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Abstract 

Solid-state NMR spectroscopy is a powerful technique to study insoluble and non-crystalline 

proteins and protein complexes at atomic resolution. The development of proton (1H) 

detection at fast magic-angle spinning (MAS) has considerably increased the analytical 

capabilities of the technique, enabling the acquisition of 1H-detected fingerprint experiments 

in few hours. Here an approach based on double-quantum (DQ) 13C spectroscopy, detected 

on 1H, is introduced at fast MAS (70 kHz) to perform the sequential assignment of insoluble 

proteins of small size, without any specific deuteration requirement. By combining two three-

dimensional 1H detected experiments correlating a 13C DQ dimension respectively to its 

intra-residue and sequential 15N-1H pairs, a sequential walk through DQ (Cα+CO) resonance 

is obtained. Our approach takes advantage of fast MAS to achieve an efficient sensitivity and 

the addition of a DQ dimension provides spectral features useful for the resonance 

assignment process. 

Introduction  

Solid-state nuclear magnetic resonance spectroscopy (SSNMR) is a powerful 

technique to study insoluble, aggregated or non-crystalline biomaterials, ranging from 

biopolymers ((Kelly et al. 2020), (Zhao et al. 2020),(Goldberga et al. 2018)), carbohydrates 

((El Hariri El Nokab and van der Wel 2020)), RNA (Ahmed et al. 2020) or membranes 

(Dufourc 2021),(Mallikarjunaiah et al. 2019) to larger systems such as protein 

complexes(Demers et al. 2018) large proteins  (Vasa et al. 2018)(Schütz 2021)),  protein-
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ligand interaction ((Vasa et al. 2019)(Elkins and Hong 2019),(Medeiros-Silva et al. 2019)), 

misfolded proteins (König et al. 2019), amyloid (Tycko 2016)fibrils ((Jaroniec 2019),(Loquet 

et al. 2018)), helical filaments (Habenstein et al. 2019), viruses (Lecoq et al. 2020), (Gupta et 

al. 2020), (Lu et al. 2020)), membrane proteins (McDermott 2009)(Tang et al. 

2013)(Mandala et al. 2018) or whole cells ((Narasimhan et al. 2020)). In the two past 

decades, structural investigation of biomolecules at atomic resolution by SSNMR has made 

dramatic analytical improvements with the introduction of direct proton (1H) detection(Ishii 

et al. 2001)(Reif et al. 2001)(Paulson et al. 2003)(Zhou et al. 2009) combined with the use of 

magic-angle spinning (MAS) probes operating at fast frequencies(Nishiyama 

2016)(Böckmann et al. 2015)(Cala-De Paepe et al. 2017)(Sternberg et al. 2018)(Xue et al. 

2018)(Ishii et al. 2018)(Schledorn et al. 2020), nowadays commercially available at MAS 

frequency of 60-110 kHz. 1H-detection takes advantage of the high gyromagnetic ratio of 

proton spins leading to an excellent sensitivity(Ishii et al. 2001)(Demers et al. 2011), together 

with the fact that 1H are highly abundant in biomolecules. Fast MAS probes require sub-

milligram sample quantities, and well-resolved 3D and 4D 1H-detected experiments of 

deuterated ((Knight et al. 2011)(Agarwal et al. 2014)(Fricke et al. 2017)) and fully protonated 

proteins ((Stanek et al. 2016)(Andreas et al. 2016)(Xiang et al. 2015)(Vasa et al. 2019) have 

been obtained for protein samples.  

Two-dimensional (2D) 1H-detected correlation experiments such as 2D 13C-1H spectra 

offer a powerful spectroscopic tool to monitor chemical shift perturbations. These spectral 

"fingerprints" have the potential to become the new routine experiment for SSNMR 

investigations of proteins, in analogy to the 15N-1H HSQC experiment for solution NMR, as 

we recently demonstrated to rapidly compare amyloid fibril conformation of various α-

synuclein fibril polymorphs based on 2D 15N/13C-1H spectra (De Giorgi et al. 2020). 

