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Summary 

 

Human Leukocyte Antigen (HLA) expression contributes to the activation of anti-tumor 

immunity through interactions with T cell receptors. However, pan-cancer HLA expression 

in tumors has not been systematically studied. In a retrospective analysis using the 

Cancer Genome Atlas, we quantified HLA class I and class II expression across 33 tumor 

types, which strongly correlated with infiltration of various immune cell types, expression 

of pro-inflammatory genes, and immune checkpoint markers. Patients with high HLA 

allelic diversity and gene expression had better survival. Immune microenvironments 

could be predicted using a neural network model trained on HLA expression data with 

varied survival outcomes. Furthermore, we identified a subset of tumors which 

upregulated HLA class I but not class II genes and exploited HLA-mediated escape 

strategies. Our results suggest the potential of using HLA expression data to predict 

immunogenicity. Taken together, we emphasize the crucial role of HLA upregulation in 

shaping prolonged anti-tumor immunity. 
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Highlights 

• Systematic analysis of HLA gene expression across 33 cancer types. 

• A machine learning model trained on HLA expression data predicts 

immunogenicity. 

• HLA upregulation correlates with cell-mediated immunity and improved survival. 

• A subset of highly immunogenic tumors exhibit HLA-mediated tumor escape. 

 

Introduction 

The tumor microenvironment (TME) is a hostile environment for infiltrating immune cells 

and poses significant challenges to their proper function. For instance, hypoxia and 

nutritional depletion hinder lymphocyte viability and dampen the immune response 

against tumors (Ghosh-Choudhary et al., 2020). Tumors may exploit immunosuppressive 

strategies to evade immune rejection, including the expression of immune checkpoints 

like programmed death-ligand 1 (PD-L1) and the recruitment of immune suppressor cells 

(Binnewies et al., 2018; Thommen and Schumacher, 2018). Shaped by the complex 

interactions between cellular components in the TME, the immune microenvironment 

varies significantly among patients and across tumor types. Previously, Thorsson et al. 

have clustered immuno-oncologic gene signatures of more than 10,000 tumors from The 

Cancer Genome atlas (TCGA) into six immune subtypes, C1-C6 (Thorsson et al., 2018). 

Among these immune subtypes, C2 (IFN-γ dominant) and C3 (inflammatory) are 

characterized with Type I immune response consisting of Tbet+, IFNγ-producing group 1 

innate lymphoid cells, CD8 cytotoxic T cells (Tc1), and CD4 helper 1 T cells (Th1), and 

are associated with improved patient survival (Annunziato et al., 2015). In contrast, C4 

(lymphocyte depleted) and C6 (TGF-β dominant), with low immune infiltrates and a 

macrophage-dominated TME, have the worst prognosis.  

In recent years, significant efforts have been made to study the dynamic 

components in the TME to shape immunogenically hot tumors, which are associated with 

better response to therapy and improved prognosis (Duan et al., 2020). In the antigen 

presentation pathway, the interactions between peptide/major histocompatibility complex 

(MHC) and T cell receptors (TCR) are critical in triggering adaptive immunity (Garrido et 

al., 2016). The MHC is highly polymorphic, enabling the presentation of a wide variety of 
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antigens on the cell surface (Radwan et al., 2020). In particular, the classical MHC I 

molecules (HLA-A, HLA-B, HLA-C) present endogenous antigens to CD8 T cells, and 

MHC II molecules (HLA-DR, HLA-DQ, HLA-DM) present exogenous antigens to CD4 

helper T cells (Roche and Furuta, 2015; Wieczorek et al., 2017). Whereas classical MHC 

molecules directly present antigens and trigger an adaptive immune response, the less 

polymorphic non-classical MHC I molecules (HLA-E, HLA-G) can act as inhibitory ligands 

to NK cells and contribute to immune tolerance (Halenius et al., 2015). The non-classical 

MHC II molecules (HLA-DM, HLA-DO) act as chaperones and regulate antigen 

processing and loading (Mellins and Stern, 2014). In the TME, both the expression of 

antigen-presenting MHC molecules and the generation of tumor-specific antigens 

(neoantigens) are important for effective immunity. In 2020, the FDA has approved the 

PD-1 inhibitor, pembrolizumab, in treating tumors with high tumor mutational burden 

(TMB), which have been shown to correlate with hot immune signatures and effective 

response to immune checkpoint inhibitors (ICIs) (Fan et al., 2020; Marabelle et al., 2020; 

McNamara et al., 2020). A large pool of neoantigens derived from tumor mutations trigger 

increased T cell response, shaping the formation of hot tumors (Richman et al., 2019; 

Yarchoan et al., 2017). Deep learning algorithms have been built to predict high-affinity 

MHC-neoantigen binding, which contributes to the development of neoantigen-based 

cancer vaccines (Roudko et al., 2020). On the other hand, immunohistochemistry (IHC) 

results have shown that upregulation of Human Leukocyte Antigen (HLA) class I 

expression in early-stage tumors may lead to CD8 T cell-mediated anti-tumor immunity 

(Akazawa et al., 2019). Inducement of HLA I expression in tumors by pro-inflammatory 

cytokines or by the inhibition of DNA methyltransferase can also result in strong cytotoxic 

CD8 T cell response (Luo et al., 2018; Seliger et al., 2008).  

Although these studies have demonstrated the potential role of HLA genes and 

neoantigen presentation in triggering immune-mediated tumor rejection, pan-cancer HLA 

class I and class II gene expression in various immune microenvironments has not been 

systematically studied. Here, we aimed to assess HLA class I and II gene expression in 

33 TCGA tumor types across 6 immune subtypes. We found that HLA expression was 

positively correlated with immune characteristics, and this correlation was even stronger 

than TMB, a metric widely used to evaluate immunogenicity (Strickler et al., 2021). HLA 
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allelic diversity in tumors with high HLA expression was associated with improved 

survival. Moreover, while upregulated HLA I expression was observed in most tumors 

with Type I immunity (immune subtypes C2 and C3), upregulated HLA II expression was 

uniquely seen in the inflammatory subtype (C3), and was correlated with helper T cell-

mediated immunity and improved survival. In contrast to C3, C2 tumors with upregulation 

of HLA I but not HLA II genes showed heavy DNA methylation near HLA I genes and HLA 

LOH under strong immunity, suggesting that they had undergone immunoediting and 

exploited escape mechanisms. We also took advantage of the variation in HLA 

expression levels among different immune microenvironments, and trained machine 

learning models on HLA class I and class II gene expression data to predict the cytolytic 

activity and immune subtypes with high accuracy. Our results demonstrate the crucial role 

of HLA class I and II gene upregulation in triggering effective immunity and suggest that 

HLA gene expression may be a more accurate metric than TMB to evaluate tumor 

immunogenicity.  

  

Results 

HLA genes Are Differentially Expressed in Most TCGA Tumor Types, with the 

Expression of Class I Genes Higher than Class II. 

We first assessed HLA class I and class II gene expression in all 33 TCGA tumor types. 

While most HLA class I genes are expressed ubiquitously, HLA class II expression is 

restricted to professional antigen-presenting cells (APCs) (Dendrou et al., 2018). Overall, 

most HLA class I genes demonstrated higher expression than class II genes (Figure 1A). 

