URBANISATION, BIRD SPECIES RICHNESS AND ABUNDANCE WITHIN IBADAN METROPOLIS, NIGERIA

1. Festus O. Adegbola¹ (Corresponding Author)

Email address: adegbolafestuso@gmail.com

2. Taiye Adeniyi Adeyanju¹

Email address: at.adeyanju@mail1.ui.edu.ng

3. Soladoye B. Iwajomo²

Email address: siwajomo@unilag.edu.ng

4. Ibukunoluwa Augustine Ayodele¹

Email address: profibikunayodele@yahoo.com

- 1 Department of Wildlife and Ecotourism Management, University of Ibadan, Ibadan, Nigeria
- 2 Department of Zoology, University of Lagos, Lagos, Nigeria

1

2

3

ABSTRACT

4 Urbanisation is considered as one of the most profound threat to wildlife, with habitat loss and fragmentation being predominant. This study assessed the impacts of urbanisation on 5 6 richness, abundance of bird species within Ibadan metropolis, Nigeria. A uniform grid of 500 7 square meters was installed on the map of Ibadan Metropolis using QGIS to produce 499 grid points distributed across the five urban local governments. 100 grids were selected randomly, 8 identified with mapinR software application and surveyed with 5 point counts within each gird, 9 10 established at 200m interval to avoid double counting. Each point count was observed for 5 11 minutes using a pair of 8x42mm binoculars within a 50m radius. Habitat variables like number 12 of buildings, trees, paved roads, communication masts were also recorded.

13 A total number of 56 species of birds were observed at the end of the assessment, classified into 30 families. The test of statistics showed that there was no statistically significant difference in 14 15 bird species richness between the Local Governments. The test of statistics showed that there was no statistically significant difference in bird species abundance between the local 16 17 governments. The test of between-subjects effects revealed that there were no statistical significant effects when all the habitat variables were computed in the model on species richness. 18 19 The number of paved roads and number of vehicles showed a significant effect on bird species 20 abundance while others variables in the model did not exact statistically significant effects on bird species abundance. 21

The study therefore concluded that habitat actions due to urbanisation have not affected the richness and abundance of birds species found in all the local governments. The only habitat variables that have currently exacted significant effect on species abundance within the metropolis are number of vehicles and paved roads.

Word Count: 292

Keywords: Conservation, Species richness, Species abundance, Urbanisation

26

INTRODUCTION

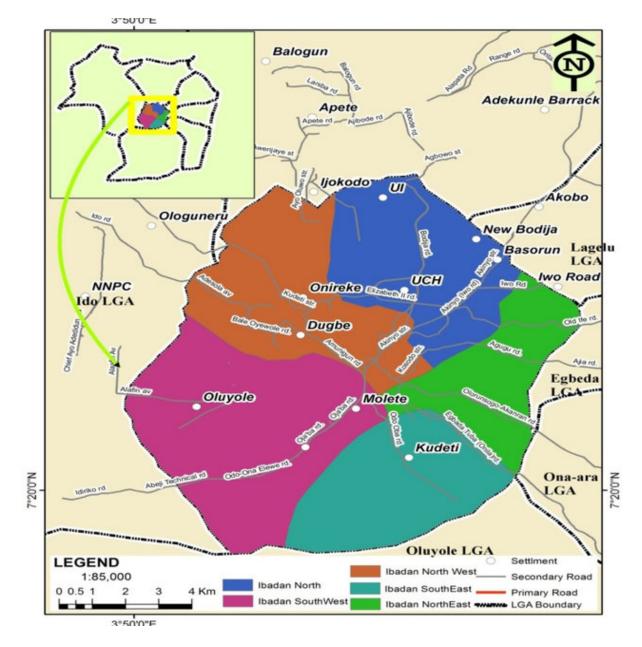
27 In wildlife conservation and management, there is need for a thorough understanding of the relationships among individual organisms and their environment, as it is important in the 28 29 development of ecological theories and in the implementation of conservation strategies (Walker et al. 2008). It is general knowledge among environmentalists that there is an increase in the 30 proportion of the earth's surface now converted to human-dominated urban areas; it therefore 31 becomes expedient to understand how urban wildlife communities within these now 32 sophisticated ecosystem types are structured (McKinney 2002). The importance of understanding 33 the ecological effects of urbanisation cannot be under-emphasised, especially with its rapid 34 35 conversion of previously wild lands around the world. The process associated with urbanisation 36 has profound effects on the distribution of wildlife species and their habitats (Wolff et al. 2018). Urban development is characterised by rapid population growth and profound land use 37 38 transformation, leading to land conversion, which is a predominant process affecting ecological 39 community structure and population dynamics of living organisms (Hostetler 1997). Research 40 studies show that urban landscapes supports biotic communities in which only a few species 41 increase in density compared to natural areas, resulting in a distinct difference the community 42 diversity between these two landscapes (McKinney 2002).

43 Developing countries have a large number of wildlife existing outside the protected areas, on farmlands, and in urban areas. Among all wildlife, bird species are largely one of the most 44 common wildlife surviving in urban communities (Gatesire et al. 2015). Birds are one of the 45 46 most easily studied taxa occurring in cities worldwide as they serve as indicators variables in ecological assessment and monitoring (Magle et al. 2012). Birds are also important in 47 48 maintaining ecosystems. For example, insectivorous bird species regulate disease vectors including mosquito and rodents. Pied Crow (Corvus albus), contributes to biomass recycling and 49 reduce levels of disposable waste as scavengers. Frugivorous birds play a crucial role in the 50 51 dispersal of seeds of fruit trees. Sun birds also helps to pollinate plants (Gatesire et al. 2015).