Although few minutes to hours are required to obtain these spectral fingerprints, a 

tremendous time is still required to perform the so-called resonance assignment step, usually 

based on 3D experiments to establish triple resonance connectivity’s between 1H, 13C and 15N 

atoms(Barbet-Massin et al. 2014)(Penzel et al. 2015)(Fricke et al. 2017). The assignment 

process relies on two main steps: first the identification of intra-residue signals including 

backbone and side chain atoms, and then the establishment of one or more sequential 

connectivity's between two adjacent residues in the sequence. These sequential assignment 

experiments have been designed to sequentially link intra (i) and proceeding (i-1) Cα, CO 

and Cβ nuclei in correlation with their 15N and 1HN backbone nuclei. The efficiency of these 
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experiments(Barbet-Massin et al. 2014) typically relies on the MAS frequency, the 

protonation level and the structural homogeneity of the samples. For protonated samples at 

100 kHz MAS, the backbone assignment can be extended with the set of 6 Hα-detected 

experiments(Stanek et al. 2016). The combination of both amide HN and CαHα-detected 

experiments can significantly simplify the sequential assignment procedure(Wiegand et al. 

2020)(Schubeis et al. 2020), even more by using HN / CαHα simultaneous acquisition 

(Sharma et al. 2020)(Stanek et al. 2020) as recently developed for automatic resonance 

assignment.  

 Several spectroscopic and biochemistry solutions have been developed to overcome 

the resonance assignment process, such as the use of higher spectral dimensionality (>3), 

however, it requires more experimental time in order to achieve a sufficient signal-to-noise 

ratio (SNR)(Xiang et al. 2014)(Fraga et al. 2017)(Zinke et al. 2017). Another solution is the 

use of non-uniform isotope labeling strategies to reduce the number of 1H and 13C sites, such 

as sparse(Higman et al. 2009), selective(Hoffmann et al. 2018) and segmental labeling 

schemes(Skrisovska et al. 2010). These methods can reduce the number of overlapping 

peaks, however additional steps of sample preparation are required, associated with extra 

costs.  

The uniqueness of 13C resonances (e.g. Cα of Gly, Cβ for Ala, Thr and Ser) offers 

one of the most valuable starting point for the identification of the residue-type, and another 

spectroscopic option to help the resonance assignment process is to decrease the peak overlap 

via the acquisition of the 13C dimension in the double-quantum (DQ) mode. To overcome 

peak overlapping, a better spectral dispersion can be created from the summation of different 

spectral regions, ideally in protein samples with Cα+Cβ and Cα+CO. Addition of a DQ 

dimension helps to increase the spectral dispersion of otherwise overlapping peaks(Luca and 

Baldus 2002)(Koźmiński and Zhukov 2004) in protein NMR spectra. The DQ dimension is 

achieved when the magnetization is excited and then back recovered to a zero quantum (SQ) 

mode using recoupling schemes. This approach has been implemented for dipolar- and 

scalar-based 2D(Lesage et al. 1997)(Hong 1999) and 3D spectra INADEQUATE-type 

experiments have been used to simplify the analysis of 13C-13C correlations(Luca and Baldus 

2002)(Chordia et al. 2021). Li et al(Li et al. 2020) recently reported the detection of DQ-SQ 

correlations with a 13C detection to increase the spectral resolution of side-chain carboxyl 

groups of Glu, Asp, Gln and Asn residues. Xiao et al (Xiao et al. 2021) applied Cα-Cβ DQ 

filtering for Ala, Thr and Ser residues to simplify the 2D and 3D 15N-13C-13CX experiments. 
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We (Tolchard et al. 2018) and others(Ward et al. 2011) took advantage of direct 1H detection 

to generate a 13C DQ dimension leading to an efficient polarization transfer for correlating 
13C to 1H spins in protein samples. In 2011, Ladizhansky and coworkers reported the use of 

3D DQ(CXCa)NH and DQ(CaCO)NH experiments at moderate MAS frequency (28 kHz) 

using a SPC-5 sequence on a deuterated membrane protein sample to help the backbone 

assignment process(Ward et al. 2011). In 2018 we demonstrated, in the case of a fully 

protonated protein amyloid fibril sample, that a 3D DQ(CXCY)CYH correlation experiment 

at 70 kHz MAS can provide an efficient strategy to detect side-chains 1H and 13C resonances 

(Tolchard et al. 2018). Because a single 3D experiment was developed in this previous study, 

the work only permitted a signal identification without the possibility to perform sequential 

assignment.  

