK_AR or 67 CCK_BR were terminated at different phases due to low efficacy or poor bioavailability in 68 patients, suggesting that a better understanding of the CCKR family is required. To provide 69 molecular details of ligand recognition and receptor activation of CCKRs, we solved the crystal 70 71 structures of the human CCK_AR in complex with two small-molecule antagonists (lintitript and devazepide) and one full agonist NN9056, as well as two cryo-electron microscopy (cryo-EM) 72 structures of CCK_BR in complex with gastrin coupled to G_i and G_q, respectively. 73

74

Overall structures of CCKR complexes

To improve protein stability and facilitate crystallization, residues K241-S301 in the third 75 intracellular loop (ICL3) of CCK_AR were replaced with a T4 lysozyme fusion protein and 22 76 residues at the receptor C terminus were truncated. Additionally, a mutation F130^{3.41}W 77 (superscript indicates nomenclature according to Ballesteros-Weinstein numbering system²⁴) 78 was introduced to further improve protein homogeneity. Using the optimized CCK_AR, the 79 CCK_AR–NN9056 complex structure was determined at 3.0 Å resolution (Extended Data Table 80 1). To solve the structure of CCK_AR bound to the antagonists, another mutation D87^{2.50}N was 81 introduced to stabilize the receptor in an inactive state25, and the complex structures of 82 CCK_AR-devazepide and CCK_AR-lintitript were determined at 2.5 Å and 2.8 Å resolution, 83 respectively (Extended Data Fig. 2, Extended Data Table 1). 84

The CCK_AR structures adopt a canonical seven-transmembrane helical bundle structure 85 86 (helices I-VII) of GPCRs (Fig. 1a–d), with the second extracellular loop (ECL2) of CCK_AR forming a β -hairpin structure that is similar to the previously determined structures of peptide 87 receptors²⁶⁻²⁸. The third extracellular loop (ECL3) adopts a two-turn α -helical conformation 88 which has never been observed before in other class A GPCR structures. The complexes of 89 CCK_AR-devazepide and CCK_AR-lintitript are structurally similar with an overall Ca root-90 mean-square deviation (RMSD) of 0.33 Å (Fig. 1g, h). Compared to the CCK_AR-lintitript 91 structure, the CCK_AR–NN9056 structure showed a larger variance (overall Cα RMSD, 0.48 Å) 92 with main differences appearing in the ligand binding region of helix VI. Upon binding to the 93 agonist NN9056, ~1 Å inward shift of helix VI in the ligand binding region was observed and 94 such a conformational change might be required for receptor activation. Except for helix VI, 95 the differences in the transmembrane domain between agonist- and antagonist-bound CCK_AR 96 are relatively small. 97

98 It was reported that CCK_BR could activate both G_i and G_q signaling pathways, and indeed, 99 CCK_BR was co-purified with these two G proteins while failed to form protein complex with

G_s. The CCK_BR–G_q and CCK_BR–G_{i2} complexes were assembled in the presence of the CCK_BR 100 selective endogenous peptide gastrin-17 and their structures were determined by single-particle 101 cryo-EM analysis with the overall resolution of 3.1 Å and 3.3 Å (Fig. 1e, f, Extended Data Fig. 102 3, Extended Data Table 2), respectively. Compared to the inactive CCK_AR structure, the 103 G_q/G_{i2}-coupled CCK_BR structures exhibit key structural features of active class A GPCRs, 104 including a large outward movement of the intracellular tip of helix VI and a small inward shift 105 at the intracellular end of helix VII. However, the conformational changes in CCK_BR are 106 relatively small with an approximately 6 Å movement for helix VI compared to other active 107 structures of class A GPCR-G-protein complexes²⁹⁻³¹. 108

These two G protein-coupled CCK_BR complexes are structurally similar with an overall 109 Cα RMSD of 0.9 Å. However, despite the overall similarity, several distinct features have been 110 111 observed in the recognition patterns for G_{i2} and G_q. Both G_{i2} and G_q insert in the same binding pocket formed by helices II, III, VI and VII as well as the intracellular loops, however, a $\sim 8^{\circ}$ 112 rotation between the Gi2 and Gq heterotrimeric proteins was noted, as described in the 113 companion CCK_AR paper (Extended Data Fig. 4). Comparison of the structures of CCK_BR-114 Gi2 and CCK_BR-G_q complexes revealed differences in the intracellular loops and 115 transmembrane domain of CCK_BR as well as the aN helix and C-terminal a5 helix of G protein. 116 The distance between the receptor ICL2 and the αN helix of the CCK_BR–G_q complex is closer 117 than that in the CCK_BR–G_{i2} complex, resulting in more extensive interactions between ICL2 118 of CCK_BR and the α N helix of G_q. R163^{ICL2} and V164^{ICL2} in CCK_BR form several hydrophobic 119 interactions with the αN helix of G_q while only V164^{ICL2} forms hydrophobic interaction with 120 that of Gi2. In addition, Q166^{ICL2} and T167^{ICL2} form several hydrogen bonds with Gq while only 121 one hydrogen bond is formed between ICL2 of CCK_BR and Gi2. 122

123 Since the two G protein-coupled CCK_BR complexes are highly resemble to each other, the 124 CCK_BR-G_{i2} complex was used to compare with the corresponding complex structure of 125 CCK_AR and these structures are very similar with an overall C α RMSD of 0.9 Å. The CCK_AR 126 and CCK_BR complexes showed a common activation pattern with W^{6.48} and the PIF motif 127 exhibiting similar confirmations upon activation. The G₁₂ binds to CCK_AR and CCK_BR in a 128 similar binding pocket formed by helices II, III and V-VIII. The outward movement of the 129 intracellular tip of helix VI and inward shift at the intracellular end of helix VII of the two 130 CCKRs are within a similar range, suggesting that these receptors activate G proteins by the 131 same mechanism.

132

Binding modes of small molecules in CCKAR

Devazepide binds to CCK_AR in a pocket bordered by helices II-VII, ECL2 and ECL3 (Fig. 2a). 133 This antagonist is characterized by a 1,4-benzodiazepine group and an indole moiety³². Residue 134 R336^{6.58} is engaged in a π -cation interaction with the indole group and forms a hydrogen bond 135 with the carbonyl oxygen of the 1,4-benzodiazepine group (Fig. 2b). In addition, the 4-nitrogen 136 137 within the benzodiazepine group and the amide nitrogen form two hydrogen bonds with the residue N333^{6.55}. The critical role of N333^{6.55} and R336^{6.58} in devazepide binding was also 138 139 reflected by a notable loss of antagonistic activity of devazepide in our NN9056-induced 140 inositol phosphate (IP) accumulation assay (Extended Data Table 3) and a complete abolishment of CCK-8 binding ability for the mutants N333^{6.55}A and R336^{6.58}A (Extended 141 Data Table 4). The hydrogen bond between devazepide and N333^{6.55} is important for its 142 affinity, as previous studies showed that chiral change of the 3-carbon within the 143 benzodiazepine group which eliminates the hydrogen bond led to an over 100-fold decrease of 144 the binding affinity^{33, 34}. In addition to the above interactions, the indole group of devazepide 145 is further stabilized by hydrophobic interactions with residues A343^{ECL3}, E344^{ECL3}, L347^{ECL3}, 146 and I352^{7.35} in ECL3 and helix VII. The phenyl ring of the benzodiazepine group forms 147 multiple hydrophobic interactions with N98^{2.61}, T117^{3.28}, and T118^{3.29} in helices II and III, 148 while the tolyl group penetrates deeply into the binding pocket, making hydrophobic contacts 149

with M121^{3.32}, Y176^{4.60}, and F330^{6.52}. The roles of these residues in devazepide recognition
were investigated by testing the effects of their alanine mutations on the antagonistic activity
of devazepide. The results show that all these mutations impaired the inhibitory activity of
devazepide on NN9056-induced IP production with the exceptions of N98^{2.61}A and Y176^{4.60}A
(Extended Data Table 3). Among these mutations, T117^{3.28}A and F330^{6.52}A exhibited the
largest effect, suggesting that they play a vital role in recognizing devazepide.

The antagonist lintitript occupies a binding pocket similar to devazepide (Fig. 2c, d). 156 Instead of the bulky benzodiazepine group, lintitript has a thiazolyl group in the middle portion, 157 limiting its interaction with helices II and III of the receptor and resulting in a lower binding 158 affinity to CCK_AR compared to that of devazepide³⁴. Similar hydrogen bonds between lintitript 159 and N333^{6.55} as well as π -cation interaction with R336^{6.58} were formed as observed in the 160 CCK_AR-devazepide structure, despite their different chemical scaffolds. These polar 161 interactions are also critical for lintitript recognition, as alanine replacements of N333^{6.55} and 162 R336^{6.58} reduced its antagonistic activity by 6-fold and 8-fold, respectively, and completely 163 abolished the binding of CCK-8. Similar to the indole and tolyl groups of devazepide, the 164 corresponding groups in lintitript also form multiple hydrophobic interactions with the 165 receptor. The alanine mutations of the residues that are involved in these hydrophobic 166 interactions diminished the antagonistic effect of lintitript, except for Y176^{4.60}A (Extended 167 Data Table 3). 168

169 Binding modes of peptide ligands in CCK_AR and CCK_BR

The full CCK_AR agonist NN9056 is a highly selective peptide analogue synthesized based on CCK-8¹⁹. It was developed mainly by introducing D-N-methyl-Asp and N-methyl-Phe instead of Asp and Phe at the penultimate position and replacing Met with Nle in CCK-8 as well as adding a C18-acylated fatty chain to the N terminus. Unambiguous electron densities were

observed for the C-terminal octapeptide in NN9056, while the long N-terminal modification of 174 the agonist was not modeled due to the poor density map. NN9056 adopts a binding pose 175 perpendicular to the membrane plane, with its N terminus pointing to the extracellular surface 176 and the C terminus penetrating into the helical bundle (Fig. 2e, f). The N terminus of NN9056 177 178 is anchored to ECL2 through a salt bridge between the sulfonate group of Y7 (as counted from 179 the C terminus of CCK; the residues in gastrin is numbered in the same way) and residue R197 in CCK_AR, which is crucial for CCK_AR selectivity as the nonsulfated CCK binds selectively 180 to CCK_BR³⁵. Besides R197, the NN9056 residue Y7 also makes hydrophobic contacts with 181 residues K105 and M195 in ECL1 and ECL2. This aligns well with previous studies suggesting 182 that M195^{ECL2} is a binding partner for the sulfated tyrosine of CCK³⁶. The extracellular binding 183 moiety of NN9056 is further stabilized by a hydrogen bond between the main-chain nitrogen 184 of G5 and the side chain of S348 in ECL3. The side chain of R197^{ECL2}, which forms an 185 important salt bridge with the sulfated Y7, is only 3.4 Å away from the C α of G5. Thus, any 186 other residues replacing this glycine will import a bulkier side chain, which would cause steric 187 clash with R197 and reduce the binding of CCK-8. Indeed, it was reported that all mutations 188 on G5, with the exception of N-methylglycin, led to significantly reduced binding affinities¹⁹. 189

190 The C-terminal region of NN9056 occupies a similar binding site to that of devazepide and lintitript, with the side chains of residues W4 and F1 in the agonist overlapping with the 191 indole and tolyl groups of the antagonists. The side chain of W4 extends toward helices VI and 192 VII, and ECL3, forming a hydrogen bond with N333^{6.55} and hydrophobic interactions with 193 L347^{7.30} and I352^{7.35}, while the NN9056 residue D2 builds two hydrogen bonds with Y176^{4.60} 194 and N333^{6.55} (Fig. 2f, g). Additionally, the side chain of F1 interacts with a hydrophobic cluster 195 formed by Y176^{4.60}, I329^{6.51}, and F330^{6.52} in CCK_AR. The C-terminal amide of NN9056 makes 196 two hydrogen bonds with N98^{2.61} and M121^{3.32} to further stabilize the binding between the C 197 terminus of NN9056 and the receptor. These two polar interactions were supported by 198

199	mutagenesis studies showing that alanine replacements of N98 ^{2.61} and M121 ^{3.32} were
200	associated with an over 2-fold reduction of NN9056 potency in inducing IP production.
201	Different from the mutagenesis results of CCK _A R with NN9056, the mutations N98 ^{2.61} A,
202	Y176 ^{ECL2} A, N333 ^{6.55} A and R336 ^{6.58} A displayed a much more predominant influence showing
203	a 10-200-fold reduction of CCK-8 potency in inducing receptor activation, probably due to the
204	fact that modifications in NN9056 stabilize the peptide (Extended Data Table 4). Additionally,
205	two Nle residues in NN9056 do not form any strong interaction with the receptor, which
206	explains why replacing them with methionine or leucine did not affect the affinity ^{37, 38} .

