Dependable Algorithm for Visualizing Snoring Duration through

2 Acoustic Analysis

- 3
- 4 Hsueh-Hsin Kao^{1, 2}, Yen-Chang Lin³, Yee-Hsin Kao⁴, Madan Ho³, Hsiao-Chen Yu³,
- 5 Chun-Lung Wang^{5,6*}, Jui-Kun Chiang^{7*}
- 6
- ⁷ ¹Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University,
- 8 Kaohsiung 807, Taiwan
- 9 ²Department of Laboratory Medicine, Kaohsiung Medical University Hospital,
- 10 Kaohsiung 807, Taiwan
- ¹¹ ³Nature Dental Clinic, 341, Sec. 3, Zhongshan Rd., Puli Township, Nantou 545,
- 12 Taiwan
- 13 ⁴Department of Family Medicine, Tainan Municipal Hospital (Managed by Show
- 14 Chwan Medical Care Corporation), 670 Chung-Te Road Tainan 701, Taiwan
- 15 ⁵School of Medicine, Tzu Chi University, Hualien, Taiwan
- 16 ⁶Division of Pediatrics, Dalin Tzu Chi Hospital, Buddhish Tzu Chi Medical
- 17 Foundation, Dalin Chiayi, Taiwan
- 18 ⁷Department of Family Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical
- 19 Foundation, 2, Minsheng Road, Dalin 62247, Chiayi, Taiwan
- 20
- 21 **Co-correspondant author:** Dr. Jui-Kun Chiang
- 22 Department of Family Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical
- 23 Foundation, 2, Minsheng Road, Dalin 62247, Chiayi, Taiwan
- 24 Phone Number: +886-9-75663325
- 25 Fax Number: +886-5-2648180
- 26 E-mail: jkch68@gmail.com
- 27 **Running title:** Dependable algorithm to visualize snores
- 28
- 29 Funding information
- 30 JK Chiang received grants from the Dalin Tzu Chi Hospital, Buddhist Tzu Chi
- 31 Medical Foundation (DTCRD108(2)-E-09).
- 32
- 33 Words counts: Abstract:241, Text: 2388
- 34 Number of References: 23
- 35

1 Abstract

2	Background: Snoring is a nuisance for the bed partners of people who snore and is
3	also associated with chronic diseases. Estimating the snoring duration from a
4	whole-night-sleep period is challenging. The authors present a dependable algorithm
5	for visualizing snoring durations through acoustic analysis.
6	Method: Both instruments (Sony digital recorder and smartphone's SnoreClock app)
7	were placed within 30 cm from the examinee's head during the sleep period.
8	Subsequently, spectrograms were plotted based on audio files recorded from Sony
9	recorders. The authors developed an algorithm to validate snoring durations through
10	visualization of typical snoring segments.
11	Results: In total, 37 snoring recordings obtained from six individuals were analyzed.
12	The mean age of the participants was 44.6 ± 9.9 years. A 3-s segment demonstrated
13	the typical dominant frequency bands and amplitude waves of two snores. Every
14	recorded file was tailored to a regular 600-s segment and plotted. Visualization
15	revealed that the typical features of the clustered snores in the amplitude domains
16	were near-isometric spikes (most had an ascending-descending trend). The recorded
17	snores exhibited one or more visibly fixed frequency bands. Intervals were noted
18	between the snoring clusters and were incorporated into the whole-night snoring
19	calculation. The correlative coefficients of snoring rates of digitally recorded files

1	examined by Examiners A and B were higher (0.865, $p < 0.001$) than those with
2	SnoreClock app (0.757, <i>p</i> < 0.001; 0.787, <i>p</i> < 0.001, respectively).
3	Conclusion: A dependable algorithm with high reproducibility was developed for
4	visualizing snoring durations.
5	
6	
7	Keywords: Snoring duration, Acoustic analysis, Smartphone app, Reproducibility
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	

1 1. Introduction

2	Snoring, defined as snorting or grunting sounds during sleep, is caused by the
3	vibration of soft tissues throughout the upper airway. Snoring is not only a nuisance
4	for the bed partners but also associated with chronic diseases.[1] A study reported that
5	the prevalence rate of chronic snoring is higher in adult men (40%) and lower in adult
6	women (20%), although the variation is large.[2] The snoring prevalence is more than
7	40% in Asian countries, including Taiwan (59.1%),[3] Malaysia (47.3%),[4] and
8	Turkey (40.7%).[5] One of the reasons for varying snoring prevalence might be that
9	people of Chinese descent tend to have narrower cranial bases and flatter midface
10	structures than do people of other races.[6]
11	Studies have proposed the criteria that all snoring sounds measured through
12	manual audio recording should have an audible oscillatory component and be
13	synchronous with breathing and yet protuberant from background sounds. [7, 8]
14	Generally, sounds have two characteristics: sound tone (frequency) and sound
15	intensity (amplitude). Similarly, snoring can be defined through sound intensity and
16	frequency. A study defined snoring as a breathing sound intensity of >25 dB.[9]
17	Furthermore, typical breathing sound frequencies for snoring range from 110 to 190
18	Hz, although frequencies even from 800 to 5000 Hz have been reported.[10-13]
19	Therefore, some researchers have transferred collected audio data to Mel-frequency