In the following, we demonstrate the complete sequential resonance assignment of a 

medium-size protein assembly through the use of two DQ experiments to access intra-residue 

and sequential correlations, without a specific deuteration requirement. We take advantage of 

several spectroscopic features obtained at fast MAS (70 kHz) combined with the use of 1H-

detection to implement high sensitivity 3D correlation experiments using a 13C DQ 

dimension. Combination of DQ(CaiCXi)NiHi and DQ(COi-1Cai-1)NiHi experiments, 

complemented by a simple 3D CαNH, leads to a straightforward assignment process based 

on sequential (Cα+CO) plans. Our approach is demonstrated with the assignment of the 

amyloid fibrils HET-s in its fully protonated form. 

Materials and methods 
Sample preparation 

13C/15N-labeled, fully protonated HET-s(218-289) was expressed in E. coli, purified 

and aggregated based on previously described protocols (Balguerie et al. 2003). 

Approximately 800 µg of HET-s(218-289) amyloid fibrils were introduced in a 1 mm JEOL 

SSNMR rotor. The tripeptide N-formyl-L-Met-L-Leu-L-Phe (fMLF) was purchased from 

CortecNet and packed into a 1 mm JEOL ssNMR rotor. 

Solid-state NMR spectroscopy 

All spectra were recorded with a 21.1 T (900 MHz 1H Larmor frequency) JEOL 

spectrometer equipped with a 1 mm triple resonance HCN MAS probe. The sample 

temperature was kept at 290 K and the MAS frequency set to 70 kHz. For the BaBa 

excitation and recovery, we used 1.33 µs long pulses at 188 kHz for total of 457 µs. The 

detailed spectral acquisition and processing parameters are provided in Tables S2 and S3. 
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The spectra were processed using JEOL Delta and NMRPipe (Delaglio et al. 1995) software 

and analyzed using CcpNmr program (Vranken et al. 2005).  

 

Results and discussion 
Pulse sequence design 

Inspired by the work of Ladizhansky (Ward et al. 2011) and our work (Tolchard et al. 

2018), we propose two 3D SSNMR MAS experiments (the overall sequence shown in 

Fig.1A.) using DQ excitation and recovery using the back-to-back (BaBa)-xy16 

recoupling(Sommer et al. 1995) (Feike et al. 1996), considering that such recoupling is 

efficient at fast (>60 kHz) MAS regime(Saalwächter et al. 2011)(Tolchard et al. 2018). 

Moreover, the broadband performance of the BaBa coupling is proportional to the MAS 

frequency, making it particularly attractive under high B0 field at faster spinning frequencies. 

It is also robust to radio-frequency field inhomogeneity(Saalwächter et al. 2011) and provides 

high DQ filtering efficiency. During the BaBa recoupling the magnetization is transferred 

only between spatially proximate 13C spins via dipolar couplings due to dipolar truncation, 

since recoupled DQ Hamiltonians do not commute each other. Thus, the transfer will 

preferentially occur between covalently coupled 13C spins, making the BaBa recoupling a 

highly selective way to achieve polarization transfer between two carbon sites within the 

same residue.  We implemented BaBa recoupling in (i) a DQ(CaiCXi)NiHi sequence, which is 

detecting the 13C DQ dimension as the sum of (Cα+Cβ) and (Cα+CO) of intra residue and 

(ii) a DQ(COi-1Cai-1)NiHi, experiment which displays the sum of (Cα+CO) of the proceeding 

residue.  

 The overall structure for the DQ(CaiCXi)NiHi and DQ(COi-1Cai-1)NiHi 3D SSNMR 

pulse sequences with schematic magnetization pathways are shown in Fig.1B. Both 

sequences start with a cross-polarization (CP) transfer from 1H spins to either Cα or CO 

spins, depending on the placement of the frequency carrier, to provide a frequency-selective 

polarization on Cα and CO for the DQ(CaiCXi)NiHi and DQ(COi-1Cai-1)NiHi experiments 

respectively. The following 90o pulse is applied to create the longitudinal magnetization. The 

DQ coherence for the first dimension detection (t1) is generated using a BaBa-XY16 

excitation(Saalwächter et al. 2011). During this period, the signal can be acquired as the sum 

of (C+C) resonances, following two polarization patterns. In the DQ(CaiCXi)NiHi 

experiment, a DQ(CαiCXi) is generated to access the sum of Cα to both carbonyl (CO) and 

