
 

Teledyne Confidential; Commercially Sensitive Business Data Teledyne Confidential; Commercially Sensitive Business Data 

Generative adversarial neural networks maintain decoder accuracy during signal 
disruption in simulated long-term recordings from brain computer interfaces   
 
Authors: 
 Thomas Stephens1,2, Jon Cafaro1,2, Ryan MacRae1, Stephen Simons1,3 

1) Teledyne Scientific & Imaging 
2) TS and JC contributed equally to this work 
3) Please address correspondence to stephen.simons@teledyne.com 
 
Author Contributions: 

TS led algorithm development and testing efforts; JC performed all simulations related 
to MEAs and contributed to algorithm development and testing; RM contributed to algorithm 
development, testing and infrastructure; SS conceptualized and supervised the study, 
contributed to algorithm development and performed all simulations related to ECoG. JC, TS 
and SS drafted the manuscript. 
 
Abstract: 
 Chronically implanted brain-computer interfaces (BCIs) provide amazing opportunities to 
those living with disability and for the treatment of chronic disorders of the nervous system. 
However, this potential has yet to be fully realized in part due to the lack of stability in measured 
signals over time. Signal disruption stems from multiple sources including mechanical failure of 
the interface, changes in neuron health, and glial encapsulation of the electrodes that alter the 
impedance.  In this study we present an algorithmic solution to the problem of long-term signal 
disruption in chronically implanted neural interfaces. Our approach utilizes a generative 
adversarial network (GAN), based on the original Unsupervised Image to Image Translation 
(UNIT) algorithm, which learns how to recover degraded signals back to their analogous non-
disrupted (“clean”) exemplars measured at the time of implant. We demonstrate that this 
approach can reliably recover simulated signals in two types of commonly used neural interfaces: 
multi-electrode arrays (MEA), and electrocorticography (ECoG). To test the accuracy of signal 
recovery we employ a common BCI paradigm wherein a classification algorithm (neural decoder) 
is trained on the starting (non-disrupted) set of signals. Performance of the decoder 
demonstrates expected failure over time as the signal disruption accumulates. In simulated MEA 
experiments, our approach recovers decoder accuracy to >90% when as many as 13/ 32 channels 
are lost, or as many as 28/32 channels have their neural responses altered. In simulated ECoG 
experiments, our approach shows stabilization of the neural decoder indefinitely with decoder 
accuracies >95% over simulated lifetimes of over 1 year. Our results suggest that these types of 
neural networks can provide a useful tool to improve the long-term utility of chronically 
implanted neural interfaces. 
 
Introduction: 

Implantable neural interfaces have been used experimentally in animal models and 
medically in humans to support brain-computer interfaces (BCIs).  These interfaces record neural 
activity and then typically try to decode its meaning to control external devices. For example, 
neural activity measured in the motor cortex of a man with tetraplegia has been used to guide a 
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computer cursor and robotic arm. More broadly, many diverse goals can be served by developing 
the ability to measure and accurately decode neural activity [1] . Neural decoder training requires 
measuring responses to large-scale, labeled training sets, making it a laborious and costly process 
[2, 3]. To avoid repeating this process, decoders would ideally be trained using neural activity 
measured shortly after the neural interface is implanted and then, have their trained parameters 
fixed for long-term decoding. However, long-term decoder functionality is undermined by 
changes in the neural activity measured by the BCI [4] . The failure of BCI decoders to function 
long-term significantly limits their utility in real-world applications. In this paper we describe an 
algorithmic approach to correcting these changes in the observed neural activity in simulated 
chronic recordings across two different types of neural interfaces.   

Changes in the neural activity measured on a BCI are caused both by biological and 
material changes and will depend on the type of BCI used. Two common implantable devices 
used for BCIs are multielectrode arrays (MEAs) and Electrocorticography (ECoG) arrays. MEAs are 
often implanted on the cortical surface of the brain and can measure action potentials (spikes) 
from local populations of neurons. Spikes measured on each electrode, or assigned to individual 
neurons, are often decoded by their event frequency in peristimulus time histograms (PSTHs). 
The observed spikes measured with MEAs can change for many reasons including: electrode 
malfunction or movement, local neuron death or adaptation [5-18]. These changes can lead to 
disruption of the observed stimulus responses that include electrode channels that are lost 
entirely or more subtle differences in the stimulus-specific spike rates. In contrast to MEAs, ECoG 
arrays do not measure spikes from individual neurons but instead measure correlated neural 
activity from large populations of neurons in local field potentials (LFPs). LFPs measured from 
ECoG can change their power spectrum over time, caused by changes in electrode impedance 
[19, 20] and cortical adaptation [21, 22]. Changes in the measured LFPs and PSTHs often preserve 
decodable information but cannot be decoded by the previously trained decoder because the 
information has moved to a new signal domain. To maintain the decodability of signals 
chronically in the neural interface, we treat the problem as a domain translation problem. The 
objective of our approach is the unsupervised remapping or translation of “disrupted” signals to 
their original “clean” domain before application of an existing trained decoder. 