1	cepstral coefficients and have used hidden Markov models to detect and monitor
2	snoring by using audio data. The reported detection accuracy of snoring from using an
3	ambient microphone range from 87% to 98%. [9, 10, 14, 15] However, the
4	aforementioned studies were performed in sleep laboratories.
5	Subsequently, a study suggested a snoring epoch method for estimating snoring
6	duration according to a threshold level of the maximum amplitude for every 30-s
7	segment. A 30-s sleep epoch that contained three or more snoring signals was deemed
8	a snoring epoch. The snoring duration was subsequently calculated as the sum of the
9	snoring epoch * 30 s. A shortcoming of this epoch method is that different threshold
10	levels may output different results.[16] Another method for determining snoring
10 11	levels may output different results.[16] Another method for determining snoring duration is manual listening. However, this method might yield a large variation in
11	duration is manual listening. However, this method might yield a large variation in
11 12	duration is manual listening. However, this method might yield a large variation in results due to the difficulty of concentrating on hearing over a long period.
11 12 13	duration is manual listening. However, this method might yield a large variation in results due to the difficulty of concentrating on hearing over a long period. Snore apps are software applications that run on smartphones and record sound
11 12 13 14	duration is manual listening. However, this method might yield a large variation in results due to the difficulty of concentrating on hearing over a long period. Snore apps are software applications that run on smartphones and record sound information-while the user is sleeping, and they have provided convenient and
 11 12 13 14 15 	duration is manual listening. However, this method might yield a large variation in results due to the difficulty of concentrating on hearing over a long period. Snore apps are software applications that run on smartphones and record sound information-while the user is sleeping, and they have provided convenient and personalized sleep care.[17] With the progression of innovative monitoring mechanics

1	although apps can vary greatly among smartphone models.[18] SnoreClock was one
2	of smartphone applications and it has a high predictive value for snoring.[19]
3	In this study, the authors present a dependable algorithm for calculating snoring
4	duration on the basis of the typical features of snoring frequency and amplitude and
5	enable the visualization of snoring duration on a spectrogram. The authors compared
6	the results of using our trusted method with those of using the home-based
7	SnoreClock app.
8	
9	2. Materials and Methods
10	2.1 Study participants
11	Six individuals with habitual snoring voluntarily participated in this study. The
12	study was conducted over different periods at their respective homes in Taiwan.
12 13	
	study was conducted over different periods at their respective homes in Taiwan.
13	study was conducted over different periods at their respective homes in Taiwan. Informed consent was obtained from all participants in this study. The study protocol
13 14	study was conducted over different periods at their respective homes in Taiwan. Informed consent was obtained from all participants in this study. The study protocol was reviewed and approved by the Research Ethics Committee of the Buddhist Dalin
13 14 15	study was conducted over different periods at their respective homes in Taiwan. Informed consent was obtained from all participants in this study. The study protocol was reviewed and approved by the Research Ethics Committee of the Buddhist Dalin Tzu Chi Hospital in Taiwan (No. B10703013).
13 14 15 16	study was conducted over different periods at their respective homes in Taiwan. Informed consent was obtained from all participants in this study. The study protocol was reviewed and approved by the Research Ethics Committee of the Buddhist Dalin Tzu Chi Hospital in Taiwan (No. B10703013). All participants placed their smartphones and digital recorders (Sony ICD-SX

1	patients. Snoring rates were then determined through measurement of snoring
2	durations over the whole sleep period. In this study, the snoring durations were
3	composed of snoring signals and interval pauses of no more than 100 s.
4	
5	2.2 Snoring rates obtained using our dependable algorithm
6	The dependable algorithm was obtained through analysis of files obtained from
7	Sony recorders. Snoring sounds throughout the night were recorded using portable
8	digital sound recorders with linear pulse-code modulation (ICD-SX 2000, Sony
9	Electronics Inc., Tokyo, Japan). The manufacturer of the sound recorder was not
10	involved in this study. This recorder has two built-in high-performance electric
11	dynamic microphones. These microphones were moved to a 90-degree "X-Y pattern."
12	The low-cut filter and limiter switches were set to the "OFF" position. The acquired
13	audio signals were then digitalized at a sampling frequency of 44.1 kHz, PCM
14	(pulse-code modulation), and 16 bits per sample. The authors subsequently moved
15	these files to our computer for further evaluation. The files were records taken every
16	600 s. Dominant frequencies for each 0.01-s segment were analyzed and plotted.
17	Simultaneously, Hilbert amplitude envelopes were smoothed using a sample-moving
18	average of 1000 samples with a 25% overlapping sliding window. [9, 10, 20, 21]

- 1 The R codes (R Foundation for Statistical Computing, Vienna, Austria) used are
- 2 presented as follows.
- 3 To read the audio file (190402 0310.wav in E disc, for example):

4 >library(tuneR)

- 5 >file.1 <- readWave("E:/190402_0310.wav")
- 6 To cut the file into 600-s segments:
- 7 >file.1.600sec <- cutw(file.1, from =0, to=600, output="Wave")
- 8 The first part of the 600-s segment was, for example:
- 9 For the frequency domain:
- 10 > df.plot <- dfreq(file.600sec.1, at = seq(1, 599, by = 0.01))
- 11 For the amplitude domain:
- 12 > amp.plot <- timer(file.600sec.1, threshold=70, msmooth=c(1000,25), dmin=0.001,
- 13 envt="hil", plot=TRUE)