Cβ nuclei, in order to probe the intra-residue spin system. In the DQ(COi-1Cai-1)NiHi 
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experiment, a DQ(COCα) is generated to provide the sum of CO to the adjacent Cα. The 

reconversion is achieved through another block of BaBa recoupling. The 10 kHz CW 1H 

decoupling was applied during each BaBa 90o pulse and t1 and t2 acquisition periods. The 

subsequent 13C 90o pulse sets the magnetization back to transverse plane and it is transferred 

to 15N spins through a 13C-15N CP step, followed by the second dimension detection (t2). The 

next 15N 90o pulse sets the magnetization along longitudinal plane for the MISSISIPPI(Zhou 

and Rienstra 2008) water suppression and another 90o 15N pulse transfers the magnetization 

back to the transverse plane. In the last step, a 15N-1H CP step is applied to transfer the 

magnetization back to 1H spins for the direct detection (t3), applying a WALTZ16 

decoupling for 15N spins. The overall transfer steps can be written as  

𝐻
!"
𝐶𝛼!

!"!"
𝐷𝑄(𝐶𝛼 + 𝐶𝛽/𝐶𝑂)!(𝑡!)

!"
𝑁!(𝑡!)

!"
𝑁𝐻!(𝑡!) for 3D DQ(CaiCXi)NiHi and as 

𝐻
!"
𝐶𝑂!!!

!"!"
𝐷𝑄(𝐶𝛼 + 𝐶𝑂)!!!(𝑡1)

!"
𝑁!(𝑡!)

!"
𝑁𝐻!(𝑡! ) for 3D DQ(COi-1Cai-1)NiHi 

experiments. To obtain a selective polarization transfer to the adjacent carbon, a short mixing 

was chosen (229 µs) during the BaBa excitation. In this way, a selective DQ coherence is 

created to correlate Cαi to its neighboring Cβi and COi spins in the DQ(CaiCXi)NiHi 

experiment. In the DQ(COi-1Cai-1)NiHi experiment, the carbonyl COi-1 has only one 

neighboring carbon (i.e. Cαi-1). Both sequences were implemented in the same way, with 

only difference being the position of the frequency carrier for the first 1H-13C and second 13C-
15N CP transfer. Hence the optimized condition can be conveniently transferred between two 

sequences.  

Polarization transfer efficiency at fast MAS 

In order to estimate the polarization transfer efficiency of BaBa recoupling under 70 

kHz MAS, we compared 1D 1H spectra after a (1H-Cα)-1H and a (1H-Cα-BaBa-Cα)-1H 

polarization pathway respectively. We used the fully protonated protein HET-s(218-289) as a 

protein benchmark. HET-s(218-289) forms amyloid fibrils, this sample was already used by 

our laboratory to test pulse sequences at fast MAS regime(Stanek et al. 2016)(Tolchard et al. 

2018). From the overlay of spectra showed in Fig.S1, we determine that the DQ filter yields 

to 40% of intensity compared to the pulse sequence employing only CP transfers. This result 

is comparable to values obtained for other SSNMR homonuclear recoupling sequences (De 

Pape 2012).  

Next, we acquired 1D 1H spectra to evaluate the transfer efficiencies of 

DQ(CaiCXi)NiHi and DQ(CaiCXi)NiHi experiments for the fully protonated fMLF sample 

and HET-s(218-289) amyloid fibrils. We compared the two DQ-based sequence to well-

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 20, 2021. ; https://doi.org/10.1101/2021.05.19.444855doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.19.444855
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 7	

established hCaNH, hCONH hcoCacoNH, hCOcaNH and hcaCbcaNH experiments 

(described in details in (Barbet-Massin et al. 2014). To set up a reference for intensity 

comparison, we used a 1D hNH experiment. This experiment uses only two CP steps and was 

used before as the standard for the comparison of 1H detected spectra(Barbet-Massin et al. 

2014)(Andreas et al. 2015)(Xiang et al. 2015)(Vallet et al. 2020). The relative intensities of 

all experiments to the hNH experiment are summarized in Table S1. DQ(CaiCXi)NiHi and 

DQ(CaiCXi)NiHi experiments compared to hCaNH, hCOcaNH, hcaCbcaNH and hCONH 

experiment are summarized in Table 1. Each spectrum was adjusted based on the number of 

scans. As already observed for deuterated samples(Barbet-Massin et al. 2014)(Xiang et al. 

2015)(Penzel et al. 2015) the highest intensities is observed for the hCaNH experiment, 

leading to ~0.17 transfer efficiency compared to the hNH experiment for the fMLF sample. 