Remapping across data domains has been successfully accomplished using generative 
adversarial networks (GANs) [23]. GANs are a class of machine learning (ML) networks that can 
generate data with similar statistics to their training set. Previous work demonstrated use of a 
GAN to perform unsupervised image-to-image translation (UNIT) and successfully mapped image 
data from one domain to another (e.g. satellite to street-map images)[24] . The UNIT architecture 
uses a pair of autoencoders to learn the statistics of the individual data domains, and a shared 
latent space to facilitate cross-domain translation. Conceptualizing clean and disrupted BCI data 
as distinct dataset domains, we modified a UNIT architecture to remap disrupted BCI data back 
to the clean data domain in order to prevent decoding errors. To preserve the decodable 
information, the network must remap the disrupted data while maintaining its true stimulus 
identity (i.e. “class”). To reliably maintain class identity, we apply new objective training functions 
and post-training network selection criteria to the UNIT architecture. We call the networks 
developed to remap the BCI data, Adversarial Networks for Neural Interfaces (ANNI).  

ANNI was trained and tested using simulated data recordings from MEAs and ECoG arrays 
before and after disruption. A neural decoder was fit to each clean dataset and then tested after 
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disruption, either with or without prior remapping using ANNI. In the absence of ANNI, the neural 
decoders exhibit large drops in decoder performance with even relatively small data disruptions 
which are characteristic of failure modes in chronically implanted neural interfaces. However, 
following remapping with ANNI, decoder performance is significantly increased, often attaining 
accuracy equal to the clean data. Our results suggest ANNI’s potential to maintain decoder 
performance and extend the functionality of BCIs for long-term use.  
 
Methods: 
MEA simulation 
 We use a simple model that mimics the key components of neural responses recorded 
from an MEA (Figure 1). The model simulates a set of neurons with diverse stimulus responses. 
First, the response of a single neuron is determined by its response probability to a given 

stimulus. Response probabilities were determined by heterogenous gaussian tuning curves. The 
tuning curves’ mean and standard deviations (SDs) were randomly selected within the stimulus 
range (for mean) or half the stimulus range (for SD). The tuning curves generate response 
probabilities for each neuron from stimuli values defined in time (400 ms with 1 ms sample rate). 

 

Figure 1. A neural model was used to simulate PSTH datasets that were disrupted via 
channel drop or swap. (A) 32 different tuning curves (6 shown) describe the response probability 
for a particular stimulus value. Stimuli are static in time at 1 of 20 stimulus values. Variability is 
injected both in the Poisson generation of spike times and added directly to the PSTH. Thus, 
PSTHs variably encode 1 of 20 different stimulus values. (B) Two different models were used to 
simulate neural disruption. In an example of disruption, PSTHs have either 20 channels dropped 
or 20 channels swapped. Noise on all PSTHs, including disrupted PSTHs, is independent. 
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The stimuli in these experiments were static in time at 1 of 20 different values evenly distributed 
across the stimulus range. This process generates temporally constant response probabilities. 
Second, response probabilities were used to generate spikes using a Poisson process to simulate 
noise in spike generation [2]. Third, spikes counts were binned (100 ms bins), generating 32x4 
bin PSTHs (# channels x # time bins). Finally, a second additive noise source was added to the 
PSTHs. The additive noise had a SD of 10% of the PSTH mean and all resulting PSTH values below 
zero were rectified at zero. This process generated 5000 PSTH trials encoding 20 different 
stimulus classes. 
 
MEA disruption simulation 
 Recovery was tested from channel drop-out (drop) or neuron drop-in (swap) disruption 
models. In the drop-out model of neural disruption, each degradation step was defined by the 
loss of an entire electrode channel, which is simulated by zeroing out all time bins in the PSTH for 
that particular channel in all samples. This loss is cumulative across the multiple degradation 
steps such that at step 16, half of the channels contain only zeros. In contrast, a degradation step 
in the drop-in model was defined by a change in the stimulus response at an existing channel in 
the set. The stimulus response change was modeled as a 10% positive or negative shift in the 
tuning curve mean (relative to the entire stimulus range) and an increase or decrease in the 
tuning curve SD of 2x the original SD. Both models mimic common types of disruptions in MEA 
recordings and are illustrated by examples in Figure 1B. 
 
ECoG simulation 
 We model ECoG at the level of the LFP signal observed at the electrodes rather than the 
underlying activity of neurons. The reason for this is that forward models of observed activity at 
the ECoG sensor derived from the underlying neuron populations will be specific to the neural 
subsystem being measured (e.g. somatosensory vs visual cortex) as well as the type and density 
of neural array. By simulating a more generic LFP signal and noise, we sidestep the 
implementation of more complex physical models required for simulating neuronal activity and 
point spread functions to approximate specific population responses (i.e.[25, 26]) while still 
replicating the fundamental signal qualities of ECoG reported in the literature (e.g. the frequency 
spectra, amplitude and noise characteristics)[20, 22, 27, 28]. 
 To model ECoG, we assume that the basic time-domain response at any electrode 
(channel) will have an S = 1/F distribution in the time-frequency domain, where S is the signal at 
a given channel and F is frequency in hertz. This spectral distribution is well characterized for 
ECoG [27, 28]. We further assume that because ECoG samples from a large cortical territory that 
responses will have spatial heterogeneity. Based on examples in the literature we also assume 
that changes in the observed ECoG signal that are relevant for decoding typically manifest 
themselves as changes in lower frequency oscillations when averaged over multiple samples [20]. 