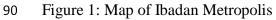
52 Studies show that bird species in different regions respond to urbanisation in a similar way with 53 most research suggesting that bird communities are negatively impacted by urbanisation (Lin et 54 al. 2011; Sol et al. 2014). There is a general shrinkage in species distribution as urbanisation 55 increases, and the fact that similar bird species can be found in various urban landscape indicates

that urbanisation has a similar effect on local communities of birds irrespective of the region (Lin et al. 2011). As a result of the crucial role birds play in maintaining ecosystems and also support biodiversity, conservationists seek their protection against biological threats and protect the environment efficiently (Gatesire et al. 2015).

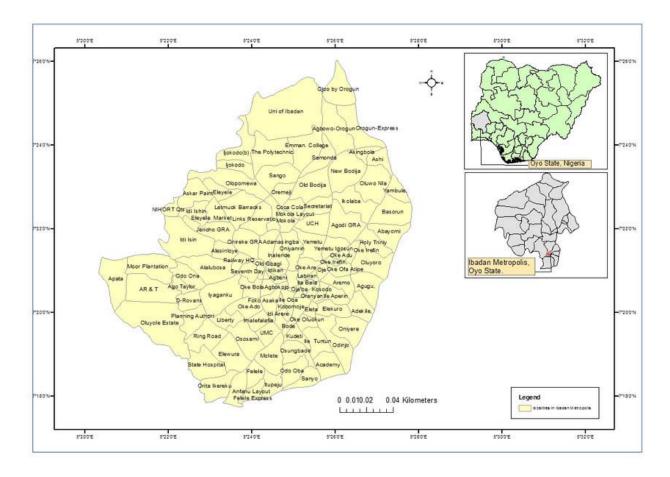
60 Primarily the development level, habitat diversity, age and diversity of vegetation present determine the richness of birds in urban areas (McKinney 2002). Native bird species that persists 61 in urban landscapes partly depends on the actions of the landowners because the structural and 62 vegetative characteristics of urban landscapes are largely human-influenced (McCaffrey and 63 Mannan 2012). Urban areas have less assembly of bird species than adjacent natural areas, 64 65 though some type and level of development support more native bird species than others. 66 According to McKinney (2002), the moderate level of development and vegetation linkable to low density residential areas can support higher densities of some native birds species than other 67 68 types of urban land use, also including undisturbed sites.


69

MATERIALS AND METHODS

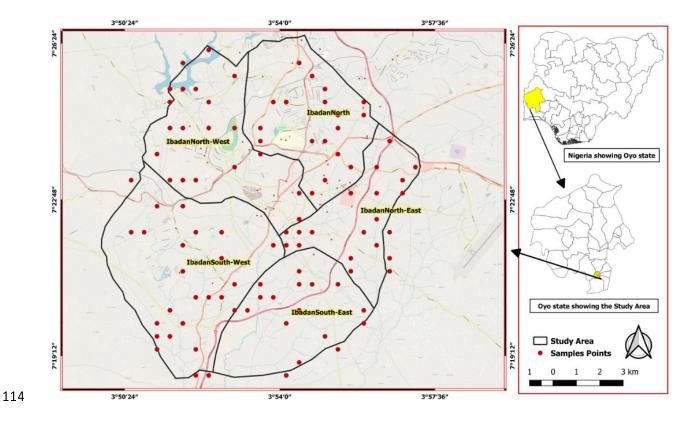

70 STUDY AREA

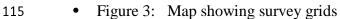
71 The study was conducted in Ibadan metropolis, the capital of Oyo State. Ibadan metropolis, covering an area of 129.65 km^2 , is located in South-Western Nigeria in the southeastern part 72 of Oyo State at about 119 kilometers (74 miles) northeast of Lagos and 120 kilometers (75 miles) 73 74 east of the Nigerian international border with the Republic of Benin (Popoola and Wahab 2018). Ibadan falls totally within the forest zone but close to the boundary between the forest and the 75 76 derived savanna. It lies between latitude $3^{\circ}3'$ N and $4^{\circ}10'$ N and longitude $7^{\circ}2'E$ and $7^{\circ}40'$ E. (Popoola and Wahab 2018). The population of Metropolitan Ibadan is 1 338 659 according to 77 78 census results for 2006 (Areola and Ikporukpo 2018). There are eleven (11) local governments in Ibadan Metropolitan area consisting of five urban local governments and six semi-urban local 79 80 governments. The former are: Ibadan South East, Ibadan North East, Ibadan North West, Ibadan 81 South West and Ibadan North Local Government Areas. Ibadan North Local Government has the 82 largest land area among the urban Local Governments, while Ibadan North West is the smallest 83 (Fig. 2). The second largest local government in Urban Ibadan is Ibadan South West. Ibadan metropolis is an important commercial centre and it comprises of people of different cultural and 84 socio-economic backgrounds. General land use pattern of the Ibadan metropolitan area shows a 85 86 clear distinction purely residential use for Urban Ibadan and agricultural use for semi-urban Ibadan (Salami et al. 2016). 87