207 Unlike the linear peptides CCK and NN9056, the 17-amino-acid peptide gastrin forms a β-hairpin structure (Fig. 2h, i). The five residues in the C terminus insert deeply into the ligand-208 binding pocket formed by helices II, III, V, VI, and VII, as well as ECL2 and ECL3, a binding 209 site similar to that in the crystal structure of CCK_AR–NN9056. The three amino acids at the C 210 terminus occupy a similar site to that for the side chain of the sulfated tyrosine of NN9056 in 211 CCK_AR (Fig. 3c). This binding mode is supported by our mutagenesis assays, in which alanine 212 mutations of Y189^{4.60}, R356^{6.55}, L367^{ECL3} and Y380^{7.43} completely abolished the binding of 213 CCK-8 or gastrin-17 (Extended Data Table 6), suggesting key roles of these residues in peptide 214 recognition. In addition to the interactions engaged by the peptide C terminus, residues at the 215 N terminus of gastrin-17 locate in a shallow binding cavity shaped by ECL1, ECL2 and ECL3 216 further improve the binding affinity and ligand selectivity (Fig. 3a, b). 217

218 Peptide selectivity between CCK_AR and CCK_BR

Both gastrin and CCK are vertebrate brain-gut peptides that share a conserved common Cterminal pentapeptide amide sequence^{4, 5} crucial for biological functions, while the N-terminal extensions, especially the tyrosine residue at position 7 of CCK and position 6 of gastrin (as counted from the peptide C terminus phenylalanine), serve to increase potency and specificity. 223 Unlike sulfation of the residue Y6 in gastrin, sulfation of CCK-8 in Y7 is critical to its affinity 224 at CCK_AR^{39} . The residues in the binding pockets of CCK_AR and CCK_BR are highly conserved, 225 however, minor amino acid differences between the two receptors reshape their binding 226 pockets and allow different peptide preference.

As previously described, the C termini of NN9056 and gastrin bind to their respective 227 receptors in a similar manner and the detailed interactions between the three C-terminal 228 residues of the peptide and the receptor are almost identical (Fig. 3c). The main difference in 229 this region is that the histidine residue at position 7.39 of CCK_BR forms a hydrogen bond with 230 the main-chain carbonyl of D2 in gastrin, which does not exist in the CCK_AR-NN9056 231 complex as the counterpart in CCK_AR is a leucine. However, starting from W4, these two 232 peptides show different orientations and thus lead to different binding modes. This is due to 233 sequence variety in ECL2 between the CCKR family: (i) the residue L200^{ECL2} at the end of 234 ECL2 in CCK_AR is substituted by W209^{ECL2} in CCK_BR, where the bulky side chain pushes the 235 side chain of H207^{ECL2} toward gastrin to enable a hydrogen bond with the main chain of W4, 236 dragging this peptide further toward ECL2 in comparison with NN9056 (Fig. 3c). This is 237 supported by our mutagenesis data showing that replacing H207^{ECL2} with an alanine 238 completely abolished the gastrin binding (Extended Data Table 5); (ii) the key residue 239 R197^{ECL2} in CCK_AR, which forms a key salt bridge with the sulfated tyrosine in NN9056, is 240 not conserved and appears as a valine in CCK_BR. The long side chain of R197^{ECL2} is either 241 locked by this salt bridge or by the negatively charged residue E344^{ECL3}, and would cause a 242 severe spatial hindrance with gastrin and does not allow this peptide to bind to CCK_AR in the 243 same manner (Fig. 3e, f). Therefore, our structures explain why gastrin could only bind to 244 CCK_AR with a very weak affinity in contrast to CCK. The importance of this polar interaction 245 was confirmed by our mutagenesis studies, in which the CCK_AR mutant R197^{ECL2}A greatly 246

247 diminished the binding of CCK-8 and reduced the agonist potency of NN9056 by about 3-fold
248 in the IP accumulation assay (Extended Data Table 5).

The above differences in the binding modes of the peptide agonists result in a distinct 249 binding environment for the sulfated tyrosine residue. For NN9056, the sulfonate group of Y7 250 (sul-Y7) anchors into a binding cavity formed by helix II, ECL1 and ECL2 of CCK_AR (Fig. 251 3g). The salt bridge between the sul-Y7 and R197^{ECL2} breaks the original salt bridge between 252 R197^{ECL2} and E344^{ECL3}, opens up the binding pocket, and allows the entrance of CCK (Fig. 253 3d, g). This is consistent with the fact that the sulfation of CCK improves its affinity by 1,000 254 folds towards CCK_AR⁴⁰. In the case of CCK_BR, however, the lack of the spatial hindrance of 255 R197^{ECL2} side chain allows gastrin to bind in a more extended manner, and thus, the gastrin 256 residue Y6 occupies a position similar to that of the NN0956 residue Y7 but rotated by about 257 90°, only making hydrogen bonds with ECL2 (Fig. 3b, h). One non-conserved residue, 258 R208^{ECL2} in CCK_BR (L199^{ECL2} in CCK_AR), reaches out to form a hydrogen bond with the 259 hydroxyl group of Y7 resulting in an increased peptide affinity. It could be expected that 260 sulfation of this tyrosine would form electrostatic interactions with R208^{ECL2} and further 261 improve the affinity of gastrin to some extent and indeed, previous studies have shown that the 262 sulfated gastrin displayed a 10-fold higher binding affinity compared to the non-sulfated 263 form³⁹. 264

The N-terminal extension of gastrin, especially the tryptophan and pyroglutamic acid residues at positions 14 and 17, also interacts with the receptor through several hydrogen bonds with residues N115^{2.65} and R57^{1.35} in CCK_BR to improve its affinity and selectivity. For instance, the side chain of W14 would form a severe clash with the side chain of R197^{ECL2} in CCK_AR, thereby reducing the ability of gastrin to bind this receptor. In addition to the interactions with CCK_AR, W14 also forms extensive interactions with W4 within gastrin, stabilizing the peptide in a conformation different from that of NN9056 (Fig. 3e, f).

272 Stepwise activation process of CCK_AR

CCK_AR could be activated by CCK-8 both in sulfated and non-sulfated forms at different 273 potencies. To study the binding mode of endogenous agonist CCK-8ns (non-sulfated CCK-8), 274 275 docking and molecular dynamic simulation studies on the basis of the cryo-EM structure of CCK-8–CCK_AR–G_q complex structure reported in our companion paper were performed (Fig. 276 4a). The predicted binding site of CCK-8ns in CCK_AR is similar to the binding site of NN9056, 277 which is a peptide mimic of the sulfated CCK-8, despite lacking of key interactions between 278 the sulfonate group of NN9056 and CCK_AR. Superimposing the CCK_AR structures reveals that 279 280 the NN9056-bound CCK_AR is in a similar conformation to that of devazepide-bound receptors (C α RMSD = 0.48), but differs from that of the G protein-coupled CCK_AR reported in our 281 companion paper (C α RMSD = 1.86 Å) (Extended Data Fig. 5), suggesting that the agonist 282 283 itself is not sufficient to fully stabilize the active conformation.

284 The CCK_AR-devazepide, CCK_AR-NN9056 and the simulated CCK-8ns-CCK_AR-G protein structures provide a systematic view of CCK_AR in antagonist bound, agonist bound and 285 agonist-G-protein bound states, which allows an in-depth analysis of the activation process of 286 CCK_AR. Structural comparison of CCK_AR in complex with different types of ligands indicates 287 that the position of the indole group in the ligands, which forms extensive interactions with 288 ECL3, might play a key role in regulating receptor activity. The indole groups of devazepide 289 and lintitript that mimic the side chain of the peptide residue W4 are 1.1 Å away from ECL3 290 compared to that in the peptide ligands (Fig. 3i). This difference suggests that conformational 291 change in ECL3 may be involved in modulating receptor activation (Extended Data Fig. 6). 292 Indeed, the extracellular half of the CCKAR structures of different active states overlap with 293 each other except that ECL3 bends down by 2.9 Å (measured at the Ca carbon of G349), 294 leading to a counterclockwise twisting of the extracellular regions of helices VI and VII 295 (extracellular view) and side-chain reorientations of several key residues within the ligand-296

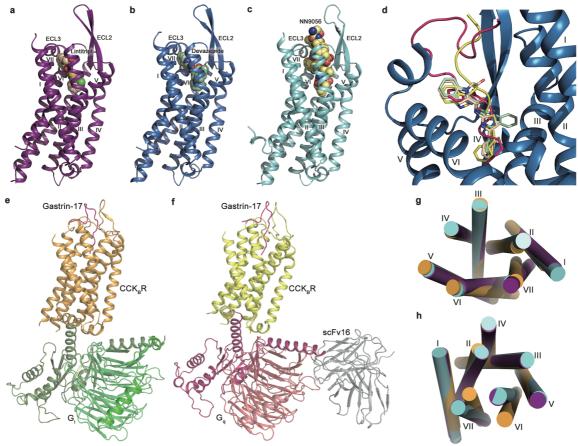
297	binding pocket (Fig. 4a-c). The inward movement of ECL3 allows the agonist to penetrate
298	deeper in the binding pocket, forming a spatial hindrance and pushing the side chain of $F330^{6.52}$.
299	The downward movement of $F330^{6.52}$ in turn influences the side chain of $W326^{6.48}$ and induces
300	an outward movement of the side chains of F218 ^{5.47} , F322 ^{6.44} and F323 ^{6.45} , thereby resulting in
301	a significant increase of the peptide-receptor interface area (from 1,797 Å ² to 2,424 Å ²).
302	Besides W326 ^{6.48} and F322 ^{6.44} , which were previously indicated as 'transmission switch' in
303	FPR2 ²⁹ , the P230 ^{5.50} in the PIF motif also showed an inward shift upon activation. Consistently,
304	several newly formed polar contacts including three hydrogen bonds between the CCK residue
305	D7 and the residues H210 ^{5.39} , N333 ^{6.55} and R336 ^{6.58} of the receptor were observed in the active
306	CCK _A R structure. Accompanying these movements initiated at the bottom of the ligand-
307	binding pocket, both the sodium pocket and transmission switch $(P^{5.50}T^{3.40}F^{6.44}$ and $CWxP^{6.50}$
308	motifs) rearrange their residue contacts (Fig. 4d, e). By pointing to helix VI, S3627.45 forms
309	two hydrogen bonds with W326 ^{6.48} and N366 ^{7.46} , yielding a 2.4 Å-downward movement of
310	W326 ^{6.48} and a 2.3 Å-inward movement of N366 ^{7.46} (measured at the C α carbon of N366 ^{7.46}),
311	relative to those in the NN9056-bound structure. Despite no obvious sodium density was
312	observed in all our CCKR structures, the distance between residues in sodium binding pocket
313	such as D100 ^{2.50} and N366 ^{7.49} was closer upon activation (3.4 Å to 2.7 Å), forming a stronger
314	interaction between helices II and VII. Meanwhile, the side chain of F322 ^{6.44} stretches out from
315	the transmembrane domain core and the hydrophobic lock (L132 ^{3.43} , I318 ^{6.40} and V319 ^{6.41}) is
316	broken, which further loosens the helices III-VI packing and facilitates the outward movement
317	of the cytoplasmic end of helix VI.

318 On the intracellular side of the G protein-coupled CCK_AR structure, helix VI of the 319 receptor moves outwards by 6.0 Å (measured at the C α carbon of A302^{6.24}), while helix VI 320 extends by ten residues and moves outwards by about 2.0 Å (Y237^{5.66} as a reference). In 321 addition, helix VII rotates inward and moves toward helix III by 5.2 Å (measured at the C α

322	carbon of $Y370^{7.53}$). In contrast to the restrains of the hydrogen bond with $T76^{2.39}$ and the salt
323	bridge with E138 ^{3.49} in the inactive state, R139 ^{3.50} exchanges these polar contacts upon agonist
324	binding with interaction at the C terminus of $\alpha 5$ helix in the G α subunit. Surprisingly, helix
325	VIII of CCK _A R was found in a non-canonical position that is perpendicular to the helical
326	bundle without contacting any transmembrane helices in both agonist- or antagonist-bound
327	structures. Upon G protein binding, helix VIII rotates toward helix I and resembles that of other
328	class A GPCRs. Collectively, these movements create an intracellular crevice for G protein
329	coupling.

In summary, we solved the CCK_AR structures at different activation states and the structures of CCK_BR in complex with different G proteins. Supported by receptor binding and signaling profile data, these structures help us better understand multiple aspects of CCK receptor biology including recognition of different types of ligands and peptide selectivity in the CCKR family, as well as the activation process of CCK_AR.