We simulated LFP signals on an 8x8 mECoG array. A given stimulus (class) is instantiated 
with a series of signal inputs. Each signal input requires selecting a channel, frequency, phase, 
time (within the 1s signal window), and amplitude of sinusoidal input. The final parameter 
controls the spatial distance between electrodes in the array. In practice we simulate this with a 
unit grid (1mm spacing) and scale the modulating input strength as a function of the distance 
from the center locus of the modulating input. Each modulating input is added to the 1/F noise 
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at the appropriate channels to produce a spatiotemporal pattern of activity that serves as the 
starting stimulus class template. Any of these parameters can be manipulated to investigate a 
different aspect of the model (i.e. array size, frequency of signal inputs etc.). In practice, we have 
used the following parameters to produce a reasonable sample set: # of signal inputs per stimulus 
class = 5, frequency range = 3:12 Hz, phase = randomly assigned, amplitude = 1/F, time = 
randomly assigned. An example of the appearance of these simulated data is shown in Figure 2.  
 

 
ECoG disruption simulation 
 As described above, the primary source of disruption on ECoG is changes in electrode 
impedance. These changes are particularly egregious during the first 75 days after implant and 
lead to dramatic changes in the variance and resulting spectral power of signals. We use the 
linear model fits established by Ung et al. to establish the degree to which changes manifest in 
each spectral band of the signal over the first 100 days [21]. These changes range anywhere from 
-0.013 to -0.003 per day depending on the spectral band and the individual from the study.  

To simulate changes in spectral power over time we simply need to know the length of 
time since implant. Changes in expected signals are then computed by applying a discrete Fourier 
transform to each time-domain signal (e.g for each electrode channel and sample), applying a 
transform function to the signals in Fourier space with the appropriate frequency band 
coefficients [21], and then using an inverse Fourier transform to restore the signals to the time 
domain. Beyond the first 100 days after implant, the interface stabilizes somewhat and the day-
to-day or week-to-week changes in signal strength are confined to a narrower operating range 
[21]. In our simulations we model this operating range as +/- 20% of the stable signal strength 

 

Figure 2. Sample simulated ECoG signals show typical time frequency signal and noise 
characteristics.  (A) A single sample of 64 channels and 64 time bins (128 Hz sampling). Signals 
have been normalized across the entire set from 0:1 for use in neural network training. Signals 
are barely visible embedded in 1/F noise patterns on each channel. (B) Grand average of 25 
samples produces easily recognizable signals on channels 10, 12, 32, and 40 which make up the 
identity for this signal class. 
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beyond day 100. These fluctuations are generated randomly and drawn from a gaussian 
distribution centered at 0% signal change at each time step within the allowable bounds.  

The second form of simulated disruption is cortical adaptation. Adaptation refers to 
changes in the neural responses themselves as the brain learns to more efficiently utilize the 
interface. The use of ECoG in chronic recordings and brain computer interfaces (BCIs) is limited 
currently and has restricted the study of adaptation to only a few studies. Those studies suggest 
that cortical adaptation manifests primarily as an increase in the amplitude of these signals over 
time [29]. We allow the signals to adapt continuously over the simulated lifetime of the implant 
in the following way. At each time point in the simulation (10 day steps), we allow 20% of the 
modulatory input signals to adapt, selected at random. Each time a signal adapts it can increase 
or decrease its amplitude by 10-20% prior to accounting for the impedance change. The reason 
for including a long-term depression (signal decrease) mechanism in our simulations was to 
prevent signal saturation over the longer simulation times (e.g. 360 days). We adapt signals at 
each time point (every 10 days for a total of 36) in the simulation and signals can be adapted 
multiple times over the time steps. The absolute magnitude of possible decrease or increase in a 
signal is capped at 70 – 150% of its starting amplitude over the lifetime of the simulation. The 
result is a set of signals that continuously change their absolute and relative magnitude to each 
other over the lifetime of the simulation.  
 
ANNI System Overview 

Figure 3 illustrates the concept of operation for ANNI. Clean signals corresponding to 
many distinct neural activity patterns are simulated and used to train a neural decoder. 
Subsequent signals corresponding to the same activity patterns become disrupted over time, as 
discussed above. For each disrupted dataset the ANNI system trains multiple recovery models, 
each attempting to recover the disrupted dataset back to its clean state. The reason to train 
multiple1  recovery models on the same dataset is that we have observed high variance in the 
performance of recovery across random weight initializations and hyperparameters. For each 
dataset, the model exhibiting the highest decoder entropy is selected as the best model and is 
immediately applied to incoming neural signals. 

 Entropy-based Model Selection  
As there are no class labels on incoming, disrupted signals, it is impossible to directly 

assess the recovery of any given signal. We observed that low performing models often lead to 
decoding fewer class types (e.g. through mode collapse), generating less uniform predicted class 
distributions. The uniformity may be quantified by the decoded class entropy (see Figure 4). 
Given a set of possible classes is C, the decoded class entropy H is computed as a sum over each 
class c ∈ C.  