Consistent with the fact that HLA-G and HLA-DO molecules have more tissue-restricted 

distribution (Carosella et al., 2003; Poluektov et al., 2013), we observed the lowest 

expression in HLA-G and HLA-DO (HLA-DOA, HLA-DOB) among class I and class II 

genes, respectively. 

We also evaluated HLA differential expression among 24 TCGA tumor types with 

RNA-seq data of matched normal tissues. Overall HLA class I and class II gene 

expression were represented as the geometric mean of transcript levels of HLA-A, HLA-

B, HLA-C, and HLA-DP (HLA-DPA1, HLA-DPB1), HLA-DQ (HLA-DQA1, HLA-DQB1), 

HLA-DR (HLA-DRA, HLA-DRB1), respectively. We observed that 10 tumor types had 
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significantly upregulated HLA class I expression and 2 had downregulated class I 

expression, while 6 tumor types had upregulated class II expression and 6 had 

downregulated class II expression (Figure 1B-C). Among them, KIRC showed the most 

upregulation of HLA class I genes and class II genes. LUSC and PAAD had the most 

downregulation of class I and class II genes, respectively. This variability in HLA gene 

differential expression is likely due to tissue of origin and reflects a difference in tumor-

specific mechanisms to regulate HLA gene expression. Also, we observed no apparent 

correlation between HLA expression and TMB (Spearman correlation, HLA-I: R=0.18, 

HLA-II: R=0.045) or neoantigen loads (HLA-I: R=0.17, HLA-II: R=0.079) (Figure S1C-F). 

This suggests that HLA gene expression could be explored as a metric independent of 

TMB or neoantigen loads to evaluate the immune microenvironment. 

           

HLA Class I and Class II Gene Expression Correlate with Tumor Immune 

Characteristics and Predict Cytolytic Activity. 

We then evaluated whether HLA expression was associated with the immune 

characteristics in tumors, including the relative abundance of infiltrating immune cells, 

proinflammatory gene signatures, and immune checkpoint signatures. Across 32 tumor 

types, both HLA class I and class II expression demonstrated a strong correlation with 

the relative abundance of CD8 cytotoxic T cells (Tc1), activated CD4 memory T cells 

(Tmem), helper 1 T cells (Th1), helper 17 T cells (Th17), regulatory T cells (Tregs), 

activated natural killer (NK) cells, macrophage 1 (M1), and a negative correlation with 

helper 2 T cells (Th2) (Figure 2A). They were also positively correlated with expression 

of pro-inflammatory genes (IDO1, CXCL9, CXCL10, STAT1, IFNG), as well as immune 

checkpoints (PDCD1, CD274, CTLA4, LAG3, TIGIT, HAVCR2). Intriguingly, HLA gene 

expression displayed a stronger correlation with the immune characteristics than TMB.  

We next explored the relationship between HLA expression levels and cytolytic 

score (CYT), a metric previously proposed by Rooney et al. to represent immune cytolytic 

activity (Rooney et al., 2015). While TMB showed weak correlation with CYT (Spearman 

correlation, R=0.2, p<2.2e-16), both HLA class I and class II expression were strongly 

associated with CYT (class I: R=0.62, class II: R=0.74, p<2.2e-16). In particular, among 

all classical and non-classical HLA I genes, HLA-E demonstrated the highest correlation 
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with CYT (R=0.69), while HLA-G showed the lowest (R=0.43) (Figure 2B). Among 

classical and non-classical HLA II genes, HLA-DQ and HLA-DR showed the highest 

correlation with CYT (R=0.73), while HLA-DM had the lowest (R=0.64). An unsupervised 

principal-component analysis (PCA) of all HLA I and HLA II expression data across 32 

tumor types showed that tumors with high cytolytic activity (top quantile) clustered 

together (Figure 2C). We also trained a random forest classifier using as features 

classical and non-classical HLA I and HLA II gene expression, and were able to classify 

samples showing strong cytolytic activity with high accuracy (AUC=0.93) (Figure S2A). 

Consistent with the strength of their correlation with CYT, HLA-DQA1, HLA-E, and HLA-

DRA1 demonstrated the highest relative feature importance as reported by the classifier, 

while HLA-G had the lowest (Figure S2B). Taken together, HLA class I and II expression 

were strongly associated with tumor immunogenicity in our study. With a random forest 

classifier, we demonstrated the potential of using HLA gene expression data to predict 

cytolytic activity.  

 

HLA Allelic Diversity in Tumors with High HLA Expression Correlates with 

Improved Survival. 

Since HLA class I molecules expressed on tumors bind antigens in their peptide-binding 

grooves to trigger T cell response, a higher diversity of a patient's HLA alleles could 

potentially allow a larger pool of neoantigens to be presented and hence increase the 

likelihood of the tumor being rejected by immunity (Pierini and Lenz, 2018). We therefore 

asked if HLA allelic diversity is correlated with tumor immunogenicity. To this end, we 

collected computational HLA typing for 8859 patients across 30 tumor types and 

estimated the biophysiochemical diversity of each patient's HLA class I alleles with the 

HLA-I evolutionary divergence (HED) score (Chowell et al., 2019). A patient homozygous 

at all three HLA I loci has a HED score of 0. The greater the functional diversity of HLA I 

alleles, the higher the patient's HED score (Figure S3A). The median HED of all patients 

was 6.66, with a low being 0 and a high being 11.54 (Figure 3A). However, we did not 

observe any correlations between HLA I allelic diversity and infiltration levels of different 

immune cell types, pro-inflammatory genes, or immune checkpoints in the TME (Figure 

S3B).  
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We reasoned that the high allelic diversity might not contribute to the presentation 

of a large neoantigen pool if HLA expression is low. Hence, we proposed that high allelic 

divergence of HLA I alleles in tumors with high HLA I expression may more efficiently 

present neoantigens and lead to tumor rejection. To test this hypothesis, we divided all 

patients into four quadrants by their HED score and HLA I expression (Figure 3B). 

Patients within Quadrant I with high HLA I expression and high HED scores demonstrated 

significantly better survival (log-rank test, HR=0.75, p=0.0015) (Figure 3C). Moreover, 

among the four quadrants, either high HLA I (Quadrant IV) or high HED (Quadrant II) 

alone did not show a significant correlation with survival (Figurer 3D). We concluded that 

high HLA I allelic diversity in tumors with high HLA I expression is associated with better 

survival. 

  

HLA Class I and Class II Genes Show Differential Expression Patterns across 

Various Immune Microenvironments with Different Survival Outcomes.         

Next, we asked if HLA genes were differentially regulated within various immune 

microenvironments in tumors. To this end, we evaluated HLA class I and II differential 

gene expression in tumors compared to their matched normal samples across six immune 

subtypes (C1-C6) previously clustered from the immune signatures in the TME (Thorsson 

et al., 2018). HLA class I expression was significantly upregulated in C2 (IFN- γ dominant) 

and C3 (inflammatory) (Wilcoxon rank-sum, p<2e-16), and was downregulated in C1 

(wound-healing) (p=0.0091) and C5 (immunologically quiet subtype) (p=0.024) (Figure 

4A, 4C). In comparison, HLA class II expression was uniquely upregulated in C3 (p=4.0e-

13), while significantly downregulated in C1 (p=8.8e-12), C4 (lymphocyte depleted) 

(p=0.0027), and C5 (p=0.030) (Figure 4B, 4C).  