14 Visualization revealed that the clustered snores in the amplitude domains

- 15 generally exhibited near-isometric spikes with a trend of initial ascension and
- 16 subsequent descension. Moreover, the frequency domains of the snoring records
- 17 exhibited one or more visibly fixed frequency bands. Thus, the authors combined the
- 18 correspondent two figures (matched amplitude domains and frequency domains) as
- 19 snoring clusters. Notably, intervals (no more than 100 s) lay between the snoring

1	clusters, and they were both incorporated into the whole-night snoring duration. Plots
2	with typical amplitude domains and frequency domains classified as snoring that did
3	not meet our criteria were classified as "noises". For the aforementioned reasons, the
4	authors set these guidelines, which enabled visualization of snoring durations. To test
5	the reproducibility of the method of calculating snoring duration by using Sony digital
6	recorders, two researches thoroughly examined the digitally recorded files.
7	The "noise" patterns did not possess the aforementioned typical features of
8	snoring sounds. Therefore, the authors could easily differentiate noises (e.g., those
9	from a fan, an air-conditioner, a toilet, outdoors, coughing, and groaning) from
10	genuine snoring sounds. In the case that snoring durations were ambiguous, the
11	authors carefully listened to the recorded files for confirmation.
12	
13	2.3 Determining snoring rates by using smartphone apps
14	Because smartphone apps are accessible and portable, the SnoreClock app for
15	smartphones was used. The snoring rates were displayed on the screens of
16	smartphones. The developers of SnoreClock app were not involved in this study.
17	The authors could visualize typical snoring durations according to the typical
18	
	frequency and amplitude of snoring on spectrograms. All snoring durations were

1

2 2.4 Statistical analysis

3	The R statistical software, version 3.4.1, was used for all statistical analyses. The
4	seewave package for R was applied. Hilbert amplitude envelopes were smoothed
5	using a sample movement average of 1000 samples, with a 25% overlapping sliding
6	window based on the timers' function. Dominant frequencies were processed every
7	0.01 s through fast Fourier transform using the dfreq function of the R package.
8	Statistical significance was set at $p < 0.05$, and all tests were two-tailed.
9	Continuous variables were presented as mean \pm standard deviation where t-test or
10	Wilcoxon test were indicated by cases. Correlation analysis was performed to
11	evaluate associations in snoring rates between methodologies and examiners.
12	ANOVA was used to test the differences between three groups of continuous
13	variables.
14	
15	3. Results
16	In total, 37 recordings from six participants (two female and four male) were
17	used for the analysis. Their mean age was 44.6 ± 9.9 years. The mean recording time
18	was 5.73 ± 1.18 h. (Table 1) The sound files captured with a digital recorder were
19	transferred to a computer for analysis. The depicted bands of typical snoring

1	frequency could vary during the recording period at the intraindividual and
2	interindividual level. A 3-s period demonstrated the dominant frequency bands and
3	amplitude spikes of the typical snoring duration. The three mean frequency bands of
4	snoring presented on spectrograms were 4694, 2713, and 1083 Hz. The fourth mean
5	frequency band of snoring was hidden in background noise (Figure 1). Every recorded
6	file was segmented at 600-s (10 min) intervals. The dominant frequencies for every
7	0.01 s were calculated through fast Fourier transformation and plotted, and the Hilbert
8	amplitude envelopes were plotted as well. Under this time scale, the matched 10-min
9	plots of frequency bands and amplitude spikes were combined to estimate snoring
10	durations. Isometric spikes (amplitude domain) that formed during participants'
10 11	durations. Isometric spikes (amplitude domain) that formed during participants' snoring and that were as long as the fixed frequency bands (frequency domain) were
11	snoring and that were as long as the fixed frequency bands (frequency domain) were
11 12	snoring and that were as long as the fixed frequency bands (frequency domain) were paired and then grouped into isolated clusters, generally at intervals (typically less
11 12 13	snoring and that were as long as the fixed frequency bands (frequency domain) were paired and then grouped into isolated clusters, generally at intervals (typically less than 100 s). Therefore, the repeated "cluster–interval–cluster–interval" pattern must
11 12 13 14	snoring and that were as long as the fixed frequency bands (frequency domain) were paired and then grouped into isolated clusters, generally at intervals (typically less than 100 s). Therefore, the repeated "cluster–interval–cluster–interval" pattern must be identified to calculate snoring duration while "noises" are simultaneously excluded.
 11 12 13 14 15 	snoring and that were as long as the fixed frequency bands (frequency domain) were paired and then grouped into isolated clusters, generally at intervals (typically less than 100 s). Therefore, the repeated "cluster–interval–cluster–interval" pattern must be identified to calculate snoring duration while "noises" are simultaneously excluded. The amplitudes could vary with time. Figure 2 shows an example of the typical

1	talking, and curtains opening or closing) did not have typically featured fixed
2	frequency bands and repeated amplitudes (Figure 3).
3	In this study, men had significantly greater snoring durations and rates than did
4	women. To test for the reproducibility of our algorithm in calculating snoring
5	durations, the authors examined the files digitally recorded by Examiners A and B.
6	The differences in the scatterplots of snoring rates between those produced by the
7	SnoreClock app and those obtained by Examiners A and B are shown in Figures 4a-c.
8	The correlative coefficient of snoring rates calculated by Examiners A and B was
9	0.865 ($p < 0.001$), which is higher than that calculated by the SnoreClock app (Table
10	2). The difference between the means of snoring rates calculated by the two
11	examiners was small. Additionally, both examiners obtained values that were lower
12	than those obtained by the SnoreClock app. However, the three calculated
13	snoring-rate values exhibited no statistically significant difference ($p = 0.738$; Figure
14	5).
15	
16	4. Discussion