For deuterated back-exchanged protein samples at 40-60 kHz MAS, these values were 

higher, i.e. ~0.20-0.30 for hCaNH (Barbet-Massin et al. 2014)(Fricke et al. 2017)(Vallet et al. 

2020). These differences can be attributed to longer 13C and 1H T1ρ relaxation times for 

deuterated samples, leading to more efficient transfers and a higher proton sensitivity. Here, 

the use of the DQ filter leads to a remarkable polarization transfer efficiency compared to the 

well-established SQ experiments (Table 1), demonstrating the benefit of adding the BaBa 

excitation and reconversion recoupling schemes. The overall DQ(CaiCXi)NiHi and DQ(COi-

1Cai-1)NiHi experiments lead to a transfer efficiency of ~1.4-5% compared to the hNH 

experiment for both samples (Table S1). The DQ(CaiCXi)NiHi transfer efficiency to correlate 

intra-residue spins is ~0.31 compared to the hCaNH experiment for the fMLF sample. A 

similar result (~0.37) is obtained for HET-s(218-289) amyloid fibrils (Table 1). For the DQ 

experiment correlating COi-1 spins to its sequential NiHi pair, a polarization transfer 

efficiency compared to the hCONH experiment of 0.16 and 0.19 was measured for fMLF and 

HET-s(218-289) samples respectively (Table 1). For inter-residual Ca correlation DQ(COi-

1Cai-1)NiHi experiment is 0.25 and 0.44 less intensive compare to the hcoCacoNH sequence. 

The efficiency of the DQ(CaiCXi)NiHi to detect intra-residue CO is higher to the hCOcaNH 

sequence (Table S1), which is important experiment for sequential assignment, but is one of 

the least efficient of 3D assignment experiments (Barbet-Massin et al. 2014)(Penzel et al. 

2015). Thus, obtaining intra-residue CO chemical shift with a higher sensitivity is additional 

advantage for DQ(CaiCXi)NiHi sequence over INEPT based experiment. To estimate the 

efficiency of the DQ(CaiCXi)NiHi sequence to provide a polarization transfer to intra-residue 

Cβ spins, we compared to the hcaCbcaNH sequence, which has been reported as one of the 
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most sensitive sequence to detect Cβ spins(Penzel et al. 2015). The relative intensity of the 

hcaCbcaNH experiment was ~1% compared to a hNH experiment for HET-s(218-289) fibrils 

(~3% for fMLF). A relative intensity of ~5% for fMLF and HET-s(218-289) was obtained for 

the DQ(CαiCXi)NiHi sequence (Table S1). These values obtained here for protonated 

systems are lower to reported values obtained for deuterated proteins (6%-16%)(Barbet-

Massin et al. 2014)(Penzel et al. 2015)(Vallet et al. 2020), due to the shorter T2’ transverse 

relaxation times for protonated sample. The lower absolute sensitivity for hCOcaNH and 

hcaCbcaNH experiments is attributed to the relatively poor sensitivity of scalar-based CC 

transfers with multiple echo delays. However, this drawback is compensated by a more 

selective polarization transfer, as hCOcaNH and hcaCbcaNH are optimized to selectively 

target CO and Cβ spins respectively, while in DQ-based experiments a broader polarization 

transfer is obtained. 

 

Table 1. Relative intensity of 1D experiments recorded on fMLF and HET-s(218-

289) amyloid fibrils at 70 kHz MAS. 

Experiment comparison Relative intensity  

 fMLF HET-s(218-289) 

DQ(CaiCXi)NiHi / hCaNH 0.31 0.37 

DQ(COi-1Cai-1)NiHi / hCONH 0.16 0.19 

DQ(CaiCXi)NiHi / hCOcaNH  4.2 3 

DQ(COi-1Cai-1)NiHi / hcoCacoNH 0.25 0.44 

DQ(CaiCXi)NiHi / hcaCbcaNH 1.7 4.8 

 