We considered if HLA gene expression data could be used to predict the immune 

subtype of a given tumor sample. An artificial neural network model was trained on the 

transcriptomic data of HLA class I and class II genes from 30 tumor types to predict the 

six immune subtypes. We did not include HLA expression data from normal samples, 

because there was only one case available in C5. The model was capable to predict the 

immune subtype of tumors with high accuracy (micro-average AUC=0.94) (Figure 4D). 

Among the six immune subtypes, tumors in C3 and C5 were classified with the highest 
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accuracy (C3: AUC=0.94, C5: AUC=0.99), while tumors in C6 were classified with the 

lowest accuracy (C6: AUC=0.88). Overall, the results demonstrated that HLA class I and 

class II gene expression were highly variable and had the potential to predict different 

types of immune microenvironments in tumors.  

Since HLA class I molecules interact with CD8 T cells, while class II molecules 

interact with CD4 helper T cells, we next evaluated if HLA class I and class II gene 

upregulation were correlated with helper vs. cytotoxic T cell-mediated adaptive immunity. 

Patients were divided into 4 groups according to their HLA fold change (tumor/normal 

ratio): high HLA-I and HLA-II fold change, high HLA-I and low HLA-II fold change, low 

HLA-I and high HLA-II fold change, and low HLA-I and HLA-II fold change. Groups with 

high HLA-II fold change demonstrated significantly elevated Th1 cell fractions than the 

groups with low HLA-II fold change (Figure 4E). In comparison, high HLA I fold change 

only weakly correlated with increased Th1 cell fractions. On the other hand, high HLA-I 

and HLA-II fold change both correlated with increased cytolytic activity of Tc1 cells, yet it 

was more significantly elevated in groups with high HLA-II fold change (Figure S4A). CD8 

T cell fractions showed similar trends among the 4 groups (Figure S4B). While both the 

upregulation of HLA class I and class II genes were associated with cytotoxic T cell-

mediated immunity, our results suggest a strong correlation between HLA class II 

upregulation and helper T cell-mediated immunity, which might lead to more effective T 

cell priming and stronger cytolytic activity in the TME.  

We then asked whether HLA expression fold change could predict patient survival. 

Compared to cytolytic activity (Cox proportional hazards, HR=1.40, p=0.044), HLA class 

II fold change demonstrated a significant correlation with better survival (HR=0.60, 

p=0.004) (Figure 4F). Across the four groups defined earlier based on HLA fold change, 

two groups with high HLA-II fold change were both correlated with improved survival 

compared to the low HLA-I low HLA-II reference group (Cox proportional hazards, high 

HLA-I HLA-II: HR=0.68, p=0.018; low HLA-I high HLA-II: HR=0.74, p=0.22) (Figure S4D). 

Also, among individual tumor types, high HLA-II fold change in LUAD and BRCA was 

associated with significantly better survival (Log-rank test, LUAD: HR=0.27, p=0.0061; 

BRCA: HR=0.42, p=0.036) (Figure S4C). High HLA-II expression fold change in other 

tumor types (THCA, KIRP, UCEC, COAD, ESCA, KIRRC, LIHC, HNSC, BLCA) also 
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correlated with better survival, though the correlation was not statistically significant. Of 

note, in contrast to HLA fold change, HLA expression in tumor samples alone showed no 

correlation with survival (Cox proportional hazards, HLA I: HR=1.01, p=0.774; HLA II: 

HR=0.92, p=0.064). The results suggest that HLA fold change may be more important 

than HLA expression in determining the survival outcome. We concluded that 

upregulation of HLA class II genes was correlated with effective immune response and 

rejection of tumors, potentially contributing to a better prognosis. 

    

DNA Methylation near HLA Class I Genes Favored under Strong Cytolytic Activity 

Can Be Alleviated by Class II Gene Upregulation.  

DNA methylation near HLA genes has previously been shown to downregulate gene 

expression and dampen the immune response as a potential HLA-mediated tumor 

escape strategy (Luo et al., 2018). We first evaluated the effect of differentially methylated 

HLA class I genes on immunity. To this end, we calculated the mean β-scores across all 

CpG sites near HLA I genes and identified aberrant methylation states in tumors 

compared to the matched normal samples. Overall, there existed a significant inverse 

correlation between HLA I expression and methylation levels (Spearman correlation, R=-

0.61, p<2.2e-16). Tumors with high cytolytic activity were more hypomethylated near HLA 

I genes, whereas those with low cytolytic activity were hypermethylated (Figure 5A). 

Moreover, we observed varied HLA I methylation levels across the immune subtypes 

(Kruskal-Wallis, p<2.2e-16) (Figure 5B). Consistent with low HLA I gene expression 

observed in C1 (wound healing) and C4 (lymphocyte depleted), HLA I methylation was 

elevated in C1 and C4. Surprisingly, tumors in C2 (IFN-γ dominant) demonstrated 

significantly higher HLA I methylation compared to tumors in C3 (inflammatory) (Wilcoxon 

rank-sum, p=9.5e-6), though their HLA I expression were comparable (Figure S5A). Also, 

HLA I methylation and expression fold change were the most negatively correlated in C3 

(Spearman correlation, R=-0.70, p<2.2e-16), and the least correlated in C2 (R=-0.26, 

p=0.025) (Figure S5B). This suggests that while tumors in both C2 and C3 upregulated 

HLA I expression, C2 tumors were at the same time heavily methylated near HLA I genes.  

We specifically focused on tumors in C2 and C3, which were both defined by Type 

I immune response (Thorsson et al., 2018). The immune subtype of these tumors could 
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be predicted using a logistic regression classifier based on the mean β-scores across all 

CpG sites near HLA I genes (AUC=0.93) (Figure S5C). This result supports the 

hypothesis that HLA genes are indeed differentially methylated among tumors in C2 and 

C3, and methylation is predictive of these immune subtypes. In particular, C2 tumors with 

high cytolytic activity showed significantly heavier HLA I methylation than C3 tumors 

(Wilcoxon rank-sum, p=2.5e-16), whereas HLA I methylation was comparable between 

those with low cytolytic activity (Figure 5C). Since HLA class II genes were significantly 

upregulated in C3 (Figure S5A), we asked if higher HLA II fold change would alleviate 

HLA I methylation in tumors. To this end, we divided the samples of all immune subtypes 

into two groups based on HLA II fold change and assessed aberrant methylation states 

near HLA I genes across the groups. While most tumors with low HLA-II fold change 

exhibited hypermethylated HLA I genes, more tumors with high HLA-II fold change 

showed hypomethylated HLA I genes (Two-sided Fisher’s Exact Test: p=9.456e-10) 

(Figure 5D). Hence, we suggest that a subset of tumors with Type I immune response 

have increased HLA I methylation to evade immune recognition. Our results support that 

HLA class II gene upregulation may be a mechanism to reduce tumor escape and trigger 

effective immunity in the TME.  

          

HLA Loss of Heterozygosity (LOH) Is Associated with Worse Survival but Can Be 

Counter Balanced by High HLA Expression.  