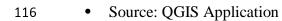

88

89

91 Source: (Popoola and Wahab 2018)




93 Figure 2: Map of Ibadan Metropolis, Oyo State showing communities


94 Source: (Areola and Ikporukpo 2018)

95 **BIRD ASSESSMENT**

Using QGIS software application, a uniform grid of 500 by 500 metres was installed on the map 96 of Ibadan Metropolis to produce 499 grids distributed across all the five urban local 97 governments. 100 grids were surveyed with 5 point counts within each gird, established at 200 98 m interval to avoid double counting, each point count was observed for 5 minutes within a 50 m 99 radius. Laser range finder was used to delineate the 50 m radius around each survey point, and to 100 estimate distances to birds. Birds encountered outside the study grids were recorded only when it 101 has never been observed in any of the grids before. When a bird could not be identified in the 102 field, photos from a high resolution camera were taken for later identification by an expert in 103 ornithology. During each visit, a pair of 8x42 mm binoculars was used for sighting birds. Helms 104 105 field guide to the birds of western Africa (Borrow and Demey 2013) was used to identify the birds; birds call were recorded with a voice recorder and later played back for confirmation. The 106 107 data were collected between October to December 2020, and observations were done in the morning and evening. Habitat variables recorded for this study, the number of buildings, number 108 109 of trees, number of communication masts, ground cover, canopy cover, number of pedestrians 110 and vehicles passing within 25 m radius around the point, describe urban form. No specific 111 permissions were required to conduct this work. All bird surveys were conducted in areas which 112 are open to the public; therefore there was no need to ask land managers for approval

118 DATA ANALYSIS

- 119 Species richness and abundance was obtained by counting the total number of species and 120 individual per species respectively as recorded within each grid. The data collected were entered 121 and summarised in Microsoft Excel spread sheet computer software for analysis. Tables and 122 figures were used to represent the results.
- 123 General Linear models method was fitted in R statistical package version 3.4.2 using test of
- 124 correlation to the determine relationship between the vegetation variables, bird species richness,
- 125 and bird abundance at 0.05 level of significance.

126

RESULTS

This chapter present the results of the data obtained for the purpose of this study. QGIS software application, using a uniform grid of 500 by 500 metres installed across all five selected urban local government in Ibadan was used in collecting the data. General Linear Model (GLM) of statistical analysis was used in analyzing the collected data and testing for statistical significant difference in bird species richness, bird abundance and the habitat variables that determines/ influence bird species richness and its abundance within the metropolis. ($\alpha = 0.05$).

The study observed 56 different species of birds which was grouped into 30 families. (Seeappendix)

135 DETERMINATION OF SPECIES RICHNESS WITHIN THE METROPOLIS

Descriptive statistics, Kruskal- Wallis H Test and Post Hoc Test were carried out to determine whether there are statistically significant differences between bird species richness and the five selected urban local government. The local government being the independent variable and bird species observed being the dependent variable.

140 The results showed that mean bird species richness at Ibadan North East, North West, South East

- 141 and South West were estimated at 8.20 ± 1.643 , 10.84 ± 2.630 , 8.27 ± 2.724 , 9.36 ± 2.629 and
- 142 10.54 ± 5.222 respectively.
- 143 On the overall, Bird species richness for Ibadan metropolis was estimated at 9.73 ± 3.301 . (See 144 table 1a)
- The Kuskal- Wallis H Test revealed that the mean rank for Ibadan North East is 24.70, Ibadan North is 44.74, Ibadan North West is 25.32, Ibadan South East is 34.55 and Ibadan South West is 36.38 (See table 1b). It implies that mean of Ibadan North will be rank first in bird species richness, followed by Ibadan South West, Ibadan South East, Ibadan North West and Ibadan North East respectively.
- The test statistics table showed a chi-square value (X^2) of 8.253 and a p-value of 0.083. At 5% C.I., the calculated p-value (0.083) is greater than 0.05. This implies that bird species richness between the different local governments is ns.

153 Table 1a: Descriptive Statistics on Species Richness

154

Descriptive Statistics

156

155

157 Dependent Variable: Species richness

Local Government	Ν	Mean	Std. Deviation
Ibadan North East	5	8.20	1.643
Ibadan North	19	10.84	2.630
Ibadan North West	11	8.27	2.724
Ibadan South East	22	9.36	2.629
Ibadan South West	13	10.54	5.222
Total	70	9.73	3.301

158

160 Table 1b: Kruskal- Wallis H Test on species richness

161

Kruskal-Wallis Test Rank

Local Government	Ν	Mean Rank
Ibadan North East	5	24.70
Ibadan North	19	44.74
Ibadan North West	11	25.32
lbadan South East	22	34.55
Ibadan South West	13	36.38
Total	70	

162

	Test Statistics
	Species richness
Chi-Square	8.253
Df	4
Asymp. Sig.	.083

a. Kruskal Wallis Test

b. grouping variable: local government

163

165 Table 1c: Post Hoc Test on Bird Species Richness

166

Multiple Comparisons

Dependent Variable: Species richness

Tukey HSD

					95% Co	onfidence
		Mean			Inte	erval
		Difference	Std.		Lower	Upper
(I) Local government		(I-J)	Error	Sig.	Bound	Bound
Ibadan North East	Ibadan North	-2.64	1.628	.488	-7.21	1.93
	Ibadan North West	07	1.747	1.000	-4.97	4.83
	Ibadan South East	-1.16	1.605	.950	-5.67	3.34
	Ibadan South West	-2.34	1.704	.647	-7.12	2.44
Ibadan North Local	Ibadan North East	2.64	1.628	.488	-1.93	7.21
Government	Ibadan North West	2.57	1.227	.235	87	6.01
	Ibadan South East	1.48	1.014	.593	-1.37	4.32
	Ibadan South West	.30	1.166	.999	-2.97	3.57
Ibadan North West	Ibadan North East	.07	1.747	1.000	-4.83	4.97
Local government	Ibadan North	-2.57	1.227	.235	-6.01	.87
	Ibadan South East	-1.09	1.196	.891	-4.45	2.26
	Ibadan South West	-2.27	1.327	.437	-5.99	1.46
Ibadan South East	Ibadan North East	1.16	1.605	.950	-3.34	5.67

Local Government	Ibadan North	-1.48	1.014	.593	-4.32	1.37
	Ibadan North West	1.09	1.196	.891	-2.26	4.45
	Ibadan South West	-1.17	1.133	.837	-4.35	2.00
Ibadan South West	Ibadan North East	2.34	1.704	.647	-2.44	7.12
Local Government	Ibadan North	30	1.166	.999	-3.57	2.97
	Ibadan North West	2.27	1.327	.437	-1.46	5.99
	Ibadan South East	1.17	1.133	.837	-2.00	4.35

Based on observed means.