Protein resonance assignment strategy using 13C DQ-detected experiments 

	 The resonance assignment strategy relies on the establishment of connectivities 

between intra-residue pairs (Cα-CO and Cα-Cβ) to their NH pair and between the (Cα-CO) 

pair to its sequential NH pair. To disentangle the SQ Cα chemical shift to the signal provided 

by the (Cα+Cβ) and (Cα+CO) DQ resonances, a single 3D hCaNH experiment is 

additionally required.	In the 3D DQ(CaiCXi)NiHi spectrum, each individual NH strip displays 

the sum of intra-residue (Cα+Cβ) and (Cα+CO) resonances. The Cβ(i) and CO(i) shifts can 

be calculated by subtracting Cα (i) shifts (acquired in hCaNH spectrum) from the additions 

of (Cα+Cβ) or (Cα+CO) DQ resonances. In this manner we can obtain the Cα, Cβ and CO 

triplet for the same residue. Then the 3D DQ(COi-1Cai-1)NiHi experiment provides the sum of 
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(Cα+CO) resonance of the proceeding i-1 residue and is matched to the sum of (Cα+CO) of 

intra-residue resonance. As a consequence, the difference of (Cαi+COi) and (Cαi+COi) 

resonances will result in a single Cαi-1 shift. In such manner, a sequential backbone walk is 

achieved by employing only three 3D experiments, which then give access to intra-residue H, 

N, Cα, Cβ and CO as well as Cα and CO chemical shifts of the proceeding residue.  

 

Completeness of the assignment strategy 

For the fMLF tripeptide, we assign all anticipated intra-residue and sequential 

correlations in the two 3D DQ-detected spectra (the 2D 1H-13C strips from 3D spectra are 

shown in Fig.2A). The assignment was confirmed with comparison of previously published 

chemical shifts for the fMLF peptide(Struppe et al. 2017). For the Cβ assignments in 2D 

strips of hcaCbcaNH spectrum we found 2 out for 3 expected peaks. The absence of Cβ peak 

for the Leu residue (Fig.2A), might be attributed to ongoing dynamics at different time scale, 

which can hinder the scalar coupling-based magnetization transfer. Leu Cβ spin is detected in 

the 3D DQ(CaiCXi)NiHi spectrum. Due to even lower sensitivity of 1D hcaCbcaNH 

experiment for HET-s(218-289) we didn’t acquired as 3D spectrum. For HET-s(218-289) the 

Cβ shifts were obtained solely from the DQ(CaiCXi)NiHi spectrum by subtraction of Cα 

shifts from the sum of (Cα+Cβ) peaks. 

Both DQ(CaiCXi)NiHi and DQ(COi-1Cai-1)NiHi experiments also provide a larger 13C 

connection maps compare to SQ 13C dimension experiments. The sequential backbone walk 

using 13C DQ experiments were conducted through 2D 1H-13C projections along 15N 

dimension of 3D DQ(CaiCXi)NiHi and DQ(COi-1Cαi-1)NiHi spectra in a combination with 3D 

hCaNH spectrum (Fig.2B). We use the 3D DQ(CaiCXi)NiHi spectrum to access (Cα+Cβ) 

and (Cα+CO) intra-residue correlations. In the 3D DQ(COi-1Cαi-1)NiHi experiment, the sum 

(Cα+CO) of i-1 peaks (blue peaks in Fig.2B) can be directly connected to (Cα+CO) of i 

residue (green peaks in Fig.2B). Interestingly, we noticed additional weak intensity peaks in 

2D planes of 3D DQ(CaiCXi)NiHi. These peaks perfectly matched the sum (Cα+Cβ) of the 

proceeding residue. Similar observation based on the observation of weak i-1 correlations has 

been described for solution NMR HNCa experiment(Kay et al. 1990). The origins of these 

unexpected peaks might be due to non-selective band excitation of BaBa recoupling 

(Fig.2B). As a consequence, the DQ coherence can spread to weakly coupled carbons 

through dipolar couplings. On one side, these additional peaks are reducing the peak 

intensities of intra-residue correlations due to dipolar truncation. On the other side, they 
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provide additional information to establish a sequential link. Overall the DQ(CaiCXi)NiHi and 

DQ(COi-1Cai-1)NiHi spectra showed expected intra-residue and sequential correlation for the 

fMLF peptide.  