Lastly, we evaluated how HLA LOH, another potential HLA-mediated tumor escape 

strategy, correlated with HLA expression and survival among TCGA LUAD and BRCA 

patients. To this end, we inferred HLA class I alleles’ estimated raw copy number and 

LOH with Loss of Heterozygosity in Human Leukocyte Antigen (LOHHLA) in patients fully 

heterozygous at all 3 HLA I loci (McGranahan et al., 2017). Overall, HLA LOH correlated 

with worse survival (Log-rank test, HR=1.36, p=0.025) (Figure S6A). Among BRCA 

patients, HLA LOH did not show a significant correlation with survival (HR=0.66, p=0.11), 

whereas in LUAD patients HLA LOH was correlated with worse survival (HR=1.42, 

p=0.020) (Figure S6B-C). The results suggest that the negative impact of HLA LOH in 

tumor eradication and patients’ survival likely varies across tissues and cancer types.  
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Next, we proposed that tumors with HLA LOH under strong immune selection were 

favored to evade recognition. Supporting our hypothesis, the proportion of tumors with 

high cytolytic activity harboring HLA LOH was significantly higher than that with low 

cytolytic activity (Two-sided Fisher’s exact Test, p=9.52e-8) (Figure 6A). Across the five 

immune subtypes, tumors in C2 (IFN-γ dominant) and C6 (TGF-β dominant) 

demonstrated the highest percentage of HLA LOH in BRCA and LUAD (BRCA C2: 24%, 

C6: 24%; LUAD C2: 43%, C6: 42%), while tumors in C3 (inflammatory) had the lowest 

(BRCA C3: 13%, LUAD C3: 23%;) (Figure 6B). Consistent with our observations of HLA 

I methylation, though the tumors in both C2 and C3 were characterized with Type I 

immune response, a larger fraction of C2 tumors demonstrated HLA LOH (Two-sided 

Fisher’s exact Test, BRCA: p=9.52e-3, LUAD: p=8.96e-4), suggesting potential 

immunoediting and tumor escape.  

Surprisingly, we did not find any correlation between the mean HLA I copy number 

and overall expression (Spearman correlation, R=0.098, p=0.0017), or between HLA-A, 

HLA-B, or HLA-C gene copy number and expression individually (Figure 6C, S6D-F). 

Moreover, there was no significant difference in HLA I expression between tumors with 

HLA LOH and those without LOH (Figure S6G), in contrast to what was previously 

proposed by Garrido et al. (Garrido et al., 2016). We also did not find association between 

HLA I expression fold change and LOH (Figure S6H). This suggests that HLA I expression 

at the RNA level is uncorrelated with HLA I loss at the DNA level. HLA LOH most likely 

does not downregulate HLA expression as a means of facilitating tumor escape. 

Based on the notion that HLA LOH may lead to a reduced pool of neoantigens 

being presented on the cell surface, we explored if high HLA gene expression may 

compensate for the allelic loss. To this end, we divided all fully heterozygous patients into 

groups with high HLA I expression and low HLA I expression. The group with low HLA I 

expression showed a significant correlation between HLA LOH and worse survival (Log-

rank test, HR=1.52, p=0.024). Interestingly, HLA LOH was not correlated with worse 

survival in the group with high HLA I expression (HR=1.19, p=0.40) (Figure 6D). We 

concluded that the negative impact of HLA LOH on tumor eradication might be alleviated 

by high HLA expression.  
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Discussion 

Based on the notion that HLA class I and II molecules which present antigens are 

fundamental for triggering anti-tumor immunity, we aimed to address how HLA expression 

shapes various immune microenvironments in a pan-cancer analysis of tumor types from 

TCGA. We quantified overall HLA expression using a simple expression metric of HLA 

class I and class II genes. Our analysis suggests that elevated HLA expression is likely 

to drive the formation of immunogenic tumors. Our results also demonstrate the predictive 

power of HLA gene expression data on the immune microenvironment and survival.  

We first considered if HLA expression correlates with tumor immunogenicity. HLA 

class I and class II gene expression demonstrated a strong positive correlation with 

various infiltrating immune cells, pro-inflammatory genes, and cytolytic activity. They were 

also positively associated with immune checkpoint markers, implying active self-tolerance 

mechanisms in the TME against T cell cytotoxicity. Of note, though TMB is frequently 

used to predict immunogenicity and survival, TMB showed much weaker correlation with 

the immune characteristics compared to HLA I and HLA II expression. We reasoned that 

although immune cells are more likely to recognize tumors with high mutational burden, 

neoantigens generated in tumors with high TMB but low HLA expression could not be 

presented to trigger immune activities. Hence, high HLA expression is necessary for 

effective antigen presentation, and it likely plays a greater role in inducing immune activity 

than tumor mutations. In recent years, neoantigen-based personalized cancer vaccines 

and adoptive cell therapy (ACT) are among the advanced immunotherapies to trigger 

neoantigen-specific T cell activity (Blass and Ott, 2021). Current in silico algorithms 

predict neoantigens based solely on a patient’s HLA types and tumor mutations (Lauss 

et al., 2017; Yamamoto et al., 2019). Here, we suggest that HLA expression is a crucial 

component that should be incorporated in neoantigen prediction algorithms. We further 

demonstrated that the expression levels of classical and non-classical HLA genes could 

be used to train a probabilistic classifier to predict tumors with high cytolytic activity. 

Interestingly, although the non-classical HLA-E molecule can act as an inhibitor against 

NK cells (Joosten et al., 2016; Liu et al., 2020), it showed the strongest correlation with 

cytolytic activity among class I genes and was also the most important feature in the 

Random Forest classification. HLA-E is known to play a role in both innate and adaptive 
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immunity. Whereas it inhibits NK-mediated lysis by interacting with the CD94/NKG2A 

complex on NK cells, it can present a specific pool of peptides to activate HLA-E restricted 

CD8 T cells independent of the classical HLA-restricted T cells (Joosten et al., 2016). 

Future efforts can be made to explore the specific roles of HLA-E molecules in anti-tumor 

adaptive immunity. Our results also suggest that inducing HLA expression in tumors 

systematically may trigger prolonged anti-tumor immunity and enhance the efficacy of 

immunotherapies. 

In addition to HLA gene expression, we also considered HLA allelic diversity. 

Tumors with higher HLA class I allelic diversity may present a wider pool of biochemically 

different neoantigens, encouraging immune infiltration and activation (Chowell et al., 

2019). Yet, we did not observe any significant correlations between HLA allelic diversity 

and various immune characteristics or cytolytic activity. Interestingly though, we found 

that high HLA allelic diversity in tumors expressing high levels of HLA genes correlated 

with improved survival. This suggests that high HLA allelic diversity may contribute more 

to tumor elimination through the presentation of a diverse neoantigen pool when HLA 

expression is high. Yet, the role of HLA allelic diversity alone in triggering immune 

activities is limited. One possible explanation is that high HLA gene expression despite 

low allelic diversity may still trigger immunity by presenting sufficient amounts of 

neoantigens even if the presented neoantigens are of low diversity. In contrast, high HLA 

allelic diversity, though having the potential to present a larger group of neoantigens, 

cannot compensate for low HLA expression in cells with reduced neoantigen 

presentation. 