The error term is Mean Square (Error) = 10.490.

167

169 **DETERMINATION OF SPECIES ABUNDANCE WITHIN THE METROPOLIS**

- The results in table 4.2a showed that *the mean bird abundance and standard deviation* was estimated at 64.40 ± 12.28 for Ibadan North East, 68.42 ± 31.39 for Ibadan North, 46.36 ± 9.63 for Ibadan North West, 53.68 ± 24.16 for Ibadan South East and 65.69 ± 51.26 Ibadan South West. Overall mean bird abundance and standard deviation is estimated at 59.52 ± 31.35 .
- The Kruskal-Wallis Test showed that in term of ranking the abundance of bird species, Ibadan
 North East will be rank first, followed by Ibadan North, Ibadan North west, Ibadan South east
 and Ibadan South West respectively. (See table 2b)
- The test statistics table showed a chi-square value (X^2) of 6.973 and a p-value of 0.137. At 5% S.L., the calculated p-value is .137; which is greater than 0.05. This implies that bird species abundance between the different local governments is ns.
- 180 The multiple comparisons table showed that were no statistically significant differences in bird 181 species abundance between any of the selected local government, as p-value in all the 182 comparison are greater than 5%. (See table 2c)

Table 2a: Descriptive Statistics on species abundance

Descriptive Statistics

187 Dependent Variable: Species abundance

Local Government	Ν	Mean	Std. Deviation
Ibadan North East	5	64.4000	12.28007
Ibadan North	19	68.4211	31.39058
Ibadan North West	11	46.3636	9.63611
Ibadan South East	22	53.6818	24.16291
Ibadan South West	13	65.6923	51.26465
Total	70	59.5286	31.35571

189 Table 2b: Kruskal- Wallis H Test on Bird Species Abundance

1	۵	\cap
т	9	υ

Kruskal-Wallis Test Rank

Local Government	Ν	Mean Rank
Ibadan North East	5	47.00
Ibadan North	19	42.79
Ibadan North West	11	26.27
Ibadan South East	22	32.18
Ibadan South West	13	33.85
Total	70	

191

192

	Test Statistics
	Species abundance
Chi-Square	6.973
Df	4
Asymp. Sig.	.137

a. Kruskal Wallis Test

b. grouping variable: local government

194

Table 2c

Post Hoc Test on Bird Species Abundance

Multiple Comparisons

Dependent Species Abundance

Variable:

Tukey HSD

					95% Co	onfidence
	Mean				Interval	
		Difference (I-	Std.		Lower	Upper
(I) Local	government	J)	Error	Sig.	Bound	Bound
Ibadan North East	Ibadan North	-4.0211	15.6561 3	.999	-47.9494	39.9073
	Ibadan North West	18.0364	16.8003 9	.819	-29.1026	65.1753
	Ibadan South East	10.7182	15.4321 4	.957	-32.5817	54.0181
	Ibadan South West	-1.2923	16.3915 6	1.000	-47.2841	44.6995
Ibadan North Local Government	Ibadan North East	4.0211	15.6561 3	.999	-39.9073	47.9494
	Ibadan North West	22.0574	11.8012 5	.344	-11.0548	55.1697
	Ibadan South East	14.7392	9.75539	.559	-12.6327	42.1111
	Ibadan South West	2.7287	11.2115 9	.999	-28.7290	34.1865
Ibadan North West Local government	Ibadan North East	-18.0364	16.8003 9	.819	-65.1753	29.1026
	Ibadan North	-22.0574	11.8012 5	.344	-55.1697	11.0548
	Ibadan South East	-7.3182	11.5024	.969	-39.5920	24.9556

			4			
	Ibadan South West	-19.3287	12.7608 1	.557	-55.1333	16.4759
Ibadan South East Local Government	Ibadan North East	-10.7182	15.4321 4	.957	-54.0181	32.5817
	Ibadan North	-14.7392	9.75539	.559	-42.1111	12.6327
	Ibadan North West	7.3182	11.5024 4	.969	-24.9556	39.5920
	Ibadan South West	-12.0105	10.8966 2	.805	-42.5845	18.5635
Ibadan South West Local Government	Ibadan North East	1.2923	16.3915 6	1.000	-44.6995	47.2841
	Ibadan North	-2.7287	11.2115 9	.999	-34.1865	28.7290
	Ibadan North West	19.3287	12.7608 1	.557	-16.4759	55.1333
	Ibadan South East	12.0105	10.8966 2	.805	-18.5635	42.5845

Based on observed means.

The error term is Mean Square (Error) = 970.245.

DETERMINATION OF HABITAT PARAMETERS THAT INFLUENCE BIRD SPECIES RICHNESS WITHIN IBADAN METROPOLIS

198 The test of between-subjects effects in table 3 showed whether the habitat variables (independent 199 variables) are statistically significant in assessing and influencing bird species richness within 100 Ibadan Metropolis.