In the current study, snoring duration was determined according to signals and
intervals (typically within 100 s). The featured signals of snores in the amplitude
domains shared a similar ascension–descension pattern. Through Hilbert

1	transformation, each individual ascension-descension snoring signal unit was
2	processed to identify individual spikes, which were subsequently grouped to form
3	near-isometric spike clusters. The intervals between clustered spikes were then
4	determined. In the frequency domain, one or more fixed corresponding frequency
5	bands in the snoring signals were also observed.
6	In this study, the authors could visualize snoring durations according to typical
7	spectrograms from the audio files and thereby calculate the duration of snoring for
8	each file. Noise patterns were easily identified and visualized because of their
9	differences from the aforementioned typical features of snoring. With the use of a
10	digital recorder at 44.1 kHz and R software, this dependable algorithm can be reliably
11	used again. The correlation coefficient of snoring rates calculated by Examiners A
12	and B was higher than that calculated by the SnoreClock app. The difference between
13	the mean snoring rates calculated by the two examiners (A or B) and the SnoreClock
14	app was small and statistically nonsignificant ($p = 0.738$). Therefore, people with
15	habitual snoring can reliably use smartphone apps, such as SnoreClock, to determine
16	rates of snoring duration at home.
17	For validation of snoring sounds, the acquired audio files were digitalized at a
18	sampling frequency of 44.1 kHz, PCM, and 16 bits per sample, in accordance with
19	previous research.[9] In Dafna's study, all audio files were downsampled to 16 kHz,

1	and each audio file underwent an adaptive noise suppression process based on the
2	Weiner filter. Accordingly, they could detect snoring sounds with an accuracy of
3	>98%.[9] However, the authors did not perform down sampling, and the noise
4	durations presented were not suppressed. In our study, the authors validated snoring
5	sounds on the spectrogram by identifying matching typical amplitude and frequency
6	domains. Snoring signals generally exhibited one or more discrete frequency bands,
7	and their spiked amplitudes occurred in groups at characteristic near-isometric
8	intervals. Our dependable algorithm can be considered reliable for detecting snoring
9	durations through visualization.
10	The analysis of snoring through audio recording with a microphone was applied
11	and serves as a convenient option. Studies have reported the advantages of audio
12	recording as its unobtrusiveness, portability, and low cost. [14, 22] However, data sets
13	of audio recordings require further analysis to define snoring durations because this
14	algorithm is inaccessible for people who did not have R software applications.
15	Smartphone apps provide convenient and personalized sleep care, and their
16	accuracy in predicting snoring rates ranges from 93% to 96%.[18] Nevertheless,
17	snoring does not have fixed and constant audio characteristics; the authors compared
18	the rates of snoring durations between smartphone apps and sound recorders. Studies
19	have reported that snoring duration measurements obtained using smartphone apps are

1	highly similar with those obtained through polysomnography.[23] In the current
2	study, the authors compared the spectrograms of audio files obtained using a
3	smartphone app (SnoreClock) with those obtained using the proposed dependable
4	algorithm for detecting snoring duration.
5	4.1 Limitation
6	This study has the following limitations. First, because of the small sample size
7	of 36 files from six subjects, further study with a large sample size is warranted to
8	confirm the results. Second, the time spent before falling asleep was not omitted;
9	therefore, the rates of snoring durations may have been underestimated. Finally,
10	snoring apps might be unable to distinguish between snoring sounds from different
11	individuals in the same room.
12	
13	5. Conclusion
14	The examiners determined a higher correlation than those between the
15	SnoreClock app's calculation and digitally recorded files (by a Sony recorder).
16	Smartphone apps, such as SnoreClock, may provide a dependable algorithm that can
17	be conveniently used at home to measure snoring rates. In the present study, the
18	authors provide a truly dependable algorithm for detecting snoring sounds for
19	researchers interested in investigating snoring.

Competing interests

- 2 The authors declare that they have no competing interests.

Author Contributions

- **Conceptualization:** Hsueh-Hsin Kao, Yen-Chang Lin, Yee-Hsin Kao, Chun-Lung
- 6 Wang, Jui-Kun Chiang
- **Data curation:** Yen-Chang Lin, Madan Ho, Hsiao-Chen Yu, Jui-Kun Chiang
- **Formal analysis:** Jui-Kun Chiang
- **Funding acquisition:** Jui-Kun Chiang
- 10 Investigation: Hsueh-Hsin Kao, Yee-Hsin Kao
- **Methodology:** Yee-Hsin Kao, Jui-Kun Chiang
- **Project administration:** Yee-Hsin Kao, Jui-Kun Chiang
- **Resources:** Jui-Kun Chiang
- 14 Supervision: Hsueh-Hsin Kao, Yee-Hsin Kao, Jui-Kun Chiang
- 15 Validation: Yee-Hsin Kao, Jui-Kun Chiang
- 16 Visualization: Hsueh-Hsin Kao, Jui-Kun Chiang
- 17 Writing original draft: Hsueh-Hsin Kao, Yee-Hsin Kao, Jui-Kun Chiang
- 18 Writing review & editing: Hsueh-Hsin Kao, Chun-Lung Wang, Yee-Hsin Kao,
- 19 Jui-Kun Chiang. Hsueh-Hsin Kao and Yee-Hsin Kao contributed equally. Chun-Lung
- 20 Wang and Jui-Kun Chiang were the co-respondent authors.