H =∑(p(c) ∗ log2 p(c))

c∈C

  

where p(c) is the area-normalized histogram of the decoder class predictions. This criterion 
assumes that the set of sampled disrupted data contains a representative sampling of the various 

 
1 Up to four models with relatively large datacollects of 5,000 samples can train simultaneously on a single GPU 

(NVIDIA GTX 1080 or better) within an hour or two. Signal array size and network architecture are the most important 

factors to training time. 
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classes. However, in practice, other selection criteria such as matching recovered signal variances 
(to clean signals) has worked nearly as well. It is important to note this metric does not need 
ground truth on the class prediction. 

 

The strong correlation between high decoder entropy and high decoder accuracy at the 
population level enables the selection of top performers from among multiple models trained to 
recover the same set back to clean. Figure 4 shows the relationship between decoder entropy and 
decoder accuracy at the population level – where the population spans the intermediate states 
of network weights during the training of a single model. The correlation across models each 
starting from different initial weight initializations and hyperparameters enjoys the same shape 
as the trend in Figure 4. Thus, our entropy-based selection criteria is used not only to select the best 

stopping point for a given model during its training, but also to select the best overall model from 

any number of trained models at a given disruption level. 

 
Model Continuation  

The model selected to recover the current disrupted dataset may also succeed at 
recovering subsequent disrupted datasets. Thus, we re-submit the previous recovery model for 
entropy selection with the batch of models trained on the current disruption dataset. In this way, 
a single previously-trained model could outperform all current models and continue onward 
indefinitely (we occasionally see single models win out over several disruption steps in our 
experiments). Our results in Sections 4 & 5 include recovery using the model continuation 
paradigm. 

 

Figure 3. ANNI System Overview. Today’s collected neural recordings are used to train multiple 
recovery models each attempting to do the same thing – return today’s signals to their 
undisrupted counterparts. Multiple models are trained due to the high variance in remapping 
performance. An entropy-based model selection criterion identifies the best among multiple 
models, and the best model is then applied to incoming neural recordings. As new neural 
recordings are collected, the former best model (yesterday’s best model) is allowed to compete 
with newly-trained models. All results reported in Sections 4 & 5 are discussed in the context of 
this competitive model continuation paradigm. 
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Signal Recovery as Domain Adaptation 

The key insight of our machine learning signal recovery approach is recognizing that 
having access to clean neural recordings sets up a domain adaptation problem from disrupted 
recordings back to their clean state. The key challenge of signal recovery (or domain adaptation) 
in our setting is to be able to recover individual disrupted neural recordings from an unknown 
class to their non-disrupted counterparts that are decodable into the correct class by the neural 
decoder. We base our approach on the UNIT architecture [24] but alter the training objectives to 
achieve  unsupervised and class-dependent domain adaptation needed in the present context. 
This results in an algorithm that differs from UNIT and other current multi-modal unsupervised 
domain adaptation approaches [30, 31] in that the resulting class of the transformed signal 
matches the incoming signal’s class, without having knowledge of the identity of the incoming 
class beforehand. It is important to note that while any level of disruption affects the same 
channels of the interface (across all class signals), it is also the case that the  information in each 
signal class will be disrupted in a different way depending on whether that channel carries 
information that is relevant to its class identity. That is, the same channel disruption affects each 
signal class differently. This means that ANNI cannot perform a single domain transfer, but 
instead must perform a class-dependent transformation. For example, it is not enough for the 
algorithm to learn to transform photographs of both buildings and landscapes into the style of 
Monet – rather ANNI must learn to transfer buildings into Monet and landscapes into Seurat. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. High decoder entropy is well correlated with high decoder accuracy. Each point on 
this plot is (normalized) decoder entropy vs decoder accuracy at a single epoch during the 
training of a single recovery model. Because our paradigm assumes no ground-truth class labels 
during training, we must use a surrogate metric to evaluate recovery performance. In order to 
identify the network state that yields the highest accuracy model, we select the network weights 
from the epoch corresponding to the highest decoder entropy. 
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This represents a more challenging problem than what has been demonstrated with current 
unsupervised domain transfer algorithms. 

 
Architecture Rationale 

We adopt the system architecture presented in UNIT because it is a composition of 
several well-understood neural network modules designed to enable simple, flexible, and 
intuitive information flow during training and subsequent application. The architecture is 
illustrated in Figure 5 and consists of two encoder/decoder pairs, one pair forming an 
autoencoder for clean data and the other pair forming an autoencoder for disrupted data. Both 
encoders project their incoming signals into a shared latent space, presenting the opportunity to 
encourage the alignment of the latent code of an undisrupted signal and the latent code of its 
disrupted counterpart. Additionally, the architecture includes two discriminators (from the GAN 
paradigm) that present the opportunity to recover disrupted signals without a non-disrupted 
counterpart. This is essential because any non-disrupted portions of subsequently recorded 
signals will not match any previously collected signal due to natural variability in neural 
responses. The generator portion of the GAN analogy is realized by passing a disrupted signal 
through the encoder EncB and reconstructing the signal from the latent code zB using DecA. The 
result xBA ≔ DecA(EncB(xB)) must match the statistical properties of the non-disrupted signals. 
The non-disrupted discriminator will not enforce the class alignment in the non-disrupted signal 

 

Figure 5. ANNI Neural Network Architecture. Dataset 𝑨 contains clean neural signals and 
dataset 𝑩 contains subsequently-recorded, disrupted signals. The inputs 𝒙𝑨 and 𝒙𝑩 are unpaired 
individual clean and disrupted samples. Encoders embed their respective inputs into the latent 
space 𝒛. Each decoder can operate on any point in the space 𝒛 in order to reconstruct a signal of 
type 𝑨 in the case of 𝑫𝒆𝒄𝑨 and of type 𝑩 in the case of 𝑫𝒆𝒄𝑩. The latent representation of the 
sample 𝒙𝑩 that is decoded by 𝑫𝒆𝒄𝑨 results in the (fake) domain adapted signal 𝒙𝑩𝑨. Each signal 
type has a discriminator that is trained to separate autoencoded signals from domain 
adaptations. 
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space – that ability comes from two cycle consistency constraints (discussed below). The 
architecture is symmetric about the datasets in the sense that passing a signal xB from dataset 
XB has a counterpart action that begins with passing a signal xA from the dataset XA. 