201 The results revealed that there was **no** statistically significant relationship between the effect of 202 the number of **buildings** on bird species richness, F(1, 54) = 0.075, p = 0.786; there was no statistically significant relationship between the effects of the number of trees on bird species 203 204 richness, F(1, 54) = 0.450, p = 0.505; there was no statistically significant relationship between the effects of the number of masts on bird species richness, F(1, 54) = 0.323, p = 0.572; there 205 206 was no statistically significant relationship between the effects of the number of paved roads on bird species richness, F (1, 54) = 0.808, p = 0.373; there was no statistically significant 207 relationship between the effects of the number **lawns** on bird species richness, F(1, 54) = 0.090, 208 $\mathbf{p} = 0.766$; there was no statistically significant relationship between the effects of the percentage 209 210 of canopy covers on bird species richness, F(1, 54) = 0.360, p = 0.881; there was no 211 statistically significant relationship between the effects of the percentage of ground covers on bird species richness, F (1, 54) = 0.043 p = 0.836; there was no statistically significant 212 relationship between the effects of the presence of farm land on bird species richness, F (1, 54) 213 = 0.30, p = 0.863; there was no statistically significant relationship between the effects of the 214 215 number of vehicles on bird species richness, F (1, 54) = 7.437, p = 0.09; there was no 216 statistically significant relationship between the effects of the number of **pedestrians** on bird species richness, F (1, 54) = 2.744, p = 0.103; there was no statistically significant relationship 217 218 between the effects of the number of **nests** on bird species richness, F(1, 54) = 0.517, p = 0.475.

Also, **R square of 32.9%** implies that all the independent variables are not too strong in predicting or influencing model.

We can therefore conclude that there were no statistically significant interaction between all the habitat parameters/variables and bird species richness within Ibadan Metropolis. That is all the habitat parameters/ variables did not influence bird species richness within Ibadan.

224 Table 3: Test of between- Subjects Effects on Species Richness and habitat variables

225

Test of Between- Subjects Effects

Source	Type III Sum	Type III Sum df of Squares	Mean Square	F	Sig. (p-
	of Squares				value)
Corrected Model	247.093 ^a	15	16.473	1.762	.066
Intercept	317.361	1	317.361	33.952	.000
Number of Buildings	.698	1	.698	.075	.786
Number of Trees	4.202	1	4.202	.450	.505
Number of Masts	3.020	1	3.020	.323	.572
Number of Paved	7.556	1	7.556	.808	.373
Number of Lawns	.838	1	.838	.090	.766
Percentage of Canopy	2 2 6 2	1	2.262	260	551
cover	3.362	1	3.362	.360	.551
Percentage of Ground	.405	1	.405	.043	.836
cover	.405	1	.405	.045	.830
Presence of farmland	.280	1	.280	.030	.863
Number of vehicles	69.511	1	69.511	7.437	.009
Number of Pedestrians	25.651	1	25.651	2.744	.103
Number of nests	4.831	1	4.831	.517	.475
Error	504.750	54	9.347		
Total	7377.000	70			
Corrected Total	751.843	69			

226 R Squared = .329 (Adjusted R Squared = .142)

DETERMINATION OF HABITAT PARAMETERS THAT INFLUENCE BIRD SPECIES ABUNDANCE WITHIN IBADAN METROPOLIS

229 The results revealed that there was **no** statistically significant interaction between the effect of the number of **buildings** on bird species richness, F(1, 54) = 0.20, p = 0.888; there was no 230 231 statistically significant interaction between the effects of the number of trees on bird species richness, F(1, 54) = 2.181, p = 0.145; there was no statistically significant interaction between 232 the effects of the number of masts on bird species richness, F(1, 54) = 0.359, p = 0.552; there 233 234 was statistically significant interaction between the effects of the number of paved roads on bird species richness, F (1, 54) = 5.632, p = 0.021; there was no statistically significant interaction 235 between the effects of the number of lawns on bird species richness, F(1, 54) = 1.408, p =236 237 **0.241**; there was **no** statistically significant interaction between the effects of the percentage of canopy covers on bird species richness, F(1, 54) = 1.412 p = 0.240; there was no statistically 238 significant interaction between the effects of the percentage of ground cover on bird species 239 richness, F (1, 54) = 0.01, p = 0.981; there was no statistically significant interaction between 240 241 the effects of the presence of farm land on bird species richness, F(1, 54) = 0.100, p = 0.754; 242 there was statistically significant interaction between the effects of the number of vehicles on bird species richness, F (1, 54) = 5.042, p = 0.022; there was no statistically significant 243 244 interaction between the effects of the number of **pedestrians** on bird species richness, F(1, 54) =245 0.302, p = 0.585; there was no statistically significant interaction between the effects of the number of **nests** on bird species richness, F(1, 54) = 0.419, p = 0.520. The results revealed that 246 247 there were statistically significant interaction between the number of paved and the number of 248 vehicles on the bird species abundance and no statistically significant interaction in all other 249 habitat variables/parameters. (See table 4)

Also, R square of 26.2% implies that the independent variables are weak in predicting or influencing bird species abundance.

We can therefore conclude that only number of paved roads and number of vehicles exact a significant effect on bird species abundance while all other habitat variables do not exact significant influence on bird species abundance within Ibadan Metropolis. That is, all other habitat parameters/ variables did not influence bird species abundance, except numbers of paved roads and vehicles available within Ibadan metropolis.