We further evaluated HLA differential expression patterns in tumors compared to 

their matched normal tissues across six immune subtypes. A neural network model 

trained on classical and non-classical tumor HLA class I and class II expression was used 

to predict the immune subtypes of tumors with high accuracy. Tumors with Type I 

immunity (C2 and C3) showed higher HLA class I expression fold change than non-

immunogenic tumors. Interestingly, tumors in C3 had uniquely upregulated HLA II 

expression, which was not observed in other immune subtypes. While HLA I molecules 

expressed on tumors present endogenous neoantigens to CD8 cytotoxic T cells, most 

HLA II molecules expressed on professional APCs present exogenous neoepitopes to 
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CD4 helper T cells (Axelrod et al., 2019). CD4 T cell priming is essential in activating CD8 

cytotoxic T cells and forming prolonged memory (Tay et al., 2021; Thibodeau et al., 2012). 

As expected, high HLA II fold change was correlated with helper T cell-mediated 

immunity, as well as elevated cytolytic activities and CD8 Tc1 infiltration, suggesting 

effective T cell priming and activation of cytotoxic T cell-mediated immunity. Moreover, 

high HLA II fold change was correlated with improved survival. Taken together, the results 

support the crucial role of HLA class II upregulation in T cell priming and generation of 

strong cytotoxicity for tumor elimination. The expression data of HLA class I and class II 

genes may potentially be used to classify immune microenvironments and survival. 

Future work could include training classifiers using HLA expression data from ICI-treated 

cohorts to predict response to therapy.  

Strong immune selective pressure can lead to immunoediting and favor tumors 

that exploit escape strategies to evade immune recognition. Here, we considered DNA 

methylation near HLA I genes and HLA LOH as potential HLA I-mediated immune evasion 

strategies. Tumors with low cytolytic activity showed more hypermethylated HLA genes, 

hence confirming that tumors having heavy HLA methylation could dampen the immune 

response. Interestingly, among tumors with dominant Type I immunity (C2 and C3), C2 

tumors under strong cytolytic activity were more heavily methylated near HLA genes than 

those in C3. We reasoned that HLA II upregulation may effectively reduce tumor escape 

by means of HLA I gene methylation. High HLA-II fold change was associated with more 

hypomethylated HLA I genes, whereas low fold change was associated with 

hypermethylated genes. Hence, we suggest that, in addition to its role in triggering 

effective immunity, HLA II upregulation reduces immunoediting through HLA gene 

methylation. In contrast, tumors with high HLA I fold change alone (represented by C2) 

may experience strong T cell cytotoxicity in the absence of helper T cell activation, leading 

to immunoediting and eventually tumor escape.  

Finally, we assessed the role of HLA LOH in anti-tumor immunity. Overall, HLA 

LOH was correlated with worse survival. A significantly higher fraction of tumors with high 

cytolytic activity exploited HLA LOH, which supports the hypothesis that tumors with HLA 

LOH are favored under strong immune selection to evade elimination. Consistent with our 

previous finding, we again observed high fractions of tumors in C2 harboring HLA LOH, 
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suggesting that C2 tumors might have been immunoedited. While previous studies 

propose that HLA I allelic loss results in tumors evading immune recognition potentially 

through loss of allele-specific expression (Garrido et al., 2016; McGranahan et al., 2017), 

we did not observe any correlation between HLA LOH and HLA downregulation. This 

suggests that HLA LOH most likely results in tumor evasion not through downregulating 

the overall HLA expression, but by other mechanisms such as reducing the presentation 

of the most immunogenic neoantigens on the cell surface. Furthermore, we observed that 

the negative impact of HLA LOH on survival could be alleviated by increased expression 

of HLA genes. Since the overall HLA expression was not correlated with HLA LOH, this 

finding suggests a new way of rescuing the anti-tumor immune recognition in patients 

with HLA LOH. Although HLA LOH, unlike HLA gene methylation, is an irreversible hard 

lesion at the gene level, therapies that enhance the expression of HLA genes at the RNA 

and protein levels could be exploited to compensate for the reduced pool of neoantigens 

being presented. Possible future directions include inducing HLA gene expression with 

pro-inflammatory cytokines like IFN-γ in tumors with HLA LOH to evaluate if elevated 

gene expression rescues immune recognition and tumor elimination in vivo.  

Our study has several limitations. First, the HLA expression metric we used was 

transcript-based and did not take into account post-translational modification, thus might 

not accurately capture the final quantity of HLA molecules expressed on the cell surface. 

We also did not consider specific neoantigen pools in tumors that could bind to the HLA 

molecules and be presented to T cells. Nonetheless, our analysis of TCGA samples has 

emphasized the important role of HLA expression in facilitating the formation of prolonged 

immune response in tumors with improved survival. We also demonstrate the power of 

HLA expression from RNA-seq data in predicting various immune microenvironments. 

We anticipate that in the future the effect of HLA expression on the immune signatures 

could be investigated in patients receiving ICIs, which might enable us to more accurately 

predict individuals’ response to therapy.  
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Figure Legends 

 

Figure 1. HLA Expression Is Differentially Expressed across Tumor Types. (A) 

Expression of classical and non-classical HLA class I and class II genes in tumor 

samples across 33 TCGA tumor types. Expression of gene X is represented as log-

transformed Fragments per Kilobase of Transcripts per Million (FPKM). (B) HLA class I 

expression represented as the geometric mean of HLA-A, -B, -C in FPKM, and (C) HLA 

class II expression represented as the geometric mean of HLA-DP (HLA-DPA1, HLA-

DPB1), -DQ (HLA-DQA1, HLA-DQB1), -DR (HLA-DRA, HLA-DRB1) in FPKM, in tumor-

normal pairs. Boxes in the box plot represent interquartile ranges and horizontal lines 

represent 5th-95th percentile ranges. p values between the pairwise tumor-normal 

samples are calculated by Wilcoxon rank-sum test and are unadjusted. Asterisks 

denote significant FDR-adjusted (Benjamini & Hochberg method) p values (*p<0.05; 

**p<0.01; ***p<0.001).  

 

Figure 2. HLA Class I and Class II Gene Expression Are Associated with Immune 

Activity. (A) Spearman correlations between HLA class I, class II expression, TMB, and 

infiltrating immune cells (orange), pro-inflammatory genes (blue), and immune 

checkpoints (green) across 32 TCGA tumor types. Each row within a horizontal block 

represents a distinct tumor type. CD8 Tc1: CD8 cytotoxic T cells; CD4 Tmem: activated 

CD4 memory T cells; Th1: T helper 1 cells; Th2: T helper 2 cells; Th17: T helper 17 

cells; Tregs: regulatory T cells; NK: natural killer cells; M1: Macrophage 1; M2: 

Macrophage 2. (B) Spearman correlations between the expression of classical HLA 

class I HLA-A, -B, -C, non-classical HLA-E, -G, classical HLA class II HLA-DP (HLA-

DPA1, HLA-DPB1), -DQ (HLA-DQA1, HLA-DQB1), -DR (HLA-DRA, HLA-DRB1), non-

classical HLA-DM (HLA-DMA, HLA-DMB), -DO (HLA-DOA, HLA-DOB), and cytolytic 

activity (CYT). p values are calculated from Spearman’s rank correlation and are 

unadjusted. (C) Principal Component Analysis (PCA) on 32 tumor types by their 

expression of classical and non-classical HLA class I and class II genes. Principal 

Component 1 (Dim1) and Principal Component 2 (Dim2) are shown. High cytolytic 

activity (CYT high) is defined as the top 75% of all tumors’ mean CYT.  
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Figure 3. HLA-I Evolutionary Divergence (HED) Score in Tumors with High HLA 

Expression Is Associated with Improved Survival. (A) HED score distribution among 

8801 tumor samples from 30 tumor types. (B) HED score vs. HLA class I expression. 