 Next, we demonstrated the approach on a medium-size insoluble protein assembly, 

the amyloid fibrils of HET-s(218-289). At 70 kHz MAS, we measured a 1H line-width of 

~250 Hz on a 21 Tesla magnet (900 MHz 1H Larmor frequency) from a 2D hNH spectrum 

(Fig.S2). Such a 1H line-width is close to the value reported for the same fibrillar protein 

system acquired at 100 kHz MAS (at 1 GHz 1H Larmor frequency) (Stanek et al. 2016). We 

observed slightly lower signal intensities (compare to hNH) for 3D INEPT-based assignment 

experiments for HET-s(218-289) amyloid fibrils compared to the fMLF sample, due to 

additional relaxation effects that lead to less efficient polarization transfers. However, the 

overall intensity for the DQ(CaiCXi)NiHi experiment was comparable to fMLF and it was 

even higher for the DQ(COi-1Cai-1)NiHi experiment. It might indicate that both 13C DQ-based 

experiments are more prone to slower transverse relaxation times as present for the HET-s 

sample. An overlay of 2D DQ-13C/15N projections for 3D DQ(CaiCXi)NiHi and hCaNH 

experiments (Fig.3A) and DQ(COi-1Cai-1)NiHi and hCONH experiments (Fig.3B). All cross-

peaks in the 3D DQ-detected experiments are well spread out, and the inclusion of the Cβ 

resonances does not increase the spectral overlap since it is encoded via a DQ dimension. As 

a consequence, most (Cα+Cβ) resonances are spread around 85-130 ppm, and do not overlap 

with Cα signals (45-65 ppm). The lowest sum of (Cα+Cβ) peaks arise from Ala residues, 

hence they are shifted in the upfield part of the spectrum, around 70 ppm (Fig.3A). Gly 

residues, due to the absence of a Cβ atom, appear only as the sum of (Cα+CO) peaks 

(Fig.3B) shifted upfield (~ 45 ppm) compare to other DQ resonances. As expected, the most 

downfield shifted signals in (Cα+Cβ) region belong to Thr and Ser residues, due to their 

higher chemical shift values. All other residues have DQ resonances that appear in between 

the sum of (Cα+Cβ) resonances of Thr/Ser and Ala residues. We notice that for several 

aliphatic residues, resonances overlap in the hCaNH spectrum (red spectrum in Fig.3A), for 

instance residues 267V, 231I and 229K. This can cause additional ambiguities for the protein 

chemical shift assignment. In the DQ(CaiCXi)NiHi spectrum (green spectrum in Fig.3A) the 

DQ-detected resonance for the same residues were more clearly dispersed due to generated 

sum of (Cα+Cβ) resonance in the DQ 13C dimension. This spectral feature of DQ 13C-

detected experiments provides a similar advantage for the detection of  COi-1 resonances in 

DQ(COi-1Cai-1)NiHi compared to hCONH experiment (spectral overlay is shown in Fig.3B). 
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We employed a similar strategy, as previously described for the fMLF peptide, to carry out 

the sequential assignment of HET-s(218-289) resonances. The resonance assignment strategy 

on a protein sample is illustrated in Fig.3C. The 2D 1H-DQ13C strip plots along 15N 

dimension are particularly efficient to provide a sequential protein backbone assignment 

using combination of 3D DQ(CaiCXi)NiHi, DQ(COi-1Cai-1)NiHi and hCaNH experiments. 

Using this approach, we achieve the assignment of 87.5 % of backbone HN, 81.2 % of intra-

residue 13C and we establish a sequential connectivity for 87.5% of the residues in the rigid 

core of HET-s(218-289) amyloid fibrils. 

 One advantage of the DQ-based sequential backbone assignment is the requirement of 

a set of only three 3D experiments. The two 3D experiments (DQ(CaiCXi)NiHi and DQ(COi-

1Cai-1)NiHi) were recorded in 5 days and provided enough sensitivity and spectral dispersion 

to perform a de novo assignment (in combination with a hCaNH, which took 15 h to 

acquired) of fully protonated HET-s(218-289) amyloid fibrils.  The combination of both 3D 

DQ(CaiCXi)NiHi and DQ(COi-1Cai-1)NiHi spectra with hCaNH allows to identify backbone 

chemical shifts, to link sequential Cα-CO pairs and to detect intra-residue Cβ spins. 

Additionally, the approach artificially increases the 13C signal dispersion for otherwise 

overlapping peaks due to the DQ dimension. In order to cover the large chemical shift 

differences in the DQ 13C dimension, both DQ(CaiCXi)NiHi and DQ(COi-1Cai-1)NiHi 

experiments need however to be acquired with a sufficiently large sampling rates in the 

indirect DQ 13C dimension (details shown in Tables S2 and S3). In that regard, the number of 

scans for an adequate measurement time must be leveraged in order to achieve high enough 

SNR.  