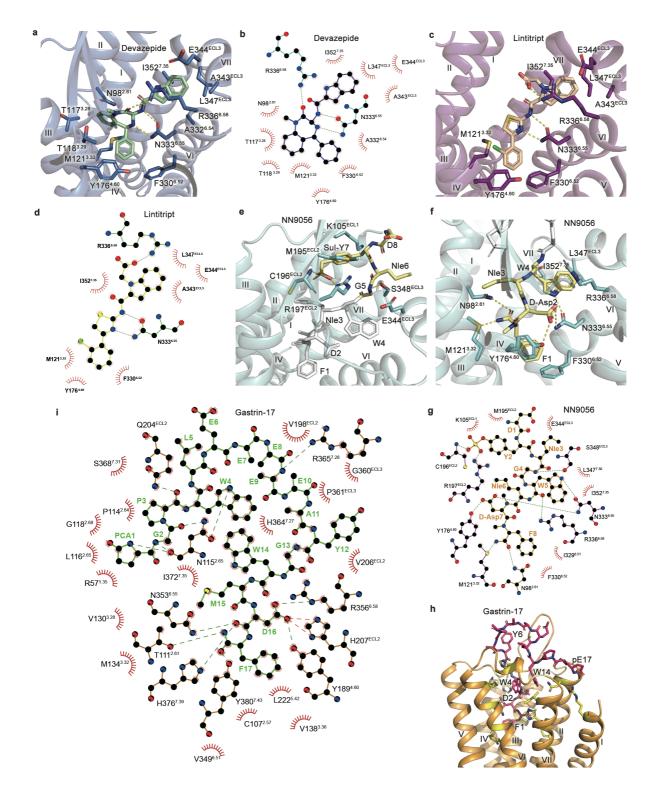
335 **References**


- Johnsen, A.H. Phylogeny of the cholecystokinin/gastrin family. *Frontiers in Neuroendocrinology* 19, 73-99 (1998).
- Rehfeld, J.F., Friis-Hansen, L., Goetze, J.P. & Hansen, T.V.O. The biology of
 cholecystokinin and gastrin peptides. *Current Topics in Medicinal Chemistry* 7, 1154 1165 (2007).
- 341
 3. Deschenes, R.J. *et al.* Cloning and sequence analysis of a cDNA encoding rat preprocholecystokinin. *Proc Natl Acad Sci U S A* **81**, 726-730 (1984).
- 343
 343
 344
 345
 4. Rehfeld, J.F. Cholecystokinin-From Local Gut Hormone to Ubiquitous Messenger.
 346
 347 (2017).
- 5. Schubert, M.L. & Rehfeld, J.F. Gastric Peptides-Gastrin and Somatostatin. *Comprehensive Physiology* 10, 197-228 (2020).
- 6. Wank, S.A. Cholecystokinin receptors. *Am J Physiol* **269**, G628-646 (1995).
- 348
 348
 349
 7. Dufresne, M., Seva, C. & Fourmy, D. Cholecystokinin and gastrin receptors. *Physiological Reviews* 86, 805-847 (2006).
- 3508.Foucaud, M. *et al.* Insights into the binding and activation sites of the receptors for351cholecystokinin and gastrin. *Regulatory Peptides* 145, 17-23 (2008).
- Rehfeld, J.F. Gastrointestinal Hormones and Their Targets. *Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease* 817, 157-175 (2014).
- 35410.Scemama, J.L. *et al.* Cck and Gastrin Inhibit Adenylate-Cyclase Activity through a355Pertussis Toxin-Sensitive Mechanism in the Tumoral Rat Pancreatic Acinar Cell-Line

356		Ar 4-2j. Febs Letters 242, 61-64 (1988).
357	11.	Yassin, R.R. & Abrams, J.T. Gastrin induces IP3 formation through phospholipase C-
358		gamma 1 and pp60(c-src) kinase. <i>Peptides</i> 19 , 47-55 (1998).
359	12.	Ritter, R.C., Covasa, M. & Matson, C.A. Cholecystokinin: proofs and prospects for
360		involvement in control of food intake and body weight. Neuropeptides 33, 387-399
361		(1999).
362	13.	Crawley, J.N. & Corwin, R.L. Biological Actions of Cholecystokinin. Peptides 15, 731-
363		755 (1994).
364	14.	Noble, F. & Roques, B.P. CCK-B receptor: Chemistry, molecular biology, biochemistry
365		and pharmacology. Progress in Neurobiology 58, 349-379 (1999).
366	15.	Irwin, N., Hunter, K., Montgomery, I.A. & Flatt, P.R. Comparison of independent and
367		combined metabolic effects of chronic treatment with (pGlu-Gln)-CCK-8 and long-
368		acting GLP-1 and GIP mimetics in high fat-fed mice. Diabetes Obesity & Metabolism
369		15 , 650-659 (2013).
370	16.	Trevaskis, J.L. et al. Synergistic metabolic benefits of an exenatide analogue and
371		cholecystokinin in diet-induced obese and leptin-deficient rodents. Diabetes Obesity &
372		Metabolism 17, 61-73 (2015).
373	17.	Evans, B.E. et al. Design of potent, orally effective, nonpeptidal antagonists of the
374		peptide hormone cholecystokinin. Proc Natl Acad Sci USA 83, 4918-4922 (1986).
375	18.	Gully, D. et al. Peripheral biological activity of SR 27897: a new potent non-peptide
376		antagonist of CCKA receptors. Eur J Pharmacol 232, 13-19 (1993).
377	19.	Sensfuss, U. et al. Structure-Activity Relationships and Characterization of Highly
378		Selective, Long-Acting, Peptide-Based Cholecystokinin 1 Receptor Agonists. Journal
379	• •	of Medicinal Chemistry 62, 1407-1419 (2019).
380	20.	Christoffersen, B.O. et al. Long-acting CCK analogue NN9056 lowers food intake and
381		body weight in obese Gottingen Minipigs. International Journal of Obesity 44, 447-
382	01	456 (2020).
383	21.	Orikawa, Y. et al. Z-360, a novel therapeutic agent for pancreatic cancer, prevents up-
384		regulation of ephrin B1 gene expression and phosphorylation of NR2B via suppression
385		of interleukin-1 beta production in a cancer-induced pain model in mice. <i>Mol Pain</i> 6 , 72 (2010)
386	22	72 (2010). Chay L at al Costrazala (IB05008) a navel CCK2/costrin recorter entergenist in the
387	22.	Chau, I. <i>et al.</i> Gastrazole (JB95008), a novel CCK2/gastrin receptor antagonist, in the treatment of advanced pancreatic cancer: results from two randomised controlled trials.
388 389		Br J Cancer 94, 1107-1115 (2006).
389 390	23.	Lu, L., Zhang, B., Liu, Z. & Zhang, Z. Reactivation of cocaine conditioned place
390 391	23.	preference induced by stress is reversed by cholecystokinin-B receptors antagonist in
392		rats. Brain Res 954 , 132-140 (2002).
393	24.	Huppi, K., Siwarski, D., Pisegna, J.R. & Wank, S. Chromosomal Localization of the
394	21.	Gastric and Brain Receptors for Cholecystokinin (Cckar and Cckbr) in Human and
395		Mouse. <i>Genomics</i> 25 , 727-729 (1995).
396	25.	Zhou, Q.T. <i>et al.</i> Common activation mechanism of class A GPCRs. <i>Elife</i> 8 (2019).
397	26.	White, J.F. et al. Structure of the agonist-bound neurotensin receptor. Nature 490, 508-
398		+ (2012).
399	27.	Shihoya, W. et al. Activation mechanism of endothelin ETB receptor by endothelin-1.
400		Nature 537, 363-368 (2016).
401	28.	Chen, S.H. et al. Human substance P receptor binding mode of the antagonist drug
402		aprepitant by NMR and crystallography. Nature Communications 10 (2019).
403	29.	Zhuang, Y. et al. Structure of formylpeptide receptor 2-Gi complex reveals insights into
404		ligand recognition and signaling. Nat Commun 11, 885 (2020).
405	30.	Krishna Kumar, K. et al. Structure of a Signaling Cannabinoid Receptor 1-G Protein

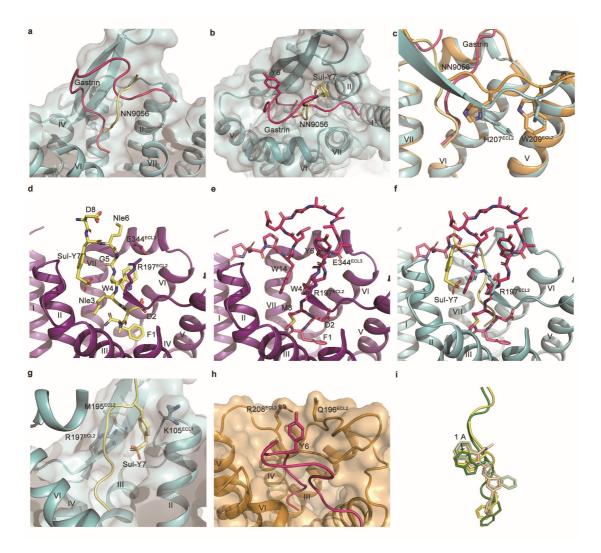
(2019).
ſ

- 40731.Xing, C. et al. Cryo-EM Structure of the Human Cannabinoid Receptor CB2-Gi408Signaling Complex. Cell 180, 645-654 e613 (2020).
- 409 32. Hill, D.R. & Woodruff, G.N. Differentiation of Central Cholecystokinin Receptor410 Binding Sites Using the Nonpeptide Antagonists Mk-329 and L-365,260. Brain
 411 Research 526, 276-283 (1990).
- 33. Satoh, Y. *et al.* Studies on a Novel, Potent and Orally Effective Cholecystokinin-a
 Antagonist, Fk-480 Synthesis and Structure-Activity-Relationships of Fk-480 and
 Related-Compounds. *Chemical & Pharmaceutical Bulletin* 42, 2071-2083 (1994).
- 415 34. Cawston, E.E. *et al.* Molecular Basis for Binding and Subtype Selectivity of 1,4416 Benzodiazepine Antagonist Ligands of the Cholecystokinin Receptor. *Journal of*417 *Biological Chemistry* 287, 18618-18635 (2012).
- 418
 418
 419
 35. Saito, A., Sankaran, H., Goldfine, I.D. & Williams, J.A. Cholecystokinin receptors in the brain: characterization and distribution. *Science* 208, 1155-1156 (1980).
- 420 36. Gigoux, V. *et al.* Met-195 of the cholecystokinin-A receptor interacts with the sulfated
 421 tyrosine of cholecystokinin and is crucial for receptor transition to high affinity state.
 422 *Journal of Biological Chemistry* 273, 14380-14386 (1998).
- 423 37. Fourniezaluski, M.C. *et al.* Conformational-Analysis and Structural Activity
 424 Relationships of Cholecystokinin Peptides. *Annals of the New York Academy of*425 *Sciences* 448, 598-600 (1985).
- 426 38. Holladay, M.W. *et al.* Synthesis and biological activity of CCK heptapeptide analogues.
 427 Effects of conformational constraints and standard modifications on receptor subtype
 428 selectivity, functional activity in vitro, and appetite suppression in vivo. *J Med Chem*429 35, 2919-2928 (1992).
- 430
 430
 431
 439. Huang, S.C. *et al.* Importance of sulfation of gastrin or cholecystokinin (CCK) on affinity for gastrin and CCK receptors. *Peptides* 10, 785-789 (1989).
- 432 40. Silvente-Poirot, S., Dufresne, M., Vaysse, N. & Fourmy, D. The peripheral
 433 cholecystokinin receptors. *Eur J Biochem* 215, 513-529 (1993).
- 434 41. Laskowski, R.A. & Swindells, M.B. LigPlot+: multiple ligand-protein interaction
 435 diagrams for drug discovery. *J Chem Inf Model* 51, 2778-2786 (2011).
- 436


437 Figures

438 Fig. 1 | Overall structures of the CCK_AR and CCK_BR. a-c, Crystal structures of the 439 CCK_AR-lintitript (a), CCK_AR-devazepide (b) and CCK_AR-NN9056 (c) complexes. The 440 receptors are shown in deep-purple, marine and cyan cartoon representation, respectively. 441 Lintitript is shown as spheres with carbons in wheat. Devazepide is shown as spheres with 442 carbons in pale-green. NN9056 is shown as spheres with carbons in pale-yellow. d, the 443 comparison of antagonists and agonists binding position superimposed in CCK_AR. The 444 antagonists are shown in sticks and peptide agonists are shown in cartoon with key residues in 445 stick. All the ligands are colored as in corresponding panel in this figure. e, f, Cryo-EM 446 structures of CCK_BR in complex with gastrin-17 and G_i or G_q. The receptors are shown in 447 bright-orange and yellow, respectively. Gastrin-17 in shown as hot-pink sticks. The Gi2 trimers 448 are shown in smudge, lime and green cartoons, and the G_q trimers are shown in warm-pink, 449 deep-salmon and salmon cartoons, respectively. g, h, Comparison of helical bundles of CCK_AR 450

- 451 in inactive (CCK_AR–lintitript), partially active (CCK_AR–NN9056) and CCK_BR in fully active
- 452 state (gastrin-17– CCK_BR – G_i) on extracellular (**f**) and intracellular (**g**) sides. The receptors are
- 453 colored as described above.


bioRxiv preprint doi: https://doi.org/10.1101/2021.05.19.444887; this version posted May 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

454

Fig. 2 | Small-molecule ligand binding pocket of CCKRs. a, Interactions between devazepide and CCK_AR. The CCK_AR residues involved in interactions are shown as cyan sticks. Devazepide is displayed as blue sticks. Polar interactions are shown as yellow dashed lines. **b**, Schematic representation of the interactions between CCK_AR and devazepide

459	analyzed using the LigPlot ⁺ program ⁴¹ . Interactions between lintitript and CCK _A R (c) and
460	schematic representation (d). The CCK_AR residues involved in interactions are shown as green
461	sticks. Lintitript is displayed as yellow sticks. e-g, Interactions between top region (e) and
462	bottom region (f) of NN9056 and CCKAR and schematic representation (g). The CCKAR
463	residues involved in interactions are shown as brown sticks. NN9056 is displayed as magenta
464	sticks. Polar interactions are shown as yellow dashed lines. Interactions between gastrin-17 and
465	CCK_BR (h) and schematic representation (i). The CCK_BR residues responsible for important
466	interactions are shown as pale-cyan sticks. Gastrin-17 is displayed as hot-pink sticks.