High cytolytic activity (CYT high) is defined as the top 75% of all tumor samples. The 

vertical line represents the median HED score, and the horizontal line represents the 

90th percentile HLA class I expression. Four quadrants are defined accordingly. (C) 

Progression-free survival (PFS) by high HLA I expression and HED (Quadrant I) and 

low HLA I expression or HED (Quadrant II, III, IV). p-value, HR, and 95% confidence 

interval are calculated by the Log-rank test. (D) The hazard ratio (HR) of the effects of 

HED and HLA I expression on PFS, with low HED low HLAI as reference. Squares 

represent the HR and horizontal bars represent 95% confidence intervals. HR and p 

values are calculated from Cox Proportional-hazards Model. HED: HLA-I evolutionary 

divergence score; HLAI: HLA class I expression.  

 

Figure 4. HLA Expression Predicts the Immune Subtypes and Is Associated with 

Improved Survival. (A) HLA class I expression, and (B) HLA class II expression 

between tumors and matched normal samples across six immune subtypes, C1-C6. 

Boxes in the box plot represent interquartile ranges. P values between pairwise tumor-

normal samples are calculated by Wilcoxon rank-sum test and are unadjusted. 

Asterisks denote significant FDR-adjusted (Benjamini & Hochberg method) p values 

(*p<0.05; **p<0.01; ***p<0.001). C1: wound-healing; C2: IFN-γ dominant; C3: 

inflammatory; C4: lymphocyte-depleted; C5: immunologically quiet; C6: TGF-β 

dominant. (C) Expression fold change of classical and non-classical HLA class I and 

class II genes between tumors and matched normal samples across six immune 

subtypes. The heatmap is scaled by columns. (D) Receiver Operating Characteristic 

(ROC) curve of a neural network model. The model is trained on log-transformed 

expression levels for classical and non-classical HLA class I and class II genes and 

predicts the immune subtypes of tumors. Micro-average area under the curve (AUC) as 

well as AUC for individual immune subtype predictions are presented. (E) Helper 1 T 

cells (Th1) signatures across 4 groups based on their HLA class I and class II 
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expression fold change. High HLA I and high HLA II are defined as the top 50% of all 

tumor samples, respectively. Pairwise p values are calculated by Wilcoxon rank-sum 

test and are unadjusted. p-value across all 4 groups is calculated by the Kruskal-Wallis 

test. (F) The hazard ratio (HR) with CYT, HLA I fold change, HLA II fold change as 

explanatory variables, and PFS as the dependent variable. Squares denote the HR and 

horizontal bars represent 95% confidence intervals. HR and p-value are calculated from 

Cox Proportional-hazards Model. CYT: cytolytic activity; HLA I: HLA I expression fold 

change; HLA II: HLA II expression fold change. 

 

Figure 5. HLA Class I Methylation Is Favored in A Subset of Hot Tumors and 

Dampens Immune Activity. (A) A kernel density plot of HLA class I methylation levels 

and expression across groups with high (top 75%) or low cytolytic activity. Methylation 

level was represented as the tumor:normal ratio of mean β-scores across all CpG sites 

near HLA I genes. Correlation coefficient and p values are calculated from Spearman's 

rank correlation. CYT: cytolytic activity; Hypomethylation: HLA I methylation level < 

0.75; Hypermethylation: HLA I methylation level > 1.25. (B) HLA class I methylation 

levels across five immune subtypes (excluding C5 with no available data). Boxes in the 

violin plot represent interquartile ranges. p values between pairwise immune subtypes 

are calculated by Wilcoxon rank-sum test and are unadjusted. p-value across six 

immune subtypes is calculated by the Kruskal-Wallis test. (C) Left panel: the Spearman 

correlations between cytolytic activity (CYT) and HLA class I methylation in C2 and C3 

tumors. p values within each immune subtype are calculated from Spearman's rank 

correlation. Right panel: HLA class I methylation in tumors with high cytolytic activity 

(top 50%) across C2 and C3. p-value is calculated by Wilcoxon rank-sum test and is 

unadjusted. (D) Association between HLA II fold change and aberrant methylation 

states near HLA I genes. Two groups are defined based on HLA II fold change in all 

samples. Numbers on pie charts indicate the number of tumor samples showing 

hypermethylated or hypomethylated HLA I genes. p-value is calculated from two-sided 

Fisher's Exact Test. 
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Figure 6. HLA LOH Is Exploited by Hot Tumors with Worse Patients’ Survival. (A) 

Association between cytolytic activity and HLA LOH. Two groups are defined based on 

cytolytic activity in Tumors (high CYT: top 50%). Numbers on pie charts indicate the 

number of tumors harboring HLA LOH. p-value is calculated from two-sided Fisher's 

Exact Test. (B) Tumor samples harboring HLA LOH across five immune subtypes 

(excluding C5 with no available data) in TCGA BRCA and LUAD, respectively. 

Percentage on top of each bar represents the percent of tumor samples with HLA LOH 

within the corresponding immune subtype. (C) Spearman correlation between the mean 

copy number of HLA class I genes (HLA-A, HLA-B, HLA-C) and HLA class I expression. 

The correlation coefficient and p-value are calculated from Spearman's rank correlation. 

The allelic loss represents the number of lost HLA I alleles (raw copy number<0.5 and 

p<0.05 from LOHHLA output). (D) The hazard ratio (HR) of the effect of HLA class I 

expression on PFS. Circles represent the HR and horizontal bars represent 95% 

confidence intervals. HR and p values are calculated from the log-rank test. High HLAI: 

high HLA class I expression (top 50%); low HLAI: low HLA class I expression.  
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Methods and Materials  

 

Study Cohort and Data Acquisition 

The samples analyzed in this study include primary tumors of 33 TCGA tumor types. 

Gene-level RNA-Seq expression data, both tumor and matched normal samples, whole-

exome sequencing Bam files of LUAD tumor/normal pairs, and Methylation Array files 

from Illumina Infinium Human Methylation 450k (HM450) were obtained from GDC Data 

Portal (https://portal.gdc.cancer.gov/).  