1 Figure Legends:

- 2 Figure 1. Example of a 3-s audio signal indicating snoring.
- 3
- 4 The spectrogram of frequency (upper): three mean frequency bands of snoring (4694,
- 5 2713, and 1083 Hz) on the spectrogram; the fourth mean frequency band of snoring
- 6 was hidden in background noise. The amplitude of snoring (button): the amplitude
- 7 exhibited an ascension–descension pattern.
- 8
- 9
- 10 Figure 2. Example of snore interpretation by using the frequency domain and
- 11 amplitude domain.
- 12

13	A 600-s typical snoring duration including signals and intervals. The graph shows
14	grouped near-isometric spikes with specific corresponding frequency bands. The
15	clustered spikes exhibit a unique ascension-descension pattern regarding its
16	amplitude, with intervals (typically less than 100 s) in between.

- 17
- 18
- 19 Figure 3. Examples of noises such as those from walking, changing position, doors

20 opening or closing.

- 21
- 22

1	Figure 4. Scatterplots of snoring rates detected using the SnoreClock app and digital
2	recorder files, as interpreted by Examiners A and B.
3	
4	
5	Figure 5. Boxplot showing snoring rates detected using the SnoreClock app and
6	digital recording files, as interpreted by Examiners A and B.
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25 26	
26	
27 28	
28 29	
29 30	
31	
32	
33	
34	

Variable	Total	Female	Male	<i>p</i> value
Male/female	6	2	4	
Total recording files	37	9	28	
Age, years	44.6±9.9	47±5.7	43.0±13.1	1
Recording time, hours	5.73±1.18	6.16±1.69	5.59±0.96	0.358
Snoring time, minutes				
By smartphone app	63.8±36.6	36.3±36.6	72.6±32.5	0.008
Digital recorder by examiner A	58.9±42.6	29.6±25.3	68.4±43.0	0.015
Digital recorder by examiner B	59.1±40.5	25.9±21.0	69.8±39.6	0.003
Snoring rates, %				0.738
By smartphone app	19.6±11.8	11.1±13.1	22.3±10.2	0.008
Digital recorder by examiner A	18.8±15.0	9.6±11.0	21.7±15.1	0.019
Digital recorder by examiner B	18.5±13.6	8.4±9.0	21.8±13.3	0.008

1 Table 1. The demographics of subjects

	_		
ł	_	۱	
		,	
	4	-	

-

1 Table 2. Correlation of snoring rates by different methods

Examiner A 0.757 (<0.001) - Examiner B 0.787 (<0.001) 0.865(<0.001) *Values presented: coefficient of correlation (p value)		By SnoreClock app	Examiner A	
	Examiner A	0.757 (<0.001)	-	
	Examiner B			
	*Values presented: c			

1 **References:**

- 2 1. Yunus FM, Khan S, Mitra DK, Mistry SK, Afsana K, Rahman M. Relationship
- 3 of sleep pattern and snoring with chronic disease: findings from a nationwide
- 4 population-based survey. Sleep Health 2018;4(1):40-48.
- 5 https://doi.org/10.1016/j.sleh.2017.10.003. PMID: 29332678.
- 6 2. Hoffstein V. Apnea and snoring: state of the art and future directions. Acta
- 7 Otorhinolaryngol Belg 2002;56(2):205-236. PMID: 12092331.
- 8 3. Chuang LP, Hsu SC, Lin SW, Ko WS, Chen NH, Tsai YH. Prevalence of
- 9 snoring and witnessed apnea in Taiwanese adults. Chang Gung Med J
- 10 2008;31(2):175-181. PMID: 18567418.
- 11 4. Kamil MA, Teng CL, Hassan SA. Snoring and breathing pauses during sleep in
- 12 the Malaysian population. Respirology 2007;12(3):375-380.
- 13 https://doi.org/10.1111/j.1440-1843.2007.01030.x. PMID: 17539841.
- 14 5. Kart L, Dutkun Y, Altin R, Ornek T, Kiran S. Prevalence of major obstructive
- sleep apnea syndrome symptoms in coal miners and healthy adults. Tuberk Toraks
 2010;58(3):261-267. PMID: 21038136.
- 17 6. Lam B, Ip MS, Tench E, Ryan CF. Craniofacial profile in Asian and white
- 18 subjects with obstructive sleep apnoea. Thorax 2005;60(6):504-510.
- 19 https://doi.org/10.1136/thx.2004.031591. PMID: 15923252.
- 20 7. Arnardottir ES, Isleifsson B, Agustsson JS, Sigurdsson G, Sigurgunnarsdottir
- 21 MO, Sigurdarson GT, et al. How to measure snoring? A comparison of the
- 22 microphone, cannula and piezoelectric sensor. J Sleep Res 2016;25(2):158-168.
- 23 https://doi.org/10.1111/jsr.12356. PMID: 26553758.
- 24 8. Bloch KE, Li Y, Sackner MA, Russi EW. Breathing pattern during sleep
- 25 disruptive snoring. Eur Respir J 1997;10(3):576-586. PMID: 9072988.
- 26 9. Dafna E, Tarasiuk A, Zigel Y. Automatic detection of whole night snoring
- events using non-contact microphone. PLoS One 2013;8(12):e84139.
- 28 https://doi.org/10.1371/journal.pone.0084139. PMID: 24391903.
- 29 10. Cavusoglu M, Kamasak M, Erogul O, Ciloglu T, Serinagaoglu Y, Akcam T. An
- 30 efficient method for snore/nonsnore classification of sleep sounds. Physiol Meas
- 31 2007;28(8):841-853. https://doi.org/10.1088/0967-3334/28/8/007. PMID: 17664676.
- 32 11. Pevernagie D, Aarts RM, De Meyer M. The acoustics of snoring. Sleep Med Rev
- 33 2010;14(2):131-144. https://doi.org/10.1016/j.smrv.2009.06.002. PMID: 19665907.
- 34 12. Fiz JA, Abad J, Jane R, Riera M, Mananas MA, Caminal P, et al. Acoustic
- 35 analysis of snoring sound in patients with simple snoring and obstructive sleep
- 36 apnoea. Eur Respir J 1996;9(11):2365-2370.
- 37 https://doi.org/10.1183/09031936.96.09112365. PMID: 8947087.
- 38 13. Perez-Padilla JR, Slawinski E, Difrancesco LM, Feige RR, Remmers JE,