257	Table 4:	Test of between- Subjects Effects on Species Abundance and	Habitat
258		Variables	

259

Test of Between- Subjects Effects

Source	Type III Sum of Squares	df	Mean Square	F	Sig. (p - value)
Corrected Model	17805.715	15	1187.048	1.281	.246
Intercept	5930.968	1	5930.968	6.401	.014
Number of Buildings	18.417	1	18.417	.020	.888
Number of Trees	2027.731	1	2027.731	2.188	.145
Number of Masks	332.432	1	332.432	.359	.552
Number of Paved	5218.020	1	5218.020	5.632	.021
Number of Lawns	1304.756	1	1304.756	1.408	.241
Number of Canopy cover	1308.209	1	1308.209	1.412	.240
Number of Ground cover	.531	1	.531	.001	.981
Presence of farmland	92.273	1	92.273	.100	.754
Number of vehicles	5135.375	1	5135.375	5.542	.022
Number of Pedestrians	279.845	1	279.845	.302	.585
Number of nests	388.402	1	388.402	.419	.520
Error	50033.728	54	926.551		
Total	315895.000	70			
Corrected Total	67839.443	69			

260 R Squared = .262 (Adjusted R Squared = .058)

262 4.5 PICTURES OF BIRDS SPECIES AND ACTIVITY SIGHTED IN URBAN AREAS

264 Figure 4: Common Kestrel (*Falco tinnunculus*) resting on a billboard

Figure 5: Yellow Billed Kite (*Milvus aegyptius*) brooding in a nest hung on a billboard

268 Figure 6: Pied Crow (*Corvus albus*) hovering in the sky

269

Figure 7: Yellow Billed Kite (*Milvus aegyptius*) hovering in the sky

272

Figure 8: Laughing Dove (*Streptopelia semitorquata*) resting on a roof

276 Figure 9: Speckled Pigeon (*Columba guinea*) in its roost

277

DISCUSSION

The objective of this study was to examine the impacts of urbanization on bird species richness, abundance and the influence of habitat parameters on species richness and abundance in five selected urban local governments within Ibadan Metropolis. The researchers assessed the presence of birds using QGIS software application, of a uniform grid of 500 by 500 metres installed in some strategic areas in those local governments.

A total number of fifty-six (56) different species of birds were observed at the end of the 283 284 assessment and those species were classified into Thirty (30) different family. Speckled Pigeon (Columba guinea) and Pied Crow (Corvus albus) had the highest number of individuals sighted, 285 286 which were mostly found the roost around buildings' roof. The high numbers of *C.albus* might be as a result of the availability of refuse dumps littering the local governments visited. *C.albus* 287 288 can be categorized as urban exploiters. These species have adapted to exploiting urban areas as 289 seen in their close association with human habitation and dependence on human food subsidies 290 (Labiran and Iwajomo 2018). All bird species were recorded within the surveyed grids. Few individuals of the endangered Grey Parrot Psittacus erithacus (BirdLife International 2019) were 291 292 recorded during this survey. All other species recorded are currently categorized as Least 293 Concerned under the IUCN Red List (IUCN 2018).

The Kruskal- Wallis H Test on the bird species richness revealed that the mean of Ibadan North 294 295 Local Government has the highest and was rank first, subsequently followed by Ibadan South 296 West, Ibadan South East, Ibadan North West and Ibadan North East Local Government 297 respectively. The Post Hoc Test also reveal that there were no statistically significant differences 298 in bird species richness in any of the Local Governments. This implies bird species richness does 299 not vary in size of availability from one local government to another. Our study revealed that there were no difference in species richness which might probably due to the fact that all the 300 selected local governments are urban centers and virtually the same ways of life are being 301 302 practiced as they are all found in the same metropolis.

The Kruskal- Wahills H Test on bird species Abundance within the Local Government revealed
that the mean of Ibadan North East has the highest mean rank, followed by Ibadan North, Ibadan
South West, Ibadan South East and Ibadan North West Local Governments respectively. The test

of statistics showed that there was no statistically significant difference in bird species abundance between the local governments as a whole. The post Hoc Test showed there were no statistical significant difference between each unit of the local government. This implies bird species abundance does not varies or different in size of availability from one local government to another.

The Test of Between-subjects Effects was carried out to assess the influence of habitat variables on bird species richness and bird species abundance within the metropolis. There was no statistical significant effects/interaction between all the habitat variables and species richness. This implies that habitat variables do not influence bird species richness in Ibadan Metropolis. Our observed results were different compared to Iwajomo et al. (2018), where bird species richness was significantly related to the percentage of ground cover and densities of shrubs and buildings in the study area.

Furthermore, the number of Paved roads and number of Vehicles exacted a significant effect on bird species abundance while others variables under consideration did not exact statistically significant effects on bird species abundance. Generally, bird abundance has been reported to increase in response to increase in urbanization (Tietze and Arise 2018) and this increase has been attributed to the availability of food subsidies and the reduction of predation pressure (Luck and Smallbone 2010).

Thus, this study serves as a baseline to foster future research in how bird diversity is affected by urban ecosystem in Nigeria. Since urban landscapes represent a mosaic of habitats providing diverse opportunities for birds, planning efforts should seek to create and maintain an appropriate balance of habitats that provide the most opportunities for the most species. Also, for successful urban bird conservation, there is need to address the conservation needs of birds, habitat potential of various urban landscape forms, and the needs and motivations of urban residents (Labiran and Iwajomo 2018).

331

ACKNOWLEDGEMENT

I give all the glory, honor and adoration to the Almighty God who has proved His greatness andsupport to me beyond measures during and after this research work.

My sincere appreciation goes Prof. I. A. Ayodele for his fatherly advice and concern throughout the period of this research. Profound gratitude also goes to Dr. A. T. Adeyanju for his love, relentless effort and contributions towards the successful completion of this project.