  

Expression of HLA Genes, Pro-inflammatory Genes, and immune checkpoints in 

Tumor and Normal Samples 

FPKM reads at HLA-A (ENSG00000206503), HLA-B (ENSG00000234745), HLA-C 

(ENSG00000204525), HLA-E (ENSG00000204592), HLA-G (ENSG00000204632), 

HLA-DRA (ENSG00000204287), HLA-DRB1 (ENSG00000196126), HLA-DQA1 

(ENSG00000196735), HLA-DQB1 (ENSG00000179344), HLA-DPA1 

(ENSG00000231389), HLA-DPB1 (ENSG00000223865), HLA-DMA 

(ENSG00000204257), HLA-DMB (ENSG00000242574), HLA-DOA 

(ENSG00000204252), and HLA-DOB (ENSG00000241106) were extracted, and the 

normalized log 2 value of FPKM reads at each locus was calculated to represent the 

expression of each gene. Expression of HLA-DP, HLA-DQ, HLA-DR, HLA-DM, HLA-DO 

were represented as 

𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =
𝑙𝑜𝑔2(𝛼 + 1) + 𝑙𝑜𝑔2(𝛽 + 1)

2
 

where 𝛼 and 𝛽 represents the transcript levels of 𝛼 and 𝛽 subunits in FPKM, 

respectively. Overall tumor and normal HLA class I gene expression were measured as 

the geometric mean of HLA-A, HLA-B, and HLA-C expression in FPKM. Tumor and 

normal HLA class II gene expression was measured as the geometric mean of HLA-DRA, 

HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1, and HLA-DPB1 expression in FPKM.  

Expression of pro-inflammatory genes was represented as the log 2 value of IDO1 

(ENSG00000131203), CXCL9 (ENSG00000138755), CXCL10 (ENSG00000169245), 

STAT1 (ENSG00000115415), IFNG (ENSG00000111537) in FPKM. 
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Expression of immune checkpoints was represented as the log 2 value of PDCD1 

(ENSG00000188389), CD274 (ENSG00000120217), CTLA4 (ENSG00000163599), 

LAG3 (ENSG00000089692), TIGIT (ENSG00000181847), HAVCR2 

(ENSG00000135077) in FPKM.  

  

HLA Gene Expression Fold Change in Tumors 

HLA class I gene expression fold change was represented as 
𝑡𝑢𝑚𝑜𝑟 𝐻𝐿𝐴 𝐼 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑛𝑜𝑟𝑚𝑎𝑙 𝐻𝐿𝐴 𝐼 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
, where 

HLA I expression was represented as the geometric mean of HLA-A, HLA-B, and HLA-C 

expression in FPKM. HLA class II gene expression fold change was represented as 

𝑡𝑢𝑚𝑜𝑟 𝐻𝐿𝐴 𝐼𝐼 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑛𝑜𝑟𝑚𝑎𝑙 𝐻𝐿𝐴 𝐼𝐼 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
, where HLA II expression was represented as the geometric mean 

of HLA-DRA, HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1, and HLA-DPB1 

expression in FPKM. TCGA ACC, DLBC, LAML, LGG, MESO, OV, TGCT, UCS, and 

UVM were excluded since RNA-seq data of their matched normal tissues were not 

available. 

  

HLA Typing 

The 4-digit HLA type for each sample was acquired from Thorssen et al. (Thorsson et al., 

2018), who used OptiType software (Szolek et al., 2014) taking tumor RNA-seq fastq files 

as input. The HLA type of a subset of TCGA LUAD samples with no available HLA typing 

were inferred using HLA-HD (Kawaguchi et al., 2017) taking whole-exome sequencing 

BAM files as input. 

  

HLA Gene Methylation in Tumor and Normal Samples 

DNA methylation of HLA genes was measured as 
𝑡𝑢𝑚𝑜𝑟 𝐻𝐿𝐴 𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙 

𝑛𝑜𝑟𝑚𝑎𝑙 𝐻𝐿𝐴 𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙
, where HLA 

methylation level was represented as the mean β-scores across all CpGs near HLA I 

gene loci from the HM450 array. For each sample, HLA genes were hypermethylated if 

𝑡𝑢𝑚𝑜𝑟 𝐻𝐿𝐴 𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙 

𝑛𝑜𝑟𝑚𝑎𝑙 𝐻𝐿𝐴 𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙
> 1.25, or hypomethylated if 

𝑡𝑢𝑚𝑜𝑟 𝐻𝐿𝐴 𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙 

𝑛𝑜𝑟𝑚𝑎𝑙 𝐻𝐿𝐴 𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙
< 0.75.  
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Immune Cellular Fraction Estimates, Immune Subtypes, tumor mutational burden, 

and Cytolytic Activity. 

The immune subtype immune cellular fraction estimates, tumor mutational burden, and 

neoantigen loads were obtained from Thorssen et al. (Thorsson et al., 2018). In brief, six 

immune subtypes, C1-C6, were clustered from five immune expression signatures 

(macrophages/monocytes, overall lymphocyte infiltration, TGF-β response, IFN-γ 

response, and wound healing), based on six TCGA molecular platforms (mRNA, 

microRNA, and exome sequencing; DNA methylation-, copy number-, and reverse-phase 

protein arrays). Immune cellular fraction estimates of 22 immune cell types were inferred 

with CIBERSORT using TCGA RNA-Seq data. The resulting proportions were multiplied 

by leukocyte fractions (LF) to yield overall fraction estimates. For tumor mutational 

burden, the mutation data generated by the PanCancer Atlas consortium 

(https://gdc.cancer.gov/about-data/publications/pancanatlas) was used. Nonsilent 

mutation rate per Mb was calculated. For neoantigen prediction, neoepitopes were 

identified from single nucleotide variants (SNVs) and insertion-deletion mutations (Indels) 

using NetMHCpan v3.0 (Nielsen and Andreatta, 2016) with default settings. HLA calls 

and mutant peptides were used as inputs, and mutant peptides were identified as 

potential neoantigens if the predicted binding affinity (IC50) to autologous MHC < 500 nM 

and gene expression > 1.6 transcripts-per-million (TPM).  

         Cytolytic activity in each tumor sample was represented as cytolytic score (CYT) 

as previously proposed (Rooney et al., 2015). The expression levels of Granzyme A 

(GZMA: ENSG00000145649) and Perforin-1 (PRF1: ENSG00000180644) were 

extracted as FPKM reads from RNA-seq data. The following formula was applied to 

represent CYT: 

𝐶𝑌𝑇 =
𝑙𝑜𝑔2(𝐺𝑍𝑀𝐴 + 1) + 𝑙𝑜𝑔2(𝑃𝑅𝐹1 + 1)

2
 

 

 

Functional Divergence of HLA Alleles and Patient HED 

HED was calculated as described in (Pierini and Lenz, 2018). In brief, protein sequence 

of exons 2 and 3, namely the peptide-binding domain, of each HLA allele was extracted. 
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Protein sequences and exon annotations were obtained from the ImMunoGeneTics/HLA 

(IMGT/HLA) database (https://www.ebi.ac.uk/ipd/imgt/hla/). Pairwise alignment between 

the protein sequences of two alleles in each HLA-I locus was performed using MUltiple 

Sequence Comparison by Log-Expectation (MUSCLE) (Edgar, 2004). The Grantham 

distance was used to measure functional divergence between two alleles taking into 

account the physicochemical properties of amino acids. It was calculated as the sum of 

amino acid differences (including the biochemical composition, polarity, and volume of 

each amino acid) in the pairwise alignment along the protein sequence of peptide-binding 

domains following the formula by R. Grantham (Grantham, 1974): 

Grantham Distance = ∑ 𝐷𝑖𝑗 = ∑ [𝛼(𝑐𝑖 − 𝑐𝑗)
2

+ 𝛽(𝑝𝑖 − 𝑝𝑗)
2

+ 𝛾(𝑣𝑖 − 𝑣𝑗)
2
]

1/2
 

where 𝐷 is the Grantham distance between the aligned sequences, and 𝑖 and 𝑗 

are the amino acids at a homologous position. 𝑐, 𝑝, and 𝑣 represent biochemical 

composition, polarity, and volume of the amino acids, respectively. 𝛼, 𝛽,  and 𝛾 are 

constants as originally proposed. The Grantham distance was normalized by the length 

of the sequence alignment. Patient HED was calculated as the mean of Grantham 

distances at HLA-A, HLA-B, and HLA-C. 