- 1 Whitelaw WA. Characteristics of the snoring noise in patients with and without
- 2 occlusive sleep apnea. Am Rev Respir Dis 1993;147(3):635-644.
- 3 https://doi.org/10.1164/ajrccm/147.3.635. PMID: 8442599.
- 4 14. Duckitt WD, Tuomi SK, Niesler TR. Automatic detection, segmentation and
- 5 assessment of snoring from ambient acoustic data. Physiol Meas
- 6 2006;27(10):1047-1056. https://doi.org/10.1088/0967-3334/27/10/010. PMID:
- 7 16951463.
- 8 15. Azarbarzin A, Moussavi ZM. Automatic and unsupervised snore sound
- 9 extraction from respiratory sound signals. IEEE Trans Biomed Eng
- 10 2011;58(5):1156-1162. https://doi.org/10.1109/TBME.2010.2061846. PMID:
- 11 20679022.
- 12 16. Lee SA, Amis TC, Byth K, Larcos G, Kairaitis K, Robinson TD, et al. Heavy
- 13 snoring as a cause of carotid artery atherosclerosis. Sleep 2008;31(9):1207-1213.
- 14 PMID: 18788645.
- 15 17. Shin H, Choi B, Kim D, Cho J. Robust sleep quality quantification method for a
- 16 personal handheld device. Telemed J E Health 2014;20(6):522-530.
- 17 https://doi.org/10.1089/tmj.2013.0216. PMID: 24693921.
- 18 18. Camacho M, Robertson M, Abdullatif J, Certal V, Kram YA, Ruoff CM, et al.
- 19 Smartphone apps for snoring. J Laryngol Otol 2015;129(10):974-979.
- 20 https://doi.org/10.1017/S0022215115001978. PMID: 26333720.
- 21 19. Chiang JK, Lin YC, Lin CW, Ting CS, Chiang YY, Kao YH. Validation of
- snoring detection using a smartphone app. Sleep Breath. 2021 Apr 3.
- 23 https://doi.org/10.1007/s11325-021-02359-3. PMID: 33811634.
- 24 20. Lee GS, Lee LA, Wang CY, Chen NH, Fang TJ, Huang CG, et al. The
- 25 Frequency and Energy of Snoring Sounds Are Associated with Common Carotid
- 26 Artery Intima-Media Thickness in Obstructive Sleep Apnea Patients. Sci Rep
- 27 2016;6:30559. https://doi.org/10.1038/srep30559. PMID: 27469245.
- 28 21. Shiomi FK, Pisa IT, Campos CJ. Computerized analysis of snoring in sleep
- apnea syndrome. Braz J Otorhinolaryngol 2011;77(4):488-498.
- 30 https://doi.org/10.1590/S1808-86942011000400013. PMID: 21860976.
- 22. Lee BW, Hill PD, Osborne J, Osman E. A simple audio data logger for objective
- 32 assessment of snoring in the home. Physiol Meas 1999;20(2):119-127.
- 33 https://doi.org/10.1088/0967-3334/20/2/001. PMID: 10390014.
- 34 23. Nakano H, Hirayama K, Sadamitsu Y, Toshimitsu A, Fujita H, Shin S, et al.
- 35 Monitoring sound to quantify snoring and sleep apnea severity using a smartphone:
- 36 proof of concept. J Clin Sleep Med 2014;10(1):73-78.
- 37 https://doi.org/10.5664/jcsm.3364. PMID: 24426823.