467

Fig. 3 | Comparison of peptide binding in CCKRs. a. Comparison of peptide conformation. 468 The CCK_AR and NN9056 are shown in cyan and pale-yellow cartoons, respectively. The 469 gastrin-17 is shown in hot-pink cartoons and aligned to the same position in CCK_AR. **b**, 470 Comparison of important tyrosine residue in NN9056 and gastrin-17. The side chains of Y7 in 471 472 CCK-8 and Y6 in gastrin-17 are shown in pale-yellow sticks and hot-pink sticks, respectively. c, Comparison of peptide C terminus in corresponding receptors. CCK_AR and CCK_BR are 473 shown in cyan and bright-orange cartoons, respectively. NN9056 and gastrin-17 are shown in 474 pale-yellow and hot-pink cartoon representation. The side chains of H207 and W209 of CCK_BR 475 and their corresponding residues in CCK_AR are shown in sticks. d, Superposition of NN9056 476 in inactive CCK_AR (represented by the CCK_AR–lintitript structure). The receptor and NN9056 477 are shown in deep-purple cartoons and pale-yellow sticks, respectively. The salt bridge of R197 478

479	and E344 are shown in brown sticks. e, f, Superposition of gastrin-17 in inactive CCKAR
480	(represented by the CCKAR-lintitript structure) and active CCKAR (represented by the
481	CCK _A R–NN9056 structure). The receptor and gastrin-17 are shown in deep-purple cartoons
482	and hot-pink sticks, respectively. g, h, Peptide binding pocket of CCKAR-NN9056 and
483	CCK _B R-gastrin-17. The receptors are shown in cartoon and surface representation. NN9056
484	and gastrin-17 are shown in pale-yellow and hot-pink sticks, respectively. i, The binding
485	position comparison of peptide agonists and small-molecule antagonists. The agonists NN9056
486	and CCK-8 are shown in pale-yellow and forest green cartoon and sticks, and small-molecule
487	antagonists lintitript and devazepide are shown in wheat and pale-green sticks, respectively.

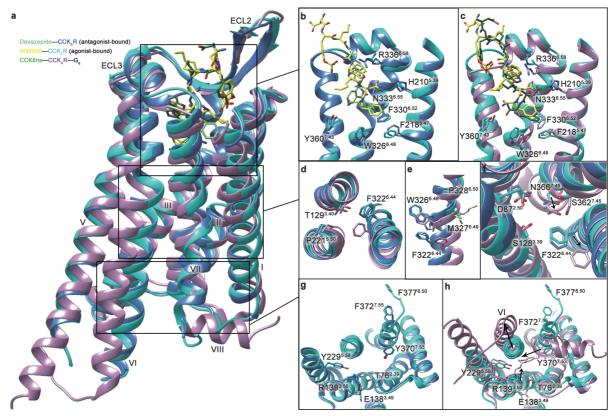


Fig. 4 | Activation process of CCK_AR. a, Superimposition of the agonist-bound CCK_AR structure with that
bound to antagonist or both agonist and G_q (obtained in the accompanied paper). G protein is omitted for clarity.
b, c, Conformational difference of the ligand-binding pocket among distinct states. d-f, Structural rearrangements
of residue contacts occurred in PIF (d), FxxCWxP (e) and sodium pocket (f). g, h, Structural changes in the
intracellular ends of helices VI and VII induced by agonist binding and G_q coupling. Conformational changes are
indicated with black arrows.

495 Methods

496 **Construct cloning**

For crystallization studies of CCKAR, the human CCKAR gene was cloned into a modified 497 498 pFastBac1 vector (Invitrogen), which contains an expression cassette with a hemagglutinin (HA) signal sequence followed by a Flag tag at the N terminus as well as a PreScission protease 499 site followed by a 10 × His tag at the C terminus. To facilitate crystallization, T4L was inserted 500 501 into between I240 and A302 at ICL3 of CCKAR with the truncation of the C-terminal residues G407–Q428. One mutation F130^{3.41}W was introduced to solve the CCK_AR–NN9056 complex 502 structure. The construct was further optimized with D87^{2.50}N to solve the structure of CCK_AR-503 devazepide and CCK_AR–lintitript complex structures. 504

For cryo-EM studies of CCK_BR, the human CCK_BR gene was cloned into a modified 505 pFastBac1 vector (Invitrogen) with N-terminal HA signal sequence connected to a Flag-tag 506 and C-terminal PreScission protease site followed by a $2 \times$ Strep-tag. The construct was further 507 optimized by truncation of C-terminal residues 419-447 to improve the protein yield and 508 509 homogeneity. According to previous studies, a chimera G_q was generated by replacing Nterminal 30 amino acids with the N-terminal 24 amino acids of G_{i1}^{42} . A dominant-negative G_{i2} 510 (DNG_{i2}) gene was generated as previously described by introducing four $G\alpha_{i2}$ subunit 511 mutations, S47N, G204A, E246A and A327S. Both Gq and Gi2 genes are cloned into the 512 pFastBac1 vector. The human $G\beta_1$ and $G\gamma_2$ subunits were integrated into the pFastBac Dual 513 vector (Invitrogen) with an N-terminal 6 × His-tag at the N terminus of G β_1 . The scFv16 gene 514 was cloned into a modified expression vector pFastBac1 with an N-terminal GP67 signaling 515 peptide and a C-terminal $8 \times$ His tag. 516

517 **Protein expression**

518 The Bac-to-Bac baculovirus expression system (Invitrogen) was used to generate high-titer 519 recombinant baculovirus (>10⁹ viral particles per ml). Expression of CCK_AR was carried out by infection of *Spodoptera frugiperda* (*Sf*9) cells at a cell density of $2-3 \times 10^6$ cells/ml with virus at a multiplicity of infection (MOI) of 5. Transfected cells were cultured at 27 °C for 48 h and then collected by centrifugation and stored at -80 °C until use.

For the CCK_BR–gastrin-17–G_q complex, the modified CCK_BR, $G\alpha_q$, $G\beta_1\gamma_2$ and Ric8A 523 (resistance to inhibitors of cholinesterase 8A), were co-expressed in High Five insect cells 524 (Invitrogen) using the Bac-to-Bac baculovirus expression system. Cells at a density of $1.5 \times$ 525 10^6 cells per ml were infected with high-titer virus at a MOI ratio of 2:1:1:1 for CCK_BR, Ga_a, 526 $G\beta_{1\gamma_{2}}$ and Ric8A. For the CCK_BR–gastrin-17–G_{i2} complex, the modified CCK_BR, $G\alpha_{i2}$ and 527 $G\beta_1\gamma_2$ were co-expressed in High Five cells using the Bac-to-Bac baculovirus expression 528 system. Cells at a density of 3×10^6 cells per ml were infected with high-titer virus at a MOI 529 ratio of 2:1:1 for CCK_BR, $G\alpha_{i2}$ and $G\beta_1\gamma_2$. Cells were cultured at 27 °C and harvested 48 h after 530 infection by centrifugation and stored at -80 °C until use. 531

532 Purification of CCK_AR–devazepide, CCK_AR–lintitript and CCK_AR–NN9056 complexes

Insect cells were disrupted by thawing frozen pellets in a hypotonic buffer containing 10 mM HEPES, pH 7.5, 10 mM MgCl₂, 20 mM KCl and EDTA-free protease inhibitor cocktail (Roche) with the ratio of 1 tablet per 100 ml lysis buffer. Extensive washing was performed by repeated centrifugation in the same buffer and then in a high salt buffer containing 10 mM HEPES, pH 7.5, 10 mM MgCl₂, 20 mM KCl and 1 M NaCl (two times each).

The purified membranes were thawed on ice in the presence of 2 mg/ml iodoacetamide and EDTA-free protease inhibitor cocktail, and incubated at 4 °C for 1 h before solubilization. The CCK_AR–T4L was solubilized in a buffer containing 50 mM HEPES, pH 7.5, 300 mM NaCl, 0.5% (w/v) DDM, 0.1% (w/v) CHS, 10% glycerol with 50 µM lintitript, 40 µM devazepide, and 50 µM NN9056, respectively, at 4 °C for 3 h. The supernatant was isolated by centrifugation at 160,000 g for 30 min and incubated with TALON superflow metal affinity resin (Clontech) at 4 °C overnight. The resin was washed with 20 column volumes of wash

buffer containing 25 mM HEPES, pH 7.5, 300 mM NaCl, 10% (v/v) glycerol, 0.05% (w/v) 545 DDM, 0.01% (w/v) CHS, 30 mM imidazole and 50 µM lintitript, 40 µM devazepide, or 50 µM 546 NN9056. The protein was eluted with 5 column volumes of elute buffer containing 50 mM 547 HEPES, pH 7.5, 300 mM NaCl, 10% (v/v) glycerol, 0.05% (w/v) DDM, 0.01% (w/v) CHS, 548 549 300 mM imidazole and 50 µM lintitript, 40 µM devazepide, or 50 µM NN9056. A PD MiniTrap G-25 column (GE Healthcare) was used to remove imidazole. The protein was then treated 550 overnight with His-tagged PreScission protease and His-tagged PNGase F to remove the C-551 terminal His tag and de-glycosylate the receptor. PreScission protease, PNGase F and the 552 553 cleaved $10 \times$ His tag were removed by passing the sample through Ni-NTA superflow resin (QIAGEN). The receptor was concentrated to 20-30 mg/ml with a 100 kDa cut-off 554 concentrator (Millipore). Protein purity and mono-dispersity were examined by Nu-PAGE and 555 analytical size-exclusion chromatography. 556

557 Crystallization of CCK_AR–devazepide, CCK_AR–lintitript and CCK_AR–NN9056 558 complexes

559 The CCK_AR complex samples were crystallized using the lipid cubic phase (LCP) method by mixing 40% protein with 60% lipid (monoolein and cholesterol 10:1 by mass) using a syringe 560 lipid mixer. After a clear LCP formed, the mixture was dispensed onto glass sandwich plates 561 562 (Shanghai FAstal BioTech) into 40 nl drop and overlaid with 800 nl precipitant solution using a Gryphon robot (Art-Robbins). Crystals of the CCK_AR–lintitript complex appeared after 2 563 days and grew to full size within 2 weeks in 0.1 M HEPES, pH 7.0-7.5, 20%-30% (v/v) 564 PEG400, 200–300 mM sodium tartrate and 1%–2% 1,2-butanediol. The CCK_AR-devazepide 565 complex was crystallized in 0.1 M HEPES, pH 7.0-7.5, 20%-30% (v/v) PEG400 and 300-400 566 567 mM ammonium acetate. The CCK_AR–NN9056 complex was crystallized in 0.1M HEPES, pH 7.0–7.5, 8%–12% (v/v) PPG400 and 50–100 mM ammonium acetate. Crystals were harvested 568

from LCP using 50 μm micromounts (M2-L19-100/150, MiTeGen) and flash frozen in liquid
 nitrogen.