My heartfelt gratitude also goes to my ever loving and supportive parents, Mr and Mrs Adegbola, for their spiritual, moral and financial contributions. I cannot forget my paternal aunt and her husband, Surveyor and Mrs Morawo for their immense support and love. Special regards also goes to Rev. Prof. R.S Babatunde and his family, whom have been a source of support and motivation for me, thanks for the prayers and contributions.

I cannot but give due praises and appreciation to my sisters Abike Oluwadamilola Adegbola, and Oluwamayowa Susan Adegbola, for their numerous contributions at several occasions throughout my stay in the University, may the good Lord bless you more and more. I give special thanks to my cousin and her husband- Engr Bolaji and Mrs Adeola Sadik for their numerous contributions. Oyebamiji Ayokuleyin Uthman, thank you for assisting me to make this work a successful one, I am forever indebted to you. I also acknowledge Azeez Grace Jesuferanmi for her contributions to this research work even at her inconvenience.

To my course mates, the FANTABULOUS CLASS OF 40, you all are the best, I wish us all greater heights and achievements in our future endeavors. The journey would not have been funfilled and interesting without you all. Thank you for all the good and ugly times we shared, your respect and support really means a lot. I have learnt a lot and I am very grateful. You all will always be remembered.

I also appreciate the following people: Mrs Temidayo Adeyanju, Mr Michael (Love Doctor) and Ibrahim Abdullahi and everybody who have been instrumental in making this project a success.

356

357 Thank you all and God bless you.

358	REFERENCES
359	Areola A, Ikporukpo C. 2018. Social Ecology and Urban Green Spaces in Ibadan, Nigeria.
360	Journal of Applied Sciences and Environmental Management 22:
361	Blair RB. 2001. Birds and butterflies along urban gradients in two ecoregions of the U.S. In
362	Lockwood JL, McKinney ML, Eds. Biotic Homogenization. Norwell (MA): Kluwer; 33–56.
363	Birdlife International. (2019). Birdlife Data Zone. Retrieved December 23, 2019, from
364	Partnership for nature and people website: http://www.birdlife.org/
365	Gatesire T, Nyiramana DA, Seburanga JL, Mirville MO. 2015. Bird Diversity and Distribution
366	in relation to Urban Landscape Types in Northern Rwanda. Available at
367	http://www.hindawi.com/journals/tswj/2014/157824/ [Accessed on 20 December 2019]
368	Hostetler M. 1997. Scale, birds and human decisions: A potential for integrative research in
369	urban ecosystems. Lanscape and Urban Planning 45: 15–19.
370	Iwajomo S. 2018. Patterns in Bird Species Richnes and Abundance in the University of Lagos,
371	Akoka Campus. Journal of Research in Forestry, Wildlife and Environmental; 10
372	Labiran J, Iwajomo S. 2018. Factors Influencing Bird Species Richness and Abundance in
373	Surulere Local Government Area of Lagos State, Nigeria. Proceedings of 6th NSCB
374	Biodiversity Conference: Uniuyo: pp 183 - 188.
375	Lin YP, Chang CR, Chu HJ, Cheng BY. 2011. Identifying the spatial mixture distribution of
376	bird diversity across urban and suburban areas in the metropolis: A case study in Taipei
377	Basin of Taiwan. Landscape and Urban Planning 102: 156–163.
577	D usin of 101 wan. Lanascupe and 010an 1 tanung 102, 150–105.

- 378 Luck GW, Smallbone L. 2010. Species diversity and urbanization: patterns, drivers and
- implications. *Cambridge University Press* 39: 256-289.
- 380 Magle SB, Hunt VM, Vernon M, Crooks KR. 2012. Urban wildlife research: Past, present and
- future. *Biological Conservation* 155: 22–32.
- 382 McCaffrey RE, Mannan RW. 2012. How scale influences birds' responses to habitat features in
- urban residential areas. *Landscape and Urban Planning* 105: 274–280.
- McKinney ML. 2002. Urbanization, biodiversity and conservation. *Bioscience* 52: 883–890.
- Popoola A, Wahab B. 2018. Climate-induced problems and adaptation strategies of urban

farmers in Ibadan. *Ethopian Journal of Environmental Studies & Management* 11: 31–42.

- Salami RO, Von Meding JK, H Giggins. 2016. Assessing habitats of vulnerability in African
 Cities: A case of poverty outing in Ibadan Metropolis, Nigeria.
- Sol D, Gonza lez-Lagos C, Moreira D, Maspons J, L, O. 2014. Urbanisation tolerance and the
 loss of avian diversity. *Ecology Letters* 17: 942–950.
- 391 Tietze DT (eds), Arise HT. 2018. *Bird Species: How they arise, modify and vanish*. Switzerland:
 392 Springer.
- Walker JS, Balling RC, Briggs JM, Katti M, Warren PS, Wentz EA. 2008. Birds of a feather:
- Interpolating distribution patterns of urban birds. *Computers, Environment and Urban Systems* 32: 19–28.
- Wolff PJ, Degregorio BA, Rodriguez-Cruz V, Mulero-Oliveras E, Sperry JH. 2018. Bird
 community assemblage and distribution in a tropical, urban ecosystem of Puerto Rico.

Tropical Conservation Science 11.