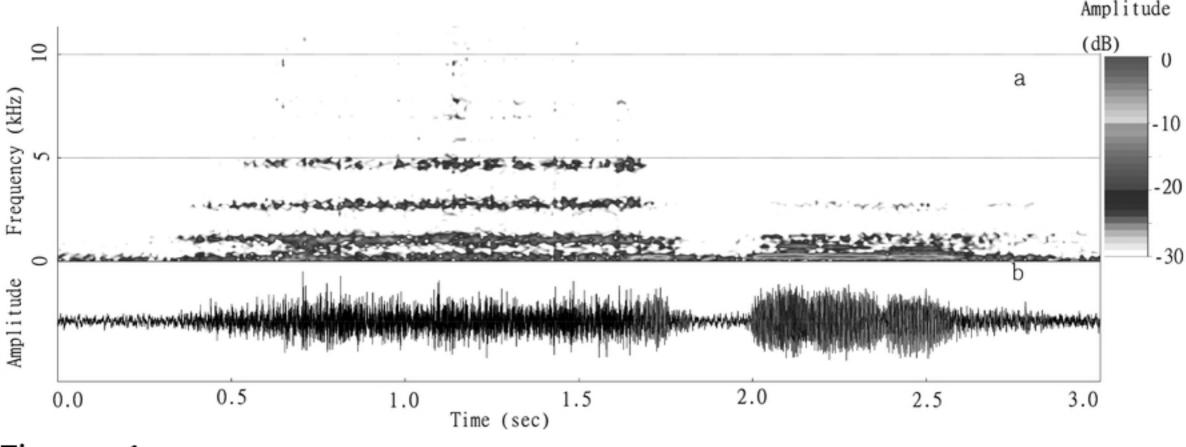
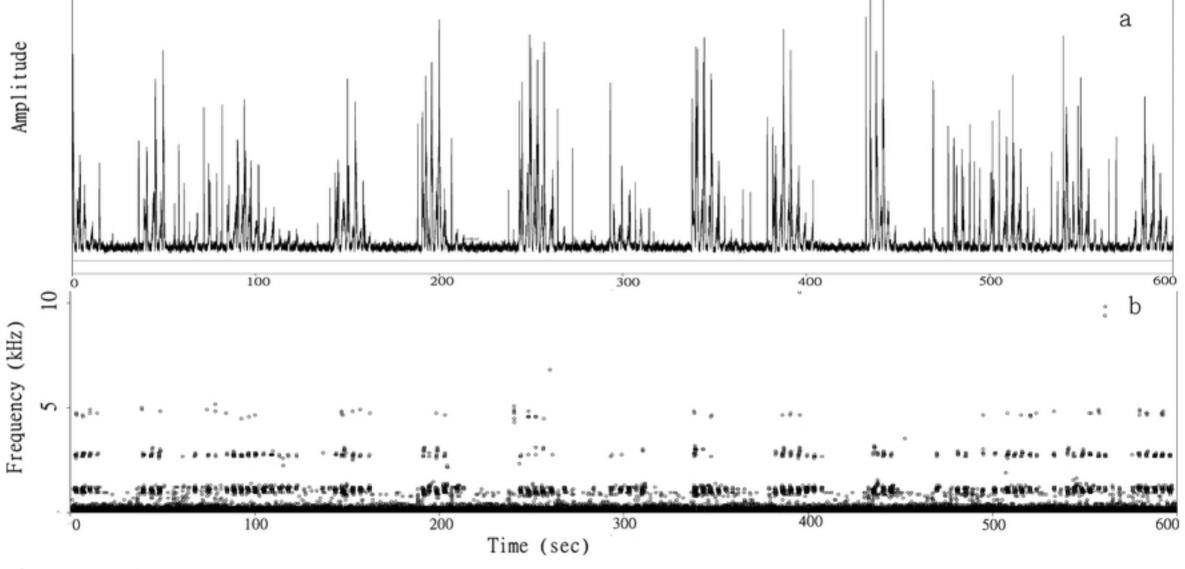
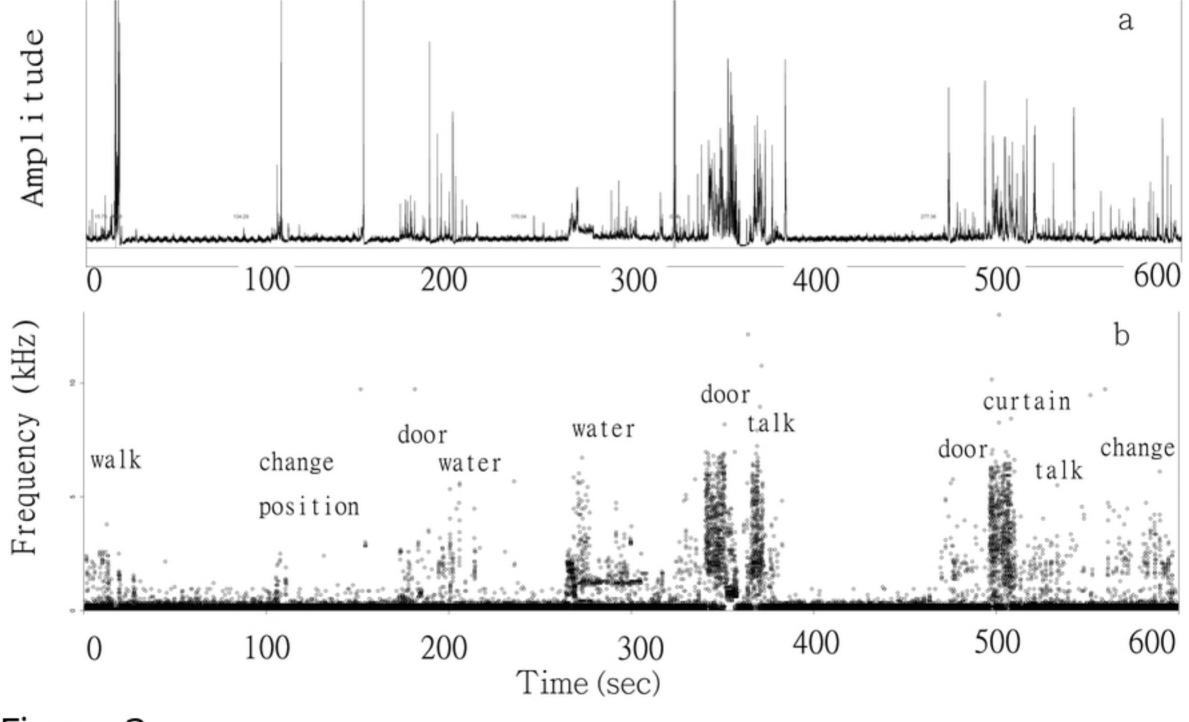