571 Data collection and structure determination

572 X-ray diffraction data were collected at the SPring-8 beam line 41XU, Hyogo, Japan, using a 10 µm beam (at a wavelength of 1.0000 Å) and a Pilatus 3 6M detector. Crystals were exposed 573 with a 10 μ m \times 8 μ m beam for 0.2 s and 0.2 ° oscillation per frame. Data from the 34 best 574 575 diffracting crystals of the CCK_AR–lintitript complex, 17 crystals of the CCK_AR–devazepide complex and 44 crystals of the CCK_AR–NN9056 complex were processed using XDS⁴³. Initial 576 phase information was obtained by molecular replacement using the structures of NPY1R 577 (PDB accession number 5ZBQ) and T4L (PDB accession number 1C6P), respectively, with 578 the program Phaser⁴⁴. All refinements were performed with Phenix⁴⁵, followed by manual 579 examination and rebuilding of the refined coordinates in the program COOT⁴⁶ using both |2Fo| 580 - |Fc| and |Fo| - |Fc| maps. The Ramachandran plot indicates that 94.5% (5.5%) of residues in 581 the CCK_AR–devazepide, 94.7% (5.3%) of residues in the CCK_AR–lintitript and 90.3% (9.7%) 582 583 of residues in the CCK_AR–NN9056 complexes were in favored (allowed) region (no outliers). The final model of the CCK_AR-devazepide complex contains 278 residues of CCK_AR (K37-584 I240, A302–K375) and 160 residues (1–160) of T4 lysozyme; the final model of the CCK_AR– 585 lintitript complex contains 279 residues of CKKAR (K37-I240, A302-R376) and 160 residues 586 (1–160) of T4 lysozyme; and the final model of the CCK_AR–NN9056 complex contains 283 587 residues of CKK_AR (K37-I240, A302-G380) and 160 residues (1-160) of T4 lysozyme. The 588 remaining N- and C-terminal residues of CCK_AR are disordered and were not modeled. Data 589 collection and structure refinement results are shown in Extended Data Table 1. 590

591 CCK_BR -gastrin-17- G_q and CCK_BR -gastrin-17- G_{i2} complex formation and purification

592 Cells were thawed on ice and suspended in a buffer containing 20 mM HEPES, pH 7.5, 50 mM

593 NaCl, 2 mM MgCl₂ and 100 μ g/ml protease inhibitor (PanReac Applichem). Both CCK_BR–

594	gastrin-17– G_q and CCK _B R–gastrin-17– G_{i2} complexes were formed on membrane by adding
595	50 μ M gastrin-17 and 25 mU/ml apyrase (New England Bio-Labs), followed by incubation at
596	20 °C for 1 h. The membrane pellets were collected by ultra-centrifugation at 100,000 g for 30
597	min. The CCK _B R-gastrin-17-G _q complex was extracted from the membrane using a buffer
598	containing 50 mM HEPES, pH 7.5, 300 mM NaCl, 2 mM MgCl ₂ , 0.5% (w/v) <i>n</i> -dodecyl-β-D-
599	maltopyranoside (DDM, Anatrace), 0.1% (w/v) cholesteryl hemisuccinate (CHS, Sigma), 50
600	μM gastrin-17 and 25 mU/ml apyrase, while the $CCK_BR-gastrin-17-G_{i2}$ complex was
601	extracted from the membrane using a buffer containing 50 mM HEPES, pH 7.5, 300 mM NaCl,
602	2 mM MgCl ₂ , 0.5% (w/v) lauryl maltoseneopentyl glycol (LMNG, Anatrace), 0.05% (w/v)
603	CHS, 50 μM gastrin-17 and 25 mU/ml apyrase. Both complexes were incubated at 4 $^{\circ}C$ for 3
604	h and the supernatants isolated by ultra-centrifugation at 100,000 g for 30 min, followed by
605	incubation with pre-equilibrated Strep-Tactin Sepharose (IBA Lifesciences) at 4 °C overnight.
606	The resin with the immobilized CCK_BR -gastrin-17-G _q complex was washed with 20
607	column volumes of washing buffer containing 25 mM HEPES, pH 7.5, 150 mM NaCl, 0.05%
608	(w/v) DDM, 0.01% (w/v) CHS and 50 μ M gastrin-17, while the resin with the immobilized
609	CCK _B R-gastrin-17-G _{i2} complex was washed with 20 column volumes of washing buffer
610	containing 25 mM HEPES, pH 7.5, 150 mM NaCl, 0.01% (w/v) LMNG, 0.001% (w/v) CHS
611	and 50 μ M gastrin-17. Then, both complexes were subjected to the same purification protocol.
612	The detergent was exchanged on resin with 10 column volumes of a buffer containing 25 mM
613	HEPES, pH 7.5, 150 mM NaCl, 0.25% (w/v) glyco-diosgenin (GDN, Anatrace) and 50 μM
614	gastrin-17 at 4 °C for 2 h. The resin was further washed with 20 column volumes of a buffer
615	containing 25 mM HEPES, pH 7.5, 150 mM NaCl, 0.01% (w/v) GDN and 50 μM gastrin-17.
616	The protein was then eluted with 5 column volumes of elute buffer containing 200 mM Tris-
617	HCl, 500 mM NaCl, 0.01% GDN, 50 mM biotin and 50 μ M gastrin-17. Purified complex was
618	stabilized with addition of a 1.5 molar excess of scFv16 (preparation protocol shown as below)

and incubated at 4 °C for 2 h. The complex protein was further purified by size exclusion 619 chromatography on a Superdex 200 Increase 10/300 column (GE Healthcare) pre-equilibrated 620 with 20 mM HEPES, pH 7.5, 150 mM NaCl, 0.01% (w/v) GDN (to remove uncoupled 621 receptor), excess gastrin-17 and scFv16. The monomeric complex peak was collected and 622 623 concentrated to ~5 mg/ml with a 100 kDa cut-off concentrator (Millipore), and then analyzed by SDS-PAGE and analytical size-exclusion chromatography. 624

625

Expression and purification of scFv16

ScFv16 was expressed in High Five cells as a secreted protein using the baculovirus infection 626 system. The culture medium with secreted scFv16 was harvested 48 h after infection and the 627 protein was purified by affinity chromatography and size exclusion chromatography as 628 previously described ⁴³. Briefly, the cell culture supernatant was pH balanced with addition of 629 20 mM Tris-HCl, pH 8.0 and the chelating agents was removed by adding 1 mM nickel chloride 630 and 5 mM calcium chloride followed by incubation at 20 °C for 1 h. Precipitates were removed 631 by ultra-centrifugation at 100,000 g for 30 min and the supernatant was incubated with TALON 632 633 resin at 4 °C overnight. The resin was washed with 20 column volumes of washing buffer I containing 20 mM HEPES, pH 7.5, 500 mM NaCl and 10 mM imidazole, and then was further 634 washed with 20 column volumes of washing buffer II containing 20 mM HEPES, pH 7.5, 100 635 mM NaCl and 10 mM imidazole. The protein was eluted in elution buffer containing 20 mM 636 HEPES, pH 7.5, 100 mM NaCl and 250 mM imidazole. Imidazole was removed using PD 637 MiniTrap G-25 column (GE Healthcare). The protein was then treated with His-tagged 638 PreScission protease to remove the C-terminal 8 × His tag at 4 °C overnight. Cleaved protein 639 was further purified by reloading into Ni-NTA resin (QIAGEN). The flow through was 640 641 collected, concentrated to ~3 mg/ml with a 10 kDa cut-off concentrator (Millipore), flashfrozen by liquid nitrogen and stored at -80 °C until use. 642

Cryo-EM data acquisition and processing 643

Negative staining EM was used to confirm the formation of the CCK_BR-gastrin-17-G_q/G_{i2} 644 complexes. The protein quality of the complexes was evaluated by 200 kV cryo-EM. For 300 645 kV cryo-EM, 3 µl of protein sample (5 mg/ml) was applied to glow-discharged 300 mesh gold 646 grids (CryoMatrix M024-Au300-R12/13) and vitrified using a FEI Vitrobot Mark IV 647 (ThermoFisher Scientific), at 4 °C and 100% humidity with blot time of 1 s and blot force of 0 648 followed by flash-frozen in liquid ethane. Images were collected using a Titan Krios electron 649 microscope operated at 300 kV with a K3 Summit direct electron detector (Gatan) at a nominal 650 magnification of \times 81,000, corresponding to a pixel size of 1.045 Å. The slit width for zero 651 loss peak was 20 eV. Defocus values are ranged from -0.8 µm to -1.5 µm. Each movie 652 comprises 40 frames in a total of 3 s with 0.075 s exposure per frame, and the total dose is 70 653 electrons per Å². Automated single-particle data acquisition was performed with SerialEM⁴⁷. 654

Collected images of the CCK_BR-gastrin-17-G_q/G_{i2} complex samples were subjected to 655 beam-induced motion correction using MotionCor2. Contrast transfer function (CTF) 656 parameters for each image were determined by Gctf v1.18⁴⁸. Guided by a template generated 657 from initial auto-picking, the particles were extracted by auto-picking using both RELION3.149 658 659 and Gautomatch v0.56 (developed by K. Zhang, MRC Laboratory of Molecular Biology, Cambridge, UK, http://www.mrc-lmb.cam.ac.uk/kzhang/Gautomatch/). 2D classification, 3D 660 classification, 3D auto-refinement, Bayesian polishing and CTF refinement were performed 661 using RELION3.1. The resolutions of density maps were calculated by the gold-standard 662 Fourier Shell Correlation (FSC) using the 0.143 criterion. Local resolution estimation was 663 determined by ResMap v1.1.4. 664

For the CCK_BR–gastrin-17– G_q complex, a total of 5,625 images were collected, followed by beam-induced motion correction and CTF determination. All 3,632,729 particles were subjected to two rounds of reference-free 2D classification to discard false positive particles. An ab initio model generated by RELION3.1 was used as initial reference model for 3D classification. A subset of 418,664 particles were selected for another round of 3D classification that focused the alignment on the complex. The best-looking dataset of 354,647 particles were subjected to 3D auto-refinement, resulting in an initial 3.7 Å density map. A final 3.1 Å map was sharpened by postprocess with a B-factor of -75 Å².

For the CCK_BR–gastrin-17– G_{i2} complex, two datasets (6,471 images and 5,072 images) were collected and each dataset was individually subjected to beam-induced motion correction, CTF determination, auto-picking, 2D classification, 3D classification and 3D auto-refinement, resulting in initial 4.1 Å and 4.0 Å density maps, respectively. After separate Bayesian polishing, the two subsets (1,067,650 particles and 270,503 particles) were combined and subjected to another round of 3D auto-refinement. CTF refinement and postprocess with a Bfactor of –111 Å² were performed subsequently and result in a final 3.3 Å map.

680 Model building and refinement

681 The model of the CCK_BR-gastrin-17-G_q complex was built using the receptor from the CCK_AR-NN9056 crystal structure, the G_q from 25-CN-NBOH-HTR2A-mini G_q cryo-EM 682 structure (PDB: 6WHA) and YM-254890– G_q crystal structure (PDB: 3AH8), and the G β , G γ 683 and scFv16 from glucagon-GCGR-Gi cryo-EM structure (PDB: 6LML) as initial models, 684 respectively. The model of the CCK_BR–gastrin-17–G_{i2} complex was built using the receptor 685 from CCK_AR–NN9056 crystal structure and the G protein heterotrimer from the glucagon– 686 GCGR-Gi cryo-EM structure (PDB: 6LML) as initial models. Both models were docked into 687 the corresponding cryo-EM density map using ChimeraX v1.1⁵⁰, followed by iterative manual 688 adjustment in COOT⁴⁶ and real space refinement using phenix.real space refine in PHENIX⁴⁵. 689 The model statistics was validated using Molprobity. The final model of the CCK_BR-gastrin-690 17-Gi2 complex contains 275 residues of CCKBR (A55-L249, L326-C405), 217 residues of 691 $G\alpha_{i2}$ (K10–M53, T183–F355), 306 residues of $G\beta_1$ (N35–N340), 33 residues of $G\gamma_2$ (K29–F61) 692 and 17 residues of gastrin-17. For the CCK_BR–gastrin-17–G_a complex, the final model contains 693

275 residues of CCK_BR (A55-L249, L326-C405), 224 residues of Ga_q (A7-G58, G182-694 V353), 306 residues of G β_1 (N35–N340), 33 residues of G γ_2 (K29–F61), 232 residues of 695 antibody scFv16 (V19–S138, S153–L264), and 17 residues of gastrin-17. For both models, the 696 remaining N- and C-terminal residues of CCK2 and heterotrimeric Gi/Ga are disordered and 697 were not modeled. The final refinement statistics are provided in Extended Data Table 2. The 698 extent of any model overfitting during refinement was measured by refining the final model 699 against one of the half-maps and by comparing the resulting map versus model FSC curves 700 with the two half-maps and the final model. 701