The neural network topologies we used for encoders and decoders were feed-forward, 
ReLU networks with dropout between layers. We did not apply activation functions or dropout 
in the final layer of the encoder in order to maintain a maximally expressive latent space, and we 
did not apply dropout before the final layer of the decoder in order to enable the greatest fidelity 
in reconstructed signals. Network topologies were fully-connected for spiking interfaces where 
there is no assumption of spatial correlation in signal space and convolutional networks were 
used for ECoG arrays since spatial correlation in those signal spaces may exist (particularly for 
mECoG where adjacent electrodes in the grid are separated by small distances). Discriminator 
networks were feed-forward, ReLU networks with a Sigmoid applied to the output layer, having 
either fully-connected or convolutional topology, again depending on the modality. Each 
discriminator operated on the signal space and produced a scalar output between 0 and 1, where 
DiscA(x∗)  >  0.5 is interpreted as ‘real’, or having come from the data collection, and 
DiscA(x∗)  <=  0.5 as ‘fake’, or having come through the recovery pathway DecA(EncB(xB)). 
 The architecture in [24] employed weight sharing in later encoder layers as well as in early 
decoder layers.  We experimented with weight sharing in the encoder and observed no benefit. 

Training Objectives Rationale 
Here we introduce the three categories of training objectives and their corresponding 

network weight updates in the order in which they are performed. For all weight updates we use 
PyTorch’s AdamW optimizer. 

The significant difference between ANNI and the UNIT algorithm is evident here: UNIT 
uses statistical divergences in the latent space for both the autoencoding training objective 
(standard VAE) and in the cycle consistency training objectives, and ANNI does not. The reason 
for the difference is that, in our multi-class context, we have found that it is essential that each 
class is encoded into its own distinct region in the latent space in order to ensure that disrupted 
signals recover into the class that they correspond to. With ground-truth knowledge of signal 
class one could adopt statistical divergences conditioned on class in order to achieve the benefits 
of the VAE while also separating classes in the latent space (C-VAE literature), but this required 
class information is not available in our application.  
 
Autoencoder updates  

The mapping xAA ∶=  DecA(EncA(xA)) is interpreted as a reconstructing autoencoder (as 
is DecB(EncB(xB))).  
Loss function(s): We apply the signal reconstruction losses  

LAE(EncA, DecA) ≔  L1(xA,  xAA) 
LAE(EncB, DecB) ≔  L1(xB,  xBB) 

Weight updates: We update the weights in EncA and DecA based on the reconstruction loss 
LAE(EncA, DecA), and similarly we update the weights in EncB and DecB using the reconstruction 
loss LAE(EncB, DecB).  
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The purpose of these autoencoder training steps is to independently establish expressive feature 
extractors for non-disrupted and disrupted signals, as well as to establish capable decoders to 
independently reconstruct signals from the latent space.  
 
Discriminator and Generator updates 

The discriminator and generator are trained in alternating steps. The first step updates 
each discriminator to learn the difference between incoming signals and recovered or artificially 
disrupted signals.  
Loss function(s): We apply Binary Cross-Entropy as the training objective  

LDisc(DiscA) ≔ BCE(DiscA(xA), 1) + BCE(DiscA(xBA, 0)) 
LDisc(DiscB) ≔ BCE(DiscB(xB), 1) + BCE(DiscB(xAB, 0)) 

Weight updates: We update only the weights in the discriminators DiscA and DiscB at this stage. 
The second step updates the generators, which form the recovery pathway and the 

artificial disruption pathway. The recovery pathway is defined as xBA ∶=  DecA(EncB(xB)) and 
the artificial disruption pathway is xAB ∶=  DecB(EncA(xA)). We consider these to be 
‘generative’ processes since the resulting signal is only statistically related to signals collected 
from the BCI, and has no counterpart in either dataset to match to. 
Loss function(s): The adversarial loss for generators captures the extent to which the generator 
is fooling the discriminator.  
LGen(GenBA) ≔ BCE(DiscA(xBA), 1)            recovery pathway 
LGen(GenAB) ≔ BCE(DiscB(xAB), 1)            artificial disruption 
Weight updates: We update only the weights in the generator pathways at this step. The loss 
LGen(GenBA) is used to update the networks EB and DA, while the loss LGen(GenBA) is used to 
update the networks EA and DB. 