  

Principal Component Analysis  

The log 2 values of classical HLA class I genes (HLA-A, HLA-B, HLA-C), non-classical 

HLA class I genes (HLA-E, HLA-G), classical HLA class II genes (HLA-DRA, HLA-DRB1, 

HLA-DQA1, HLA-DQB1, HLA-DPA1, HLA-DPB1), and non-classical HLA class II genes 

(HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB) expression in FPKM were calculated, and 

each feature was averaged within individual tumor type. The features were centered and 

projected onto principal components (PCs).  

 

Classification 

To classify tumors with high cytolytic activity, defined as the top quantile of cytolytic score, 

one-hot encoding was applied on 33 TCGA tumor type, and log 2 values of classical and 

non-classical HLA class I (HLA-A, HLA-B, HLA-C, HLA-E, HLA-G) and class II gene (HLA-

DRA, HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1, HLA-DPB1, HLA-DMA, HLA-
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DMB, HLA-DOA, HLA-DOB) expression in FPKM in tumors were used to train a random 

forest classifier with n_estimators=200 and criterion=’gini’.  

To predict the immune subtypes of all tumors, one-hot encoding was applied on 

30 TCGA tumor types; their log 2 values of classical HLA class I and class II gene 

expression in FPKM in tumors were used to train a three-layer neural network model with 

hyperbolic tangent activation function, Adam optimizer, Sparse-Categorical-Cross-

Entropy loss function, and accuracy metric. The input layer contains 128 neurons; the 

hidden layer contains 96 neurons; the output layer contains 6 neurons with SoftMax 

activation function.  

To predict the immune subtypes of tumors with Type-I immunity (C2 and C3), one-

hot encoding was performed on 20 TCGA tumor types. Classical HLA class I and class II 

gene methylation β values were used to train a logistic regression classifier with 

solver="liblinear". 

For all classifications, area under the curve (AUC) was calculated to evaluate the 

performance of the classifiers. For multiclass classification, a micro-average AUC was 

computed to account for class imbalance and evaluate the overall performance. 

 

HLA Loss of Heterozygosity (LOH) Analysis 

LOHHLA (Loss of Heterozygosity in Human Leukocyte Antigen) was used to assess HLA 

LOH in BRCA and LUAD patients. The program requires a tumor and germline BAM, 

patient-specific HLA typing, HLA fasta file, and purity and ploidy estimates. TCGA-LUAD 

purity and ploidy estimates were acquired from GDC (https://portal.gdc.cancer.gov/). The 

estimated allele 1 and allele 2 copy number for each patient 

(HLA_type1copyNum_withBAFBin, HLA_type2copyNum_withBAFBin, respectively), as 

well as a p-value (PVal_unique), were extracted from the LOHHLA output file. 

A patient is identified as fully heterozygous if the individual has distinct alleles at 

all loci of HLA-A, HLA-B, HLA-C. The classification of HLA LOH in a tumor was the same 

as originally proposed by (McGranahan et al., 2017). In specific, a tumor sample was 

identified as harboring HLA LOH if an allele’s copy number was less than 0.5 with p value 

less than 0.05. The number of allelic loss for each patient was calculated as the total 

number of alleles being classified as LOH.  
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Survival Analysis 

The values of progression-free interval (PFI) and status were used as obtained from (Liu 

et al., 2018).  

To examine the survival effect of a continuous variable x, samples were split 

equally into high-x and low-x patients and analyzed using log-rank test and Kaplan-Meier 

estimator. In HED score analysis, the variable x represents HED score and HLA class I 

gene expression. In HLA class II expression fold change analysis across individual tumor 

types, the variable x represents HLA class II fold change in tumor samples with defined 

immune subtypes. In HLA LOH analysis, all BRCA and LUAD samples were split into 

groups with high HLA I expression or low HLA I expression, and the variable x represents 

if the tumor sample harbors HLA LOH within each group.  

To compare the performance of cytolytic activity, HLA class I fold change and HLA 

class II fold change on survival prediction, as well as to compare the four groups defined 

based on HLA class I and class II expression fold change, Cox proportional-hazards 

modeling was used.  
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Supplemental Information 

 

Supplementary Figure Legends 

Figure S1. HLA Gene Expression Is Uncorrelated to TMB and Neoantigen Loads. 

(A) Correlation between HLA class I expression and TMB with Spearman's rank 

correlation coefficient and p-value. (B) Same as (A), but between HLA class II 

expression and TMB. (C) Same as (A), but between HLA class I expression and 

neoantigen loads. (D) Same as (A), but between HLA class II expression and 

neoantigen loads. 

 

Figure S2. HLA Class I and Class II Expression Data Predict Cytolytic Activity with 

High Accuracy. (A) Receiver operating Characteristic (ROC) curve of a random forest 

classifier. The random forest classifier is trained on log-transformed expression levels 

for classical and non-classical HLA class I and class II genes and predicts tumors with 

high cytolytic activity (high CYT). (B) The relative importance of classical and non-

classical HLA gene expression in the random forest classifier. All features used to train 

the classifier are listed on the y-axis.  

 

Figure S3. HED Score Is Uncorrelated to Immune Characteristics. (A) HED score 

distribution across groups of patients with different number of heterozygous HLA I loci. 

(B) Spearman’s rank correlation between HED score and immune characteristics. 

Unadjusted two-tailed p values are reported below the diagonal and adjusted p values 

(Benjamini & Hochberg method) for multiple testing are reported above the diagonal. 

Correlations not significant (p > 0.01) are marked with an X in each corresponding cell.  

 

Figure 4S. HLA Class II Upregulation Correlates with Strong Immunity and 

Improved Survival. (A) Cytolytic activity (CYT) across 4 groups based on their HLA 

class I and class II expression fold change. High HLA I and high HLA II are defined as 

the top 50% of all tumor samples, respectively. Pairwise p values are calculated by 

Wilcoxon rank-sum test and are unadjusted. p-value across all 4 groups is calculated by 

the Kruskal-Wallis test. (B) Same as (A), but with infiltration levels of CD8 cytotoxic T 
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cells. (C) The hazard ratio (HR) of the effect of high HLA class II expression fold change 

(top 50%) on PFS across 13 TCGA tumor types. Circles represent the HR and 

horizontal bars represent 95% confidence intervals. HR and p values are calculated 

from the log-rank test. (D) The hazard ratio (HR) of the effects of different HLA I and 

HLA II fold change on PFS, with low HLAI low HLAII as reference. Squares represent 

the HR and horizontal bars represent 95% confidence intervals. HR and p values are 

calculated from Cox Proportional-hazards Model. HLAI: HLA class I expression fold 

change; HLAII: HLA class II expression fold change. 

 

Figure S5. The Immune Subtypes of Tumors with Type