 Completeness of the HET-s(218-289) resonance assignment using the DQ-detected 

approach was determined to be ~87 % of 13C, 15N and 1H resonances, considering the rigid 

residues of the amyloid core observable in a CP experiment. This result is comparable to 

previously reported resonance assignment strategies on the same protein using conventional 
13C-detected (Siemer et al. 2006b)(Van Melckebeke et al. 2010) and 1H-detected SSNMR 

experiments (Smith et al. 2017) (Tolchard et al. 2018) (Stanek et al. 2016). The missing 

residues in 1H detected spectra have been reported for other proteins(Torosyan et al. 

2019)(Jirasko et al. 2021). We hypothesize that these atoms are involved in a faster dynamic 

range that averages out dipole couplings and therefore weakens the CP transfer step. The 

access to these residues would be possible using INEPT or direct polarization during the first 
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magnetization initiation step as demonstrated by Meier and coworkers(Lange et al. 

2011)(Siemer et al. 2006a)(Siemer 2020).  

 

Conclusions 

In this study, we demonstrate the potential of introducing a 13C DQ dimension in 3D SSNMR 
1H-detected experiments at fast MAS to perform protein resonance assignment. The use of a 
13C DQ dimension using the Baba recoupling provides a remarkable sensitivity to achieve 
13C-13C polarization transfer at fast MAS (70 kHz) and increases the 13C spectral dispersion. 

The approach was demonstrated on fully protonated HET-s fibrils to access the detection of 
13C, 15N and 1H backbone spins, detect intra-residue Cβ, Cα, CO and sequentially link Cα-

CO pairs. For small-to-medium size proteins typically studied by SSNMR (i.e. ~30-100 

amino-acids detected in a CP experiment), the approach is a promising alternative to 

conventional out-and-back techniques using CC scalar transfers popularized by Pintacuda 

and coworkers(Barbet-Massin et al. 2013)(Barbet-Massin et al. 2014). The ever-increasing 

faster MAS frequencies in combination with higher magnetic fields will be also beneficial for 

DQ-based sequences, due to increased broadband range for the BaBa recoupling and longer 
13C and 1H T’2 relaxation times. Further on, we are going to expand 13C DQ sequences to 

combine them with Hα detection methods and implement them into automatic assignment 

programs. 
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Fig.1. A Pulse sequence of the 3D DQ(CaiCXi)NiHi, DQ(COi-1Cai-1)NiHi experiments. The 

initiation of corresponding polarization transfers are achieved through the carrier value of the 

first 1H-13C cross-polarization transfer. The applied phase cycling was executed with the 

following scheme Φ1={8(x), 8(-x)}, Φ2={x},Φ3={x}, Φ4={-x}, Φ5={x,-x,y,-y}, Φ6={x}, 

Φ7={-x}, Φ8={x}, Φ9={4(x), 4(y)},Φ10={x}Φ11={-y}, Φ12={16(x), 16(y)}, Φ13={x}, 

Φrec={2(x,y),2(y,x),2(y,x),2(x,y),2(y,x),2(x,y),2(x,y),2(y,x)}. B Schematic representation of 

the polarization transfer pathways and involved spins for DQ(CaiCXi)NiHi (green) and 

DQ(COi-1Cai-1)NiHi (blue) experiments. 
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Fig.2. 2D projections of 1H-detected SSNMR experiments recorded on fMLF. A the 

2D 1H-13C strips along 15N dimension for the 3D hCaNH (red), hCONH (cyan), hcoCacoNH 

(black), hcaCbcaNH (orange) and hCOcaNH (purple) spectra. B The 2D 1H-13C strips along 
15N dimension for the hCaNH (red), DQ(CaiCXi)NiHi (green) and DQ(COi-1Cai-1)NiHi (blue) 

spectra, the sequential backbone walk is shown with dotted lines. 

 
Fig.3. 2D projections of 1H-detected SSNMR experiments recorded on HET-s(218-

289) amyloid fibrils. A 2D 13C-15N projections of 3D DQ(CaiCXi)NiHi (green) and hCaNH 

(red) experiments, showing intra-residue Cα, CO, Cα+Cβ and Cα+CO correlations. The 

overlapping peaks in the N-Cα region is indicated with the dotted square. B 2D 13C-15N 

projections of DQ(COi-1Cai-1)NiHi (blue) and hCONH (cyan) experiments, showing the inter 
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residue CO and Cα+CO regions. C 2D 1H-13C strips along 15N dimension for the sequential 

backbone walk is shown with dotted lines. 
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