The purpose of interpreting the recovery (and artificial disruption) pathway as generator, 
and guiding that generator using a discriminator, is to obtain a non-disrupted representation of 
each incoming neural recording that is statistically similar to the non-disrupted dataset. This does 
not solve the class matching problem, which we address that with Cycle Consistency and an ad-
hoc drift penalty. This stage also includes an ad-hoc penalty on the dynamic range of the 
generator’s output. We have found, as is typical in many classification problems, that our 
discriminators are very tolerant of variance in the dynamic range of their inputs. Because we are 
trying to satisfy an arbitrary neural decoder, we aim to reconstruct disrupted signals as faithfully 
as possible. To this end we introduce: 
Loss function(s): We apply the following signal-space penalties: 

Ldynamic_range(XA) ≔ |max(xA) − max(xBA) |
2 

Ldynamic_range(XB) ≔ |max(xB) − max(xAB) |
2 

Weight updates: We update weights in encoders EncA, EncB and decoders DecA, DecB at this 
stage. 
 
Cycle Consistency updates  

Cycle consistency describes the ability to accurately reconstruct a single incoming signal 
by first transferring it across one domain, and then transferring the result across the other 
domain. In symbols, starting with a single disrupted signal and finishing with what should be a 
very similar signal, this appears as 
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xB  
EncB
→   zB

DecA
→    xBA

EncA
→    zBA

DecB
→   xBAB  

As pointed out by [24],  two cycle consistency measures can be made from a single input xB  – 
one in the latent space: d(zB, zBA), and one in the signal space: d(xB, xBAB), where d is some 
distance metric. (Note: UNIT does not compare zB to zBA directly, rather they use the KL-
divergence between a batch of latent vectors {zB} and the standard normal distribution, as well 
as the batch of latent vectors {zBA} and the standard normal distribution.) 
Loss function(s): We apply loss functions in the latent space as well as in the signal space: 

Lcycle_latent(XA) ≔ MSE(zA, zBA) 

Lcycle_latent(XB) ≔ MSE(zB, zAB) 

Lcycle_signal(XA) ≔ L1(xA, xABA)  

Lcycle_signal(XB) ≔ L1(xB, xBAB)  

Weight updates: We update only the weights in the encoders EncA and EncB at this stage.  
The importance of cycle consistency in our context is the opportunity it provides to align 

the latent representation of non-disrupted signals with disrupted signals from the same class. 
Cycle consistency itself does not guarantee class alignment alone, as seen by the following 
scenario that we encounter in the training and evaluation of ANNI. Below we introduce the 
recovery drift penalty Ldrift to mitigate the undesirable class-swapping problem. 

Example (class swapping): Suppose xB is from signal class 1, and consider the signal xBAB 
that is the result of the cycle mapping of xB that is drawn above. The training objective 
Lcycle_signal(XB) is a signal-space comparison between xB and xBAB, which implies that 

the optimized network will produce an xBAB signal most similar to the class of its starting 
signal, which in this case is class 1.  
A problem can and does occur for the intermediate state xBA of this cycle mapping – it 
may happen that either EncB: xB ↦ zB encoded into to the wrong region in latent space, 
or that  DecA: zB ↦ xBA decoded into the wrong the class. In these scenarios, the training 
objective can still be fully optimized by guiding the second half the cycle mapping 

xBA
EncA
→   zBA

DecB
→   xBAB to undo the class switch.  

We call this class swapping and we have observed near-perfect signal recovery from very 
severe disruptions where the class identities of the recovered signals were a permutation 
of the class identities of the disrupted signals. This problem manifests visually as a 
permutation of the columns of a confusion matrix computed from the neural decoder’s 
classification of recovered signals xB.  

 
To directly address the class swapping problem, we penalize deviation in signal space 

between the input signal and the recovered (symmetrically the artificially disrupted) signal. The 
intuition here is that disrupted signals are closer to non-disrupted signals of the same class than 
they are to non-disrupted signals of any other class.  
Loss function(s): The following signal-space penalties are applied during training: 

Ldrift(AB) ≔ L1(xA, xAB) 
Ldrift(BA) ≔ L1(xB, xBA) 

Weight updates: We update weights in encoders EncA, EncB and decoders DecA, DecB at this 
stage. 
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Training 

The system is trained using two datasets: XA consisting of unlabeled non-disrupted neural 
recordings from many classes (up to 20 in our simulations); and XB consisting of unlabeled 
disrupted neural recordings from the same signal classes as XA. No pairing of samples is possible 
in this setting. Batches of sample pairs ({xA}, {xB}) are randomly drawn and used to feed the 
network mappings described in Section 0 over anywhere between 100 and 1000 epochs. 

We consider our training to be complete when the decoder entropy on the disrupted set 
of signals is at a maximum (taken over some reasonable, pre-defined number of epochs). 
Decoder class entropy is computed at the end of each training epoch by collecting the neural 
decoder prediction of each recovered neural signal xBA, recovered from the set XB.  Figure 4 
shows a typical history of decoder entropy along with the decoder accuracy during the epoch 
training of a single model. As decoder accuracy on disrupted signals is not accessible at all during 
the training and operation of ANNI, decoder entropy is a valuable surrogate.  
 
Application of a trained model 

Signal recovery is the raison d’être of the ANNI system. The simplest application of a 
trained ANNI model is to pass each incoming, presumably disrupted, neural recording xB 
corresponding to a class that is decodable by the neural decoder into the recovery pathway: 

xBA = DecA(EncB(xB)) 
This signal is then available to be passed directly to the neural decoder as the next step in 
actualizing the intended benefit of the BCI. 
 