400	TABLE OF CONTENTS	
401	Contents	Pages
402	Abstract	1
403	Keywords	1
404	Introduction	2
405	Materials and Methods	4
406	Results	10
407	Discussion	30
408	Acknowledgement	32
409	References	33
410	Tables	36
411	Appendix	38
412	Figure Legends	41

413		LIST OF TABLES	
414	Table	Title	Pages
415	1a	Descriptive Statistics on Species Richness	11
416	1b	Kruskal- Wallis H Test on Species Richness	12
417	1c	Post Hoc Test on Bird Species Richness	13
418	2a	Descriptive Statistics on Species Abundance	16
419	2b	Kruskal- Wallis H Test on Bird Species Abundance	17
420	2c	Post Hoc Test on Species Abundance	18
421	3	Test of between- Subjects Effects on Species Richness and habitat variables	21
422	4	Test of between- Subjects Effects on Species Abundance and Habitat variables	23

423

Appendix

424 SPECIES OF BIRDS OBSERVED AND THEIR GROUPING

	Family	Scientific Name	Species
425			
426	Apodidae	Apus affinis	Little Swift
427	Apodidae	Cypsiurus parvus	African Palm Swift
428	Apodidae	Telacanthura ussheri	Mottled Spinetail
429	Accipitridae	Milvus migrans	Yellow Billed Kite
430	Alcedinidae	Ceyx pictus	African Pygmy Kingfisher
431	Alcedinidae	Alcedo cristata	Malachite Kingfisher
432	Alcedinidae	Halcyon senegalensis	Woodland Kingfisher
433	Alcedinidae	Halcyon malimbica	Blue-breasted Kingfisher
434	Ardeidae	Bubulcus Ibis	Western Cattle Egret
435	Ardeidae	Ardea purpurea	Grey Heron
436	Bucerotidae	Tockus fasciatus	African Pied Hornbill
437	Bucerotidae	Tockus nasutus	African Grey Hornbill
438	Cisticolidae	Cisticola erythrops	Red-faced Cisticola
439	Columbidae	Streptopelia senegalensis	Laughing dove
440	Columbidae	Streptopelia semitorquata	Red-eyed Dove
441	Columbidae	Tutur afer	Blue-spotted Wood Dove
442	Columbidae	Columba guinea	Speckled Pigeon
443	Coraciidae	Eurystomus glaucurus	Broad-billed Roller

444	Corvidae	Corvus albus	Pied Crow
445	Corvidae	Ptilostomus afer	Piacpiac
446	Cuculidae	Centropus senegalensis	Senegal Coucal
447	Cuculidae	Centropus monachus	Blue-headed Coucal
448	Charadriidae	Vanellus spinosus	Spur-winged Lapwing
449	Dicruridae	Dicrurus adsimilis	Forked-tailed Drongo
450	Estrildidae	Estrilda melpoda	Orange-cheeked Waxbill
451	Estrildidae	Logonosticta rufopicta	Bar-breasted Fire Finch
452	Estrildidae	Spermestes cucullatus	Bronze Mannikin
453	Falconidae	Falco tinnuculus	Common Kestrel
454	Falconidae	Falco ardosiaceus	Grey Kestrel
455	Hirundinidae	Hirundo aethiopica	Ethiopian Swallow
456	Hirundinidae	Hirundo senegalensis	Mosque Swallow
457	Hirundinidae	Hirundo rustica	Barn Swallow
458	Hirundinidae	Hirundo fuligula	Rock Martin
459	Laniidae	Corvinella corvina	Yellow-billed Shrike
460	Meropidae	Merops bullockoides	White-fronted Bee Eater
461	Meropidae	Merops persicus	Blue-cheeked Bee-Eater
462	Musophagidae	Crinifer piscator	Western Plantain Eater
463	Motacillidae	Motacilla aguimp	African Pied Wagtail
464	Motacillidae	Anthus leucophrys	Plain-backed Pipit

465	Nectariniidae	Cinnyris chloropygius	Olive Bellied Sunbird
466	Nectariniidae	Cinnyris coccinigastrus	Splendid Sunbird
467	Nectariniidae	Cinnyris Superbus	Superb Sunbird
468	Nectariniidae	Hedydipna collaris	Collared Sunbird
469	Nectariniidae	Cyanomitra olivacea	Olive Sunbird
470	Phasianiidae	Francolinus bicalcaratus	Double-spurred Francolin
471	Phoeniculidae	Malimbus rubricollis	Red-headed Malimbe
472	Passridae	Passer griseus	Northern Grey-headed Sparrow
473	Phoeniculidae	Phoeniculus purpureus	Green Wood-hoopoe
474	Platysteiridae	Platysteira cyanea	Common Wattle-eye
475	Ploceidae	Ploceus cucullatus	Village Weaver
476	Pycnonotidae	Pycnonotus barbatus	Common Bulbul
477	Psittacidae	Poicephalus senegalus	Senegal Parrot
478	Sturnidae	Lamprotornis purpure us	Purple Glossy Starling
479	Sturnidae	Onychognathus fulgidus	Forest Chestnut-winged Starling
480	Sylviidae	Camaroptera brachyuran	Grey-backed Camaroptera
481	Sylviidae	Prinia subflava	Tawny-flanked Prinia
482	Turtidae	Turdus pelios	African Thrush

484	484 FIGURE LEGENDS					
485	5 Figure Title		Pages			
486	1	Map of Ibadan metropolis	5			
487	2	Map of Ibadan Metropolis, Oyo State showing communities	6			
488	3	Map showing survey grids	8			
489	4	Common Kestrel (Falco tinnunculus) resting on a billboard	24			
490	5	Yellow Billed Kite (Milvus aegyptius) brooding in a nest on a billboard	25			
491	6	Pied Crow (Corvus albus) hovering in the sky	26			
492	7	Yellow Billed Kite (Milvus aegyptius) hovering in the sky	27			
493	8	Speckled Pigeon (Columba guinea) in its roost	28			
494	9	Laughing Dove (Streptopelia semitorquata) resting on a roof	29			