702 Radiolabeled ligand-binding assay

The wild-type (WT) or mutant CCKRs were transiently transfected into HEK 293T cells 703 (purchased from the Cell Bank at the Chinese Academy of Sciences) which were cultured in 704 poly-D-lysine coated 96-well plates. Twenty-four hours later, the cells were washed twice and 705 incubated with blocking buffer (DMEM medium supplemented with 33 mM HEPES, and 0.1% 706 (w/v) BSA, pH 7.4) for 2 h at 37 °C. After three times washes by cold-ice PBS, the cells were 707 treated by a constant concentration of ¹²⁵I-CCK-8 (30 pM, PerkinElmer) plus 8 different 708 709 concentrations of gastrin-17 (128 pM-10 µM) for 3 h at room temperature (RT). Cells were washed three times with ice-cold PBS and lysed by 50 µl lysis buffer (PBS supplemented with 710 20 mM Tris-HCl and 1% (v/v) Triton X-100, pH 7.4). Subsequently, the plates were counted 711 for radioactivity (counts per minute, CPM) in a scintillation counter (MicroBeta² plate counter, 712 PerkinElmer) using 150 µl scintillation cocktail (OptiPhase SuperMix, PerkinElmer). 713

714

Inositol phosphate accumulation assay

Inositol phosphate accumulation was measured using an IP-One G_q assay kit (Cisbio Bioassays). The WT and mutant CCKRs were cloned into pTT5 vector (Invitrogen) and transiently transfected into HEK 293F cells. After 48 h expression, the cells were plated into 384-well plates (8,000 cells per well). For agonist effects, various gradient concentrations of

NN9056 or CCK-8 (1 pM to 10 µM diluted in stimulation buffer) were added and incubated at 719 37 °C for 1 h. IP1-d2 and anti-IP1 cryptate were then applied and incubated at RT for 1 h. For 720 antagonist experiments, 1 µM lintitript or 10 µM devazepide was introduced and incubated at 721 37 °C for 1 h followed by addition of different concentrations of NN9056 (10 pM to 100 µM 722 diluted in stimulation buffer) and 1 h incubation at 37 °C. Fluorescence signals were read by 723 Synergy H1 plate reader (Biotech) with excitation at 330 nm and emission at 620 and 665 nm. 724 The inositol phosphate accumulation curves, EC_{50} and $pEC_{50} \pm S.E.M$. were calculated using 725 nonlinear regression curve fitting in Prism 8. 726

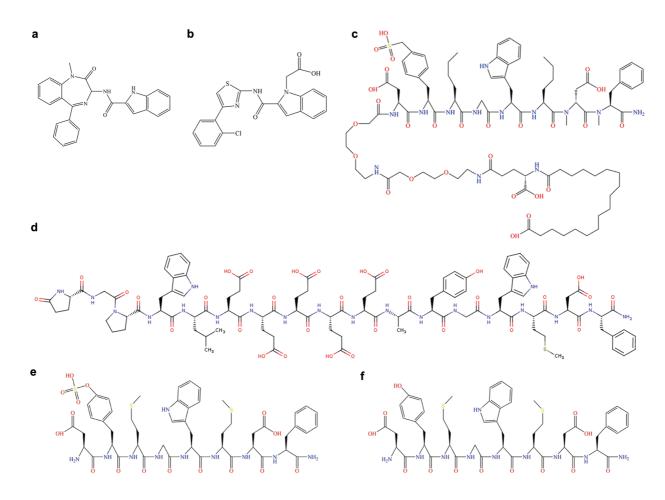
727 Molecular dynamics (MD) simulation

To simulate the CCK_AR in complex with CCK-8 in a no-fusion/no-mutation background, the 728 crystal structure of CCKAR-NN9056 was prepared by the Protein Preparation Wizard 729 (Schrodinger 2017-4). The initial conformation of CCK-8 with CCK_AR was constructed on 730 that of NN9056 by multiple rounds of single residue modification/mutation and energy 731 minimization using the Protein Preparation Wizard. Residues D87^{2.50} and E138^{3.49} were 732 protonated to simulate the protonation upon receptor activation while all other titratable 733 residues were left in their dominant protonation state at pH 7.0. The complexes were embedded 734 in a bilayer composed of 148 POPC lipids and solvated with 0.15 M NaCl in explicitly 735 represented water using CHARMM-GUI Membrane Builder⁵¹. The CHARMM36-CAMP 736 force filed was adopted for protein, peptides, lipids and salt ions, while the CHARMM TIP3P 737 model was chosen for water. Parameters for the sulfated tyrosine was generated using the 738 739 CHARMM General Force Field (CGenFF), program version 1.0.0. MD simulations were performed by Gromacs 2018.5. The Particle Mesh Ewald (PME) method was used to treat all 740 electrostatic interactions beyond a cutoff of 10 Å and the bonds involving hydrogen atoms were 741 constrained using LINCS algorithm. The constructed system was firstly relaxed using the 742 steepest descent energy minimization, followed by slow heating of the system to 310 K with 743

744	restraints. The restraints were reduced gradually over 18 ns, with a simulation step of 1 fs.
745	Finally, the system was run without restraints, with a time step of 2 fs in the NPT ensemble at
746	310 K and 1 bar using the v-rescale thermostat and the semi-isotropic Parrinello-Rahman
747	barostat, respectively. For each system, four independent 500 ns production simulations were
748	performed, and trajectory were saved every 50 ps.
749 750	Data availability
751	Atomic coordinates for the structures of CCKAR-lintitript, CCKAR-devazepide and CCKAR-
752	NN9056 have been deposited in the RCSB PDB under accession codes ####, ##### and #####.
753	Atomic coordinates and cryo-EM density maps for the structures of inactive CCK _B R-gastrin-
754	G_i and CCK_BR -gastrin- G_q have been deposited in the RCSB Protein Data Bank (PDB) under
755	accession codes #### and ####, and the Electron Microscopy Data Bank (EMDB) under
756	accession codes EMD-#### and EMD-####.
757	References
757 758 759	 References 42. Maeda, S. <i>et al.</i> Development of an antibody fragment that stabilizes GPCR/G-protein complexes. <i>Nature Communications</i> 9 (2018).
758	42. Maeda, S. <i>et al.</i> Development of an antibody fragment that stabilizes GPCR/G-protein
758 759	42. Maeda, S. <i>et al.</i> Development of an antibody fragment that stabilizes GPCR/G-protein complexes. <i>Nature Communications</i> 9 (2018).
758 759 760 761	 Maeda, S. <i>et al.</i> Development of an antibody fragment that stabilizes GPCR/G-protein complexes. <i>Nature Communications</i> 9 (2018). Kabsch, W. Xds. <i>Acta Crystallogr D Biol Crystallogr</i> 66, 125-132 (2010). McCoy, A.J. <i>et al.</i> Phaser crystallographic software. <i>J Appl Crystallogr</i> 40, 658-674
758 759 760 761 762 763	 Maeda, S. <i>et al.</i> Development of an antibody fragment that stabilizes GPCR/G-protein complexes. <i>Nature Communications</i> 9 (2018). Kabsch, W. Xds. <i>Acta Crystallogr D Biol Crystallogr</i> 66, 125-132 (2010). McCoy, A.J. <i>et al.</i> Phaser crystallographic software. <i>J Appl Crystallogr</i> 40, 658-674 (2007). Adams, P.D. <i>et al.</i> The Phenix software for automated determination of macromolecular
758 759 760 761 762 763 764 765	 Maeda, S. <i>et al.</i> Development of an antibody fragment that stabilizes GPCR/G-protein complexes. <i>Nature Communications</i> 9 (2018). Kabsch, W. Xds. <i>Acta Crystallogr D Biol Crystallogr</i> 66, 125-132 (2010). McCoy, A.J. <i>et al.</i> Phaser crystallographic software. <i>J Appl Crystallogr</i> 40, 658-674 (2007). Adams, P.D. <i>et al.</i> The Phenix software for automated determination of macromolecular structures. <i>Methods</i> 55, 94-106 (2011). Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. <i>Acta</i>
758 759 760 761 762 763 764 765 766 767	 Maeda, S. <i>et al.</i> Development of an antibody fragment that stabilizes GPCR/G-protein complexes. <i>Nature Communications</i> 9 (2018). Kabsch, W. Xds. <i>Acta Crystallogr D Biol Crystallogr</i> 66, 125-132 (2010). McCoy, A.J. <i>et al.</i> Phaser crystallographic software. <i>J Appl Crystallogr</i> 40, 658-674 (2007). Adams, P.D. <i>et al.</i> The Phenix software for automated determination of macromolecular structures. <i>Methods</i> 55, 94-106 (2011). Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. <i>Acta Crystallogr D Biol Crystallogr</i> 60, 2126-2132 (2004). Mastronarde, D.N. Automated electron microscope tomography using robust prediction
758 759 760 761 762 763 764 765 766 766 767 768 769	 Maeda, S. <i>et al.</i> Development of an antibody fragment that stabilizes GPCR/G-protein complexes. <i>Nature Communications</i> 9 (2018). Kabsch, W. Xds. <i>Acta Crystallogr D Biol Crystallogr</i> 66, 125-132 (2010). McCoy, A.J. <i>et al.</i> Phaser crystallographic software. <i>J Appl Crystallogr</i> 40, 658-674 (2007). Adams, P.D. <i>et al.</i> The Phenix software for automated determination of macromolecular structures. <i>Methods</i> 55, 94-106 (2011). Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. <i>Acta Crystallogr D Biol Crystallogr</i> 60, 2126-2132 (2004). Mastronarde, D.N. Automated electron microscope tomography using robust prediction of specimen movements. <i>Journal of Structural Biology</i> 152, 36-51 (2005). Zhang, K. Getf: Real-time CTF determination and correction. <i>J Struct Biol</i> 193, 1-12
758 759 760 761 762 763 764 765 766 766 767 768 769 770 771	 Maeda, S. <i>et al.</i> Development of an antibody fragment that stabilizes GPCR/G-protein complexes. <i>Nature Communications</i> 9 (2018). Kabsch, W. Xds. <i>Acta Crystallogr D Biol Crystallogr</i> 66, 125-132 (2010). McCoy, A.J. <i>et al.</i> Phaser crystallographic software. <i>J Appl Crystallogr</i> 40, 658-674 (2007). Adams, P.D. <i>et al.</i> The Phenix software for automated determination of macromolecular structures. <i>Methods</i> 55, 94-106 (2011). Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. <i>Acta Crystallogr D Biol Crystallogr</i> 60, 2126-2132 (2004). Mastronarde, D.N. Automated electron microscope tomography using robust prediction of specimen movements. <i>Journal of Structural Biology</i> 152, 36-51 (2005). Zhang, K. Getf: Real-time CTF determination and correction. <i>J Struct Biol</i> 193, 1-12 (2016). Zivanov, J. <i>et al.</i> New tools for automated high-resolution cryo-EM structure determination in RELION-3. <i>Elife</i> 7 (2018). Goddard, T.D. <i>et al.</i> UCSF ChimeraX: Meeting modern challenges in visualization and
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773	 Maeda, S. <i>et al.</i> Development of an antibody fragment that stabilizes GPCR/G-protein complexes. <i>Nature Communications</i> 9 (2018). Kabsch, W. Xds. <i>Acta Crystallogr D Biol Crystallogr</i> 66, 125-132 (2010). McCoy, A.J. <i>et al.</i> Phaser crystallographic software. <i>J Appl Crystallogr</i> 40, 658-674 (2007). Adams, P.D. <i>et al.</i> The Phenix software for automated determination of macromolecular structures. <i>Methods</i> 55, 94-106 (2011). Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. <i>Acta Crystallogr D Biol Crystallogr</i> 60, 2126-2132 (2004). Mastronarde, D.N. Automated electron microscope tomography using robust prediction of specimen movements. <i>Journal of Structural Biology</i> 152, 36-51 (2005). Zhang, K. Getf: Real-time CTF determination and correction. <i>J Struct Biol</i> 193, 1-12 (2016). Zivanov, J. <i>et al.</i> New tools for automated high-resolution cryo-EM structure determination in RELION-3. <i>Elife</i> 7 (2018).