Results: 
 
MEA dataset decoder recovery 
 MEA recordings can be disrupted either by losing neuron channels completely 
(“dropped”) or by changes in the neuron channels (“swapped”). Increasing the number of 
dropped or swapped channels increases the chances for decoder error and increases the 
challenge of data recovery. Thus, ANNI’s ability to recover decoder accuracy was tested using 
datasets with increasing numbers of dropped or swapped channels of PSTH data. For each 
disrupted dataset, 5-10 different ANNI recovery models were trained and one model was 
identified using the entropy selection criteria (see Methods). Recovery was tested at the same 
level of disruption the model was trained, but selected models are also placed into competition 
with newly trained models at the subsequent disruption step. 

ANNI recovered MEA datasets had significantly higher decoder accuracy than 
unrecovered drop-out datasets. Decoder accuracy on unrecovered disrupted data decreased 
with the number of MEA channels dropped (red points and line). In contrast, decoder accuracy 
varied widely for ANNI recovered data (grey points), even for the same models instantiated with 
different random seeds. However, recovered datasets from entropy selected models (blue 
circles) outperformed the majority of models and outperformed the unrecovered data in almost 
all datasets. Indeed, ANNI recovered datasets, maintained decoder accuracy >90% in all datasets 
with as much as 13 of 32 channels dropped. In the majority of cases newly trained models 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2021. ; https://doi.org/10.1101/2021.05.18.444641doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.18.444641
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Teledyne Confidential; Commercially Sensitive Business Data Teledyne Confidential; Commercially Sensitive Business Data 

outperformed previously selected models but in five cases the previously selected model was 
selected again (blue lines). Similar results were observed when the neurons’ tuning curves and 
order of channels dropped was changed (data not shown).  

 
ANNI was also successful in recovering data when MEA channels were swapped instead 

of dropped (see Figure 6). Similar to decoder performance when MEA channels were dropped, 
decoder accuracy on unrecovered data decreased with the number of channels swapped (red 
points and line) and varied widely for recovered datasets (grey points). However, recovered 
datasets using entropy selected models (blue circles) outperformed the unrecovered data in all 
tested disrupted datasets. ANNI recovered datasets maintained decoder accuracy >90% in 21 of 
31 datasets. Notably, ANNI recovered a dataset to >90% accuracy with 30 of 32 channels 
swapped and an unrecovered decoder accuracy near 20%. Similar results were observed when 
the neurons’ tuning curves, the order channels swapped and the direction of swap (e.g. increase 
vs. decrease in tuning width) was changed. These results illustrate ANNIs potential to recover 
neural data from a range of disruption types and datasets. 
ECoG dataset rescue 
 We have tested the ability to recover from ECoG disruption simulated at 10-day 
increments from 10-360 days. Figure 7 shows the performance of ANNI across the simulated 
lifetime of a chronic implant. The red dashed line indicates the performance of the decoder on 
the raw degraded data and shows how quickly the accuracy degrades in the first 100 days. 
Consequently, this is the reason why many investigators using chronically implanted ECoG do not 

 

Figure 6. The decoder accuracy of recovered datasets from selected ANNI models substantially 
outperforms most unrecovered datasets and non-selected ANNI models. (A) Decoder accuracy 
declines with the number of dropped channels in the unrecovered PSTH datasets (red lines). The 
decoder accuracy of datasets recovered with ANNI models (grey points) is highly variable but 
entropy-selected models (blue circles) generate some of the highest decoder accuracies of all 
possible models. Blue lines are shown when a previously selected model was maintained as the 
highest entropy model on the subsequent disruption step. (B) Similar results are observed with 
swapped disruption.  
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train neural decoders until after the first 70-100 days when signals have stabilized. From this 
point, variability is observed in the accuracy of the decoder reflective of the random changes in 
signal strength over the remainder of the days after implant. The gray dots at each assessed time 
point indicate multiple ANNI models which were trained/tested for their accuracy but not 
selected by our current model selection criteria, decoder entropy (see Methods), as the model  
that was used. The blue circles 
indicate decoder performance 
on the selected ANNI models 
(automated entropy criteria). 
ANNI nearly completely 
restores the performance of 
the decoder at every time 
point after implant. At most 
time points our model 
selection criterion selects the 
best model and, in all cases, it 
selects models in the top 3% of 
trained models. ANNI is 
incredibly successful at signal 
rescue in these interfaces. The 
success likely stems from the 
fact that the information 
contained in the signals is 
relatively stable, although the 
SNR is highly variable across 
samples. These shifts in signal 
amplitude, even when 
experienced unevenly, are 
possible to translate back with 
relative ease by the algorithm.  
 
Discussion: 

We have developed a GAN based network, ANNI, to maintain decoder stability during 
signal disruption. While adapted from a UNIT architecture, ANNI was modified in several 
important ways to remap neural signals from the disrupted to clean domains without loss of 
“class” information that would cause errors in the neural decoder. Most prominently, ANNI does 
not utilize a variational autoencoder (VAE) but uses a cycle-consistency latent space training 
objective that encourages data from different domains but the same “class” to map consistently 
in the latent space. We note that the maintenance of “class” identity across domain remapping 
is similar to the maintenance of “content” across “style” domains performed by MUNIT, itself a 
derivation of the UNIT architecture [30]. While similar in function, ANNI is less complex in 
structure (e.g. ANNI uses a single shared latent space) and we are encouraged by ANNI’s 
performance remapping the simulated BCI data. 