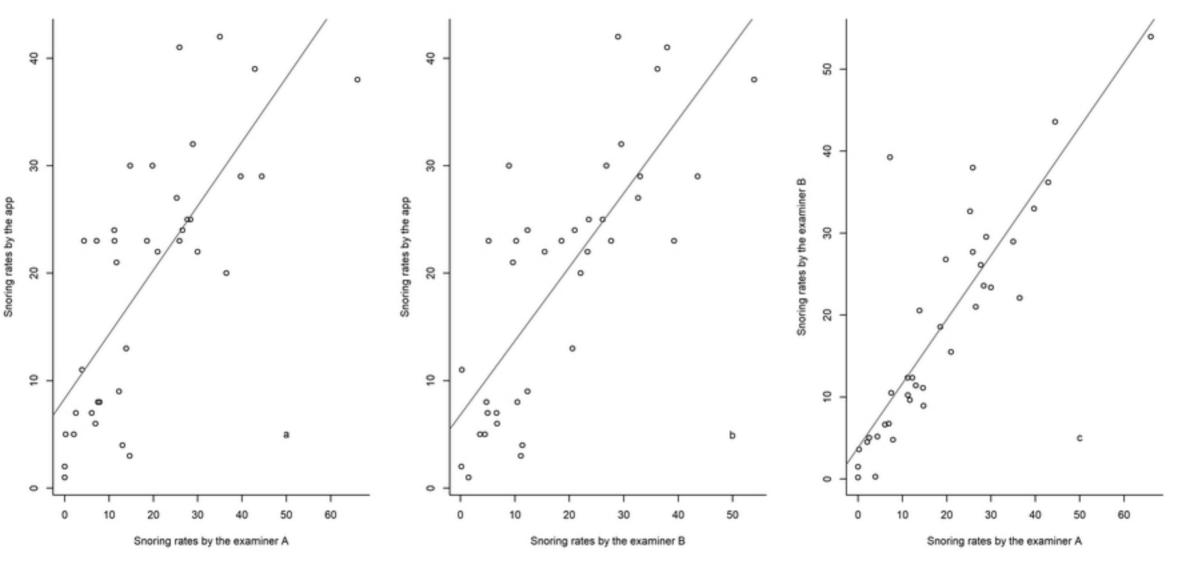
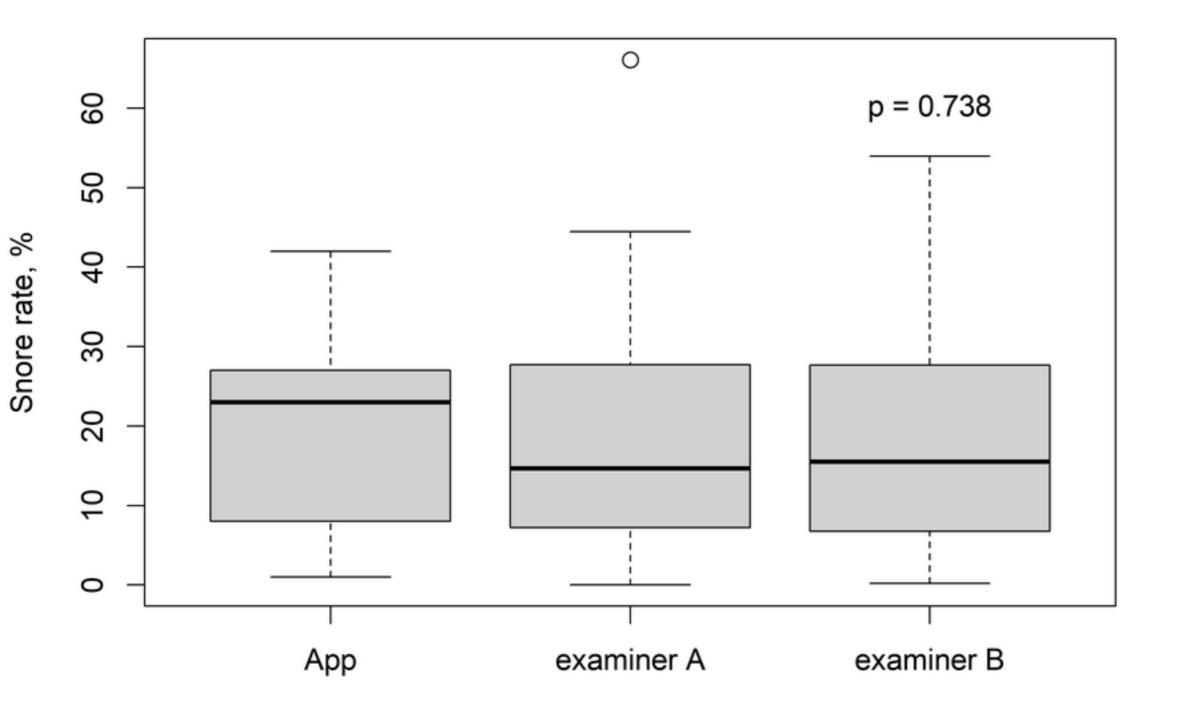






Figure 1