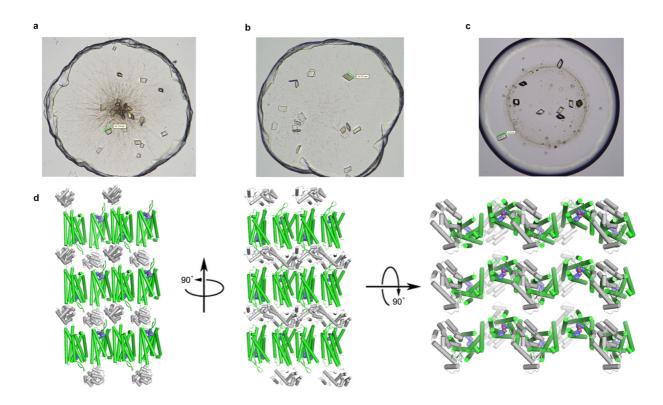
779 Acknowledgements

This work was partially supported by the National Key R&D Programs of China 780 2018YFA0507000 (H.X.X., S.Z., M.-W.W., B.W. and Q.Zhao); the National Science 781 Foundation of China grants 21704064 (Q.Z.), 81773792 and 81973373 (D.Y.), 31800621 782 (S.H.), 31770796 (Y.J.), 31971178 (S.Z.), 81872915 and 82073904 (M.-W.W.), 31825010 783 (B.W.) and 81525024 (O.Zhao); National Science and Technology Major Project of China -784 Key New Drug Creation and Manufacturing Program 2018ZX09735-001 (M.-W.W.) and 785 2018ZX09711002–002–005 (D.Y.); and CAS Strategic Prority Research Program 786 XDB37000000 (B.W.). The synchrotron radiation experiments were performed at the BL41XU 787 of SPring-8 with approval of the Japan Synchrotron Radiation Research Institute (Proposal no. 788 789 2019A2543, 2019B2543, 2019A2541 and 2019B2541). We thank the beamline staff members 790 K. Hasegawa, N. Mizuno, T. Kawamura, and H. Murakami of the BL41XU for help with Xray data collection. The cryo-EM data were collected at the Cryo-Electron Microscopy 791 Research Center, Shanghai Institute of Materia Medica (SIMM). The authors thank the staff at 792 793 the SIMM Cryo-Electron Microscopy Research Center for their technical support.


794 Author contributions

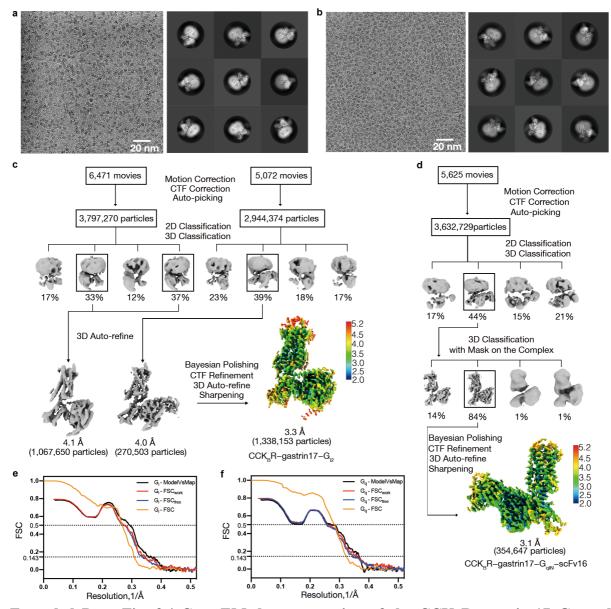
795 X.Z. optimized the construct, purified the CCK_AR protein, performed crystallization trials, solved the structure, performed signaling assays, and helped manuscript preparation. C.H. 796 optimized the construct, purified the CCK_BR protein, performed crystallization trials, solved 797 the structure, performed signaling assays, and helped manuscript preparation. M.W. processed 798 the cryo-EM data and solved the structures of CCK_BR. D.Y., W.F., A.D. and J.W. designed 799 and performed the receptor bingding and functional assays. Q.Z. performed molecular 800 801 dynamics simulation and docking studies, and helped manuscript preparation. Y.Z. helped signaling assay design and manuscript preparation. H.Z. collected X-ray diffraction data. X.C. 802

803	helped protein expression. Z.Y. participated in manuscript preparation. Y.J. solved the cryo-
804	EM structures of CCK _A R-G protein complexes. U.S. designed and synthesized the ligands.
805	Q.T. asissited in the cryo-EM data collection. S.H. helped structure determination. S.R. helped
806	ligand selection and data analysis. H.E.X. helped analysis of cryo-EM structures of CCK _A R-
807	G protein complexes and manuscript preparation. S.Z. oversaw molecular dynamics simulation
808	and docking studies, and edited the manuscript. MW.W. oversaw the binding and signaling
809	assays, and edited the manuscript. B.W. and Q.Zhao initiated the project, planned and
810	supervised the research, and wrote the manuscript with inputs from all co-authors.
811	Competing Interests statement


- 812 The authors declare no competing interests.
- 813 **Correspondence and requests for materials** should be addressed to S.Z., M.-W.W., B.W.
- 814 and Q.Z.

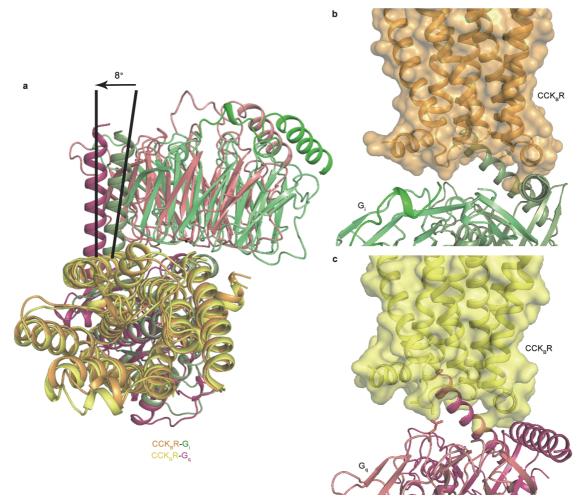
815 **Extended Data Figures**

Extended Data Fig. 1 | Structures of the ligands in the CCK_AR and CCK_BR complexes
and molecular dynamic simulations. a, Devazepide. b, Lintitript. c, NN9056. d, Gastrin-17.
e, CCK-8. f, CCK-8ns.


bioRxiv preprint doi: https://doi.org/10.1101/2021.05.19.444887; this version posted May 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

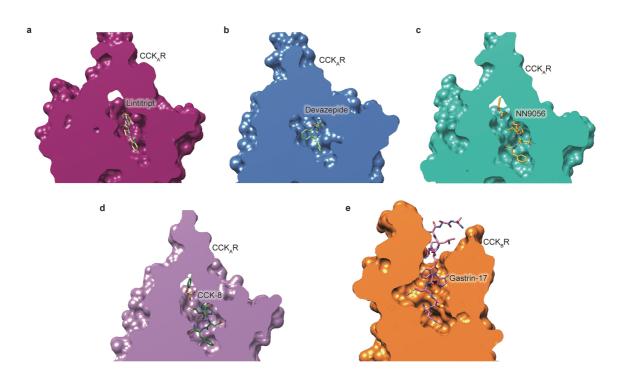
821 Extended Data Fig. 2 | CCK_AR crystals and lattice packing. a–c, Crystals of CCK_AR–T4L 822 in complex with devazepide (a), lintitript (b) and NN9056 (c). d, Lattice packing of CCK_AR– 823 T4L–devazepide crystals with CCKAR depicted in green, T4L in grey and devazepide shown 824 as spheres in blue. The main contacts contained nonpolar interactions among CCK_AR 825 molecules mediated by helices I and V and interactions between ECL2 and ECL3 of CCK_AR 826 and T4L. The packing patterns of CCK_AR–T4L–lintitript and CCK_AR–T4L–NN9056 are same 827 as CCK_AR–T4L–devazepide.

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.19.444887; this version posted May 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

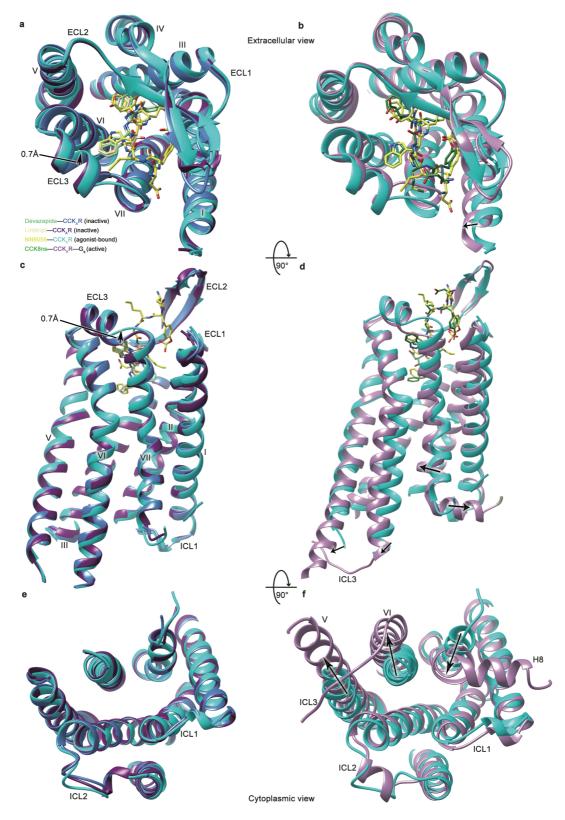


829 Extended Data Fig. 3 | Cryo-EM data processing of the CCK_BR-gastrin-17-G_i² and CCK_BR–gastrin-17–G_q complexes. a, Representative cryo-EM image and 2D averages of the 830 CCK_BR-gastrin-17-G_{i2} complex. b, Representative cryo-EM image and 2D averages of 831 CCK_BR–gastrin-17–G_q complex. c, Workflow of cryo-EM data processing with cryo-EM map 832 colored according to local resolution (Å) for the CCK_BR–gastrin-17–G_{i2} complex. **d**, Workflow 833 of cryo-EM data processing with cryo-EM map colored according to local resolution (Å) for 834 835 the CCK_BR-gastrin-17-G_q complex. e, Gold-standard FSC curve and cross-validation of model to cryo-EM density map of CCK_BR-gastrin-17-G_{i2}. FSC curves for the final model 836 versus the final map, FSCwork curve, FSCfree curve and FSC curves are shown in black, red, 837

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.19.444887; this version posted May 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.


blue and orange, respectively. **f**, Gold-standard FSC curve and cross-validation of model to

839 cryo-EM density map of CCK_BR -gastrin-17- G_{qiN} .


Extended Data Fig. 4 | G_{i2} and G_q binding comparison in the CCK_BR–gastrin-17 complexes. **a**, Superposition of the gastrin-17–CCK_BR– G_{i2} and gastrin-17–CCK_BR– G_q complex structures. The structures are aligned based on receptor region. The CCK_BR are shown in wheat and light orange cartoons for G_{i2} and G_q complexes. The G_{i2} trimers are shown in blue, slate and light blue cartoons, and the G_q trimers are shown in yellow, light yellow and limon cartoons, respectively. Side view of G_{i2} (**b**) and G_q (**c**) binding to the receptor from the same angle. The structures are colored according to panel (**a**).

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.19.444887; this version posted May 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

849

Extended Data Fig. 5 | Cut-view of orthosteric sites of CCK_AR and CCK_BR. a, CCK_AR–
lintitript. b, CCK_AR–devazepide. c, CCK_AR–NN9056. d, CCK_AR–CCK-8. e, CCK_BR–gastrin17.

Extended Data Fig. 6 | Comparison of the CCK_AR structures. Extracellular (top), side
(middle) and intracellular (bottom) views of agonist NN9056-bound (violet), antagonist-bound
(lime green for devazepide or pale green for lintitript), and both agonist and G protein bound

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.19.444887; this version posted May 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

857 (orange) CCK_AR structures. G proteins are omitted for clarity. Conformational changes are

858 indicated with black arrows.

860 861

	CCK _A R–devazepide ^a	CCK _A R–lintitript ^b	CCK _A R-NN9056°
Data collection			
Space group	$P2_1$	$P2_1$	$P2_1$
Cell dimensions			
a, b, c (Å)	54.8, 72.4, 86.1	54.4, 72.0, 86.0	56.6, 72.5, 87.9
α, β, γ (°)	90.0, 107.3, 90.0	90.0, 106.1, 90.0	90.0, 100.5, 90.0
Resolution (Å)	29.8-2.5 (2.64-2.50)	29.6-2.8 (2.95-2.80)	29.5-3.0 (3.16-3.00
R_{merge} (%)	18.1 (89.2)	19.0 (70.3)	20.6 (57.3)
Mean <i>I/oI</i>	5.0 (1.1)	5.2 (1.1)	4.5 (1.0)
Completeness (%)	98.2 (99.1)	97.5 (96.7)	97.1 (96.7)
Redundancy	4.8 (4.6)	4.1 (3.9)	4.4 (4.2)
Refinement			
Resolution (Å)	29.8-2.5	29.6-2.8	29.5-3.0
No. reflections	22,038 (1,618)	15,523 (1,158)	26,470 (1,931)
R_{work}/R_{free} (%)	0.209 / 0.264	0.234 / 0.250	0.216 / 0.265
No. atoms			
Protein	3,439	3,453	3,488
Ligand/ion	31	28	80
Average B-factors (Å ²)			
Protein	81.6	91.3	113.9
Ligand	69.2	79.7	102
R.m.s. deviations			
Bond lengths (Å)	0.008	0.010	0.008
Bond angles (°)	1.09	1.29	1.46

Extended Data Table 1 | X-ray data collection and refinement statistics of the CCK_AR– devazepide, CCK_AR–lintitript and CCK_AR–NN9056 complex structures

^a17 crystals were used for structure determination. Values in parentheses are for highest-resolution shell.
 ^b34 crystals were used for structure determination. Values in parentheses are for highest-resolution shell.
 shell.