 

Figure 7. ANNI consistently restores signals to improve 
decoder accuracy in the face of catastrophic and serial 
disruption. The red dotted line shows the performance of the 
decoder on the raw degraded data at each step (decoder 
trained at day 0). The blue markers/line show the performance 
of data pushed through selected recovery models. Model 
selection done using previously described criterion of entropy. 
Gray dots indicate performance of trained but unselected 
recovery models. 
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ANNI demonstrated the ability to recover decoder performance from two different 
simulated types of BCI with distinct types of signal disruption. ANNI was able to maintain decoder 
performance near 100% accuracy when 13/32 recording channels were dropped or 27/32 
channels were swapped. Without intervention from ANNI, dropping 13/32 or swapping 27/32 
caused the decoder performance to fall near 10% and 30% respectively. With minor changes to 
the network, ANNI was adapted to remap simulated ECOG data instead of MEA data. In the case 
of simulated ECOG signals, ANNI-rescued data maintained decoder performance near 100% 
accuracy, while decoder performance on control disrupted signals fell below 20%. These results 
demonstrate ANNI’s potential to maintain decoder accuracy in distinct BCI types during diverse 
signal disruptions. Below, we put these results into context of other techniques designed to 
maintain BCI decoder accuracy and suggest future directions to utilize ANNI. 

ANNI and other recent techniques to stabilize BCI decoders leverage the inherent stability 
of low-dimensional BCI data. BCI data is often high-dimensional, having many recorded channels 
and time bins. However, while neural measurements are often high-dimensional, the information 
can be well represented in a low-dimensional space [32]. ANNI effectively learns low-dimensional 
representation of both the clean and disrupted neural data by training a set of autoencoders with 
a limited latent space to reproduce the data. Further, the successful remapping across data 
domains relies on the similarity between disrupted and clean latent representations. Thus, ANNI 
relies on the fact that while the high dimensional neural measurement may be significantly 
changed by the disruption, its lower dimensional representation often remains stable. Other 
work has leveraged lower dimensional representations of neural data to increase BCI stability 
[33-35]. Most notably, Degenhart and colleagues used low-dimensional manifold representation 
of BCI data to maintain stability in the face of BCI signal disruptions [34]. Similar to ANNI, 
manifold-based stabilization was successful in promoting decoder stability via a low-dimensional 
representation but differs significantly from ANNI in important ways. First, unlike ANNI, the 
manifold alignment requires methods for identification of stable electrodes and linear manifolds. 
On the other hand, ANNI requires decisions on network options, as exemplified by distinct 
networks for MEA and ECOG datasets, and post-training selection criteria. While we found 
success using the described networks and entropy selection criteria, we do not rule out possible 
improvements with other choices. Additionally, the decoder used by Degenhart and colleagues 
was trained to latent space representation, thus coupling the BCI decoder to the manifold-based 
stabilization algorithm. In contrast, ANNI recovers signals to the original BCI input space, thus 
allowing ANNI to be used with any decoder trained on the original BCI data with limited or no 
knowledge of the decoder itself. Thus, while ANNI leverages the stability of low-dimensional 
representation of BCI signal, similar to other stability algorithms, there are important differences 
in how these low-dimensional representations are found and utilized.    

Beyond algorithms to improve fixed decoder stability, recent work has developed 
techniques to minimize the time and effort necessary to retrain a BCI decoder [36-39]. These 
techniques show significant improvements over previous training regimes but may still require 
significant user engagement [34]. However, because ANNI does not alter the signal structure 
from the BCI (e.g. number of channels or time bins) it can be incorporated with other techniques. 
Thus, techniques to speed retraining of BCIs could use ANNI to further minimize the error and 
user time involved in retraining the decoder or BCI user. 
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While the experiments described above demonstrate ANNI’s potential to successfully 
maintain BCI decoder accuracy, there are several important experiments needed to confirm 
ANNI’s utility. First, ANNI must be tested with non-simulated longitudinal BCI data and a fixed 
decoder. While the simulated BCI data used in this paper was designed to mimic key aspects of 
MEA and ECOG measurements, neural responses are often highly complex (e.g. firing rate and 
correlation structure temporal dynamics) and differ greatly across brain region; Such diversity 
and complexity was not necessarily captured by our simulated data. Second, ANNI’s training 
limitations must be better assessed. The experiments described above trained ANNI with 5000 
samples of clean and disrupted data. Depending on the rate of disruption and data collection, 
such large sample numbers may not always be practical. While pilot experiments on BCI data 
from rats suggest ANNI can perform successfully outside of our simulated datasets, these 
experiments need to be more rigorously tested. 

While more work needs to be done to confirm ANNI’s utility we are encouraged by the 
results reported in this paper. BCI technology and decoder performance has greatly improved 
since early experiments but its practical utility remains substantially limited in large part due to 
the instability of the BCI and decoder. ANNI provides a potential path to prolong BCI functionality 
and enable its growing role in therapeutic intervention.   
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