^c44 crystals were used for structure determination. Values in parentheses are for highest-resolution shell.

<u>,</u>	Extended Data Table 2 Cryo-EM data collection and refinement statistics of the gastrin-	
,	17-CCK _B R-G _{i2} and gastrin-17-CCK _B R-G _q complex structures	

	CCK _B R–gastrin-17–G _{i2}	CCK _B R–gastrin-17–G _g
Data collection and processing	UNBN-gastrii-1/-Gi2	UNBN-gastill-1/-Oq
Data collection and processing	81.000	81.000
Magnification	81,000	81,000
Voltage (kV)	300	300
Electron exposure $(e^{-}/Å^2)$	70	70
Defocus range (µm)	-0.8 ~ -1.5	$-0.8 \sim -1.5$
Pixel size (Å)	1.045	1.045
Symmetry imposed	C1	C1
Initial particle projections (no.)	6,741,644	3,632,729
Final particle projections (no.)	1,338,153	354,647
Map resolution (Å)	3.3	3.1
FSC threshold	0.143	0.143
Map resolution range (Å)	2.5-5.0	2.5-5.0
Refinement		
Initial model used (PDB code)	CCK _A R–NN9056*	CCK _A R–NN9056*
	6LML	6WHA,3AH8,6LML
Model resolution (Å)	3.4	3.6
FSC threshold	0.5	0.5
Map sharpening B factor $(Å^2)$	-111	-75
Model composition		
Non-hydrogen atoms	6601	8486
Protein residues	848 (6601 atoms)	1087 (8486 atoms)
Receptor residues	275 (2128 atoms)	275 (2128 atoms)
G protein residues	556 (4340 atoms)	563 (4442 atoms)
Antibody residues		232 (1783 atoms)
Ligand residues	17 (133 atoms)	17 (133 atoms)
B factors $(Å^2)$		
Protein	57.08	62.02
Ligand	87.27	109.52
R.m.s. deviations	-	
Bond lengths (Å)	0.006	0.009
Bond angles (°)	0.986	1.589
Validation		
MolProbity score	1.63	1.74
Clashscore	7.36	8.93
Rotamer outliers (%)	0.00	0.00
Ramachandran plot	0.00	
Favored (%)	96.52	96.16
Allowed (%)	3.48	3.84
Disallowed (%)	0.00	0.00

Mutant	NN9056	NN9056/de	NN9056/devazepide ^a		NN9056/lintitript ^a		
Wittant	EC ₅₀ (nM)	EC ₅₀ (nM)	Ratio ^b	EC ₅₀ (nM)	Ratio ^b	(% of WT)	
Wild-type	13	1,235	98	770	61	100	
N98 ^{2.61} A	28	10,060	359	$/^{d}$	/	222 ± 8	
T117 ^{3.28} A	24	982	41	$/^{d}$	/	97 ± 6	
M121 ^{3.32} A	28	2,219	79	577	21	149 ± 8	
Y176 ^{4.60} A	5.3	1,942	366	602	116	41 ± 3	
F330 ^{6.52} A	5.4	198	37	393	73	43 ± 4	
N333 ^{6.55} A	8.7	324	37	84	10	123 ± 20	
R336 ^{6.58} A	19	710	37	151	8	139 ± 7	
L347 ^{7.30} A	26	2,090	80	280	11	49 ± 8	
I352 ^{7.35} A	10	816	82	289	29	134 ± 18	

Extended Data Table 3 | Effects of devazepide and lintitript on IP1 accumulation in wild type and mutant CCK_ARs

^aEC₅₀ values were determined after 1 h stimulation with increasing concentrations of NN9056 together with 10 μ M devazepide or 1 μ M lintitript. All values are performed at least three independent experiments performed in triplicate.

⁸⁷⁴ ^bThe EC₅₀ ratio represents the shift between NN9056 and NN9056 plus antagonist curve ⁸⁷⁵ ($EC_{50(NN9056+antagonist)}/EC_{50(NN9056)}$) and characterizes the antagonistic effect. A reduced EC₅₀ ⁸⁷⁶ ratio of mutant compared to the wild-type receptor was interpreted as important of the ⁸⁷⁷ respective antagonist.

⁶Protein expression levels of CCK_AR constructs at the cell surface were determined in parallel
 ⁶by flow cytometry with an anti-FLAG antibody and reported as percent compared to the WT

880 CCK_AR from at least three independent measurements performed in duplicate.

^dThe EC_{50} was not measured due to lack of interaction in the structure.

	Devazepide			Lintitript			
Mutant	IC ₅₀ (nM)	pIC ₅₀ ± S.E.M. ^a	Span (% WT) ^b	IC ₅₀ (nM)	pIC ₅₀ ± S.E.M.	Span (% WT)	
Wild-type	17.0	$\begin{array}{c} 7.77 \pm \\ 0.09 \end{array}$	100	14.2	7.85 ± 0.07	100	3
N98 ^{2.61} A	17.0	$\begin{array}{c} 7.77 \pm \\ 0.08 \end{array}$	66 ± 2	$/^{d}$	/	/	3
T117 ^{3.28} A	18.6	$\begin{array}{c} 7.73 \pm \\ 0.09 \end{array}$	147 ± 6	/	/	/	3
T118 ^{3.29} A	13.1	$\begin{array}{c} 7.88 \pm \\ 0.07 \end{array}$	105 ± 3	/	/	/	3
M121 ^{3.32} A	18.6	$\begin{array}{c} 7.73 \pm \\ 0.10 \end{array}$	175 ± 8	190.0	6.72 ± 0.07	160 ± 6	3
Y176 ^{4.60} A	n.a. ^e	n.a.	n.a.	n.a.	n.a.	n.a.	3
F330 ^{6.52} A	4.4	$\begin{array}{c} 8.36 \pm \\ 0.11 \end{array}$	87 ± 4	3.2	8.50 ± 0.08	87 ± 3	3
N333 ^{6.55} A	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	3
R336 ^{6.58} A	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	3
A343 ^{ECL3} W	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	3
E344 ^{ECL3} A	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	3
L347 ^{ECL3} A	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	3
I352 ^{7.35} A	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	3

Extended Data Table 4	Binding of devazepide and lintitript to wild-type (WT) and
mutant CCK _A Rs in comp	etition with ¹²⁵ I-CCK-8

^aData shown are means ± S.E.M. from at least three independent experiments performed in
 triplicate. Source data are provided as a Source Data file.

⁸⁸⁶ ^bThe span is defined as the window between the maximal ¹²⁵I-CCK-8 response (E_{max}) and the ⁸⁸⁷ vehicle (no ligand).

^cSample size; the number of independent experiments performed in triplicate.

^dThe IC₅₀ was not measured due to lack of interaction in the structure.

^eCannot be calculated due to poor binding of the corresponding mutant.

891

892	
893	

I352^{7.35}A

10

 7.99 ± 0.17

(WT) and	mutant (CCK _A Rs					
	NN9056 CCK-8						Expression ^d
Mutant	EC ₅₀ (nM) ^a	pEC ₅₀ ± S.E.M. ^b	Span (% WT) ^c	EC ₅₀ (nM) ^a	pEC ₅₀ ± S.E.M. ^b	Span (% WT) ^c	(% of WT)
Wild-type	13	7.90 ± 0.05	100	4.1	8.38 ± 0.05	100	100
N98 ^{2.61} A	28	7.56 ± 0.13	66 ± 4	56	7.25 ± 0.11	102 ± 5	222 ± 8
$K105^{\text{ECL1}}A$	8.4	8.08 ± 0.09	112 ± 4	2.6	8.58 ± 0.12	92 ± 4	162 ± 43
T117 ^{3.28} A	24	7.62 ± 0.11	77 ± 4	5.7	8.25 ± 0.12	63 ± 3	97 ± 6
M121 ^{3.32} A	28	7.55 ± 0.18	35 ± 3	5.5	8.26 ± 0.15	65 ± 4	149 ± 8
M121 ^{3.32} V	21	7.69 ± 0.60	15 ± 4	36	7.64 ± 0.36	40 ± 6	119 ± 13
M121 ^{3.32} L	9	8.05 ± 0.46	21 ± 4	120	6.92 ± 0.87	20 ± 8	120 ± 7
M121 ^{3.32} I	12	7.91 ± 0.18	54 ± 4	73	7.14 ± 0.24	63 ± 7	107 ± 21
Y176 ^{4.60} A	5.3	8.28 ± 0.13	67 ± 3	39	7.41 ± 0.15	56 ± 4	41 ± 3
$R197^{ECL2}A$	35	7.46 ± 0.10	115 ± 5	482	6.32 ± 0.15	106 ± 8	110 ± 16
W326 ^{6.48} A	6.9	8.16 ± 0.16	47 ± 3	13	7.88 ± 0.23	38 ± 4	26 ± 4
I329 ^{6.51} A	4.6	8.34 ± 0.13	63 ± 3	57	7.24 ± 0.17	71 ± 5	86 ± 4
F330 ^{6.52} A	5.4	8.27 ± 0.19	39 ± 3	6.8	8.17 ± 0.11	52 ± 2	43 ± 4
N333 ^{6.55} A	8.7	8.06 ± 0.07	91 ± 3	312	6.51 ± 0.09	79 ± 3	123 ± 20
R336 ^{6.58} A	19	7.78 ± 0.19	61 ± 5	556	$\boldsymbol{6.26\pm0.19}$	61 ± 6	139 ± 7
L347 ^{7.30} A	26	7.58 ± 0.14	59 ± 3	393	6.41 ± 0.12	64 ± 4	49 ± 8
S348 ^{ECL3} A	8.2	8.09 ± 0.15	49 ± 3	74	7.13 ± 0.13	51 ± 3	112 ± 7

Extended Data Table 5 | Effects of NN9056 and CCK-8 on IP1 accumulation in wild-type (WT) and mutant CCK_ARs

^aEC₅₀ values were determined after 1 h stimulation by increasing concentrations of NN9056 or
 CCK-8.

77

 7.12 ± 0.17

 59 ± 5

 134 ± 18

 59 ± 4

^bAll values are means ± S.E.M. from at least three independent experiments performed in
 triplicate.

⁸⁹⁸ ^cThe span is defined as the window between the maximal NN9056/CCK-8 response (E_{max}) and the vehicle (no ligand).

⁹⁰⁰ ^dProtein expression levels of CCK_AR constructs at the cell surface were determined in parallel

by flow cytometry with an anti-FLAG antibody and reported as percent compared to the WT

902 CCK_AR from at least three independent measurements performed in duplicate.

903]
904	(

Extended Data Table 6 | Binding of gastrin-17 to wild-type (WT) and mutant CCK_BRs in competition with ¹²⁵I-CCK-8

Mutant	IC ₅₀ (nM)	pIC ₅₀ ±S.E.M. ^a	Span ^b (% of WT)	N ^c
Wild-type	54.6	7.26 ± 0.06	100	5
T111 ^{2.61} A	62.3	7.20 ± 0.14	71 ± 4	4
T111 ^{2.61} N	32.2	7.50 ± 0.11	85 ± 4	4
S131 ^{3.29} A	47.1	7.33 ± 0.15	86 ± 6	4
M134 ^{3.32} A	78.0	7.11 ± 0.14	112 ± 7	4
Y189 ^{4.60} A	n.a. ^f	n.a.	n.a.	4
$H207^{\text{ECL2}}A$	n.a.	n.a.	n.a.	4
S219 ^{5.39} H	47.6	7.32 ± 0.25	52 ± 6	4
Y350 ^{6.52} A	42.7	7.37 ± 0.20	75 ± 7	4
R356 ^{6.58} A	n.a.	n.a.	n.a.	4
H364 ^{7.27} A	40.0	7.40 ± 0.22	67 ± 7	4
L367 ^{7.30} A	n.a.	n.a.	n.a.	4
S368 ^{7.31} A	6.5	8.19 ± 0.19	56 ± 5	3
I372 ^{7.35} A	n.a.	n.a.	n.a.	4
H376 ^{7.39} A	n.a.	n.a.	n.a.	5
Y380 ^{7.43} A	n.a.	n.a.	n.a.	4

^aData shown are means ± S.E.M. from at least three independent experiments performed in
 triplicate. Source data are provided as a Source Data file.

⁹⁰⁷ ^bThe span is defined as the window between the maximal ¹²⁵I-CCK-8 response (E_{max}) and the ⁹⁰⁸ vehicle (no ligand).

⁹⁰⁹ ^cSample size; the number of independent experiments performed in triplicate.

^fCannot be calculated due to poor binding of corresponding mutant.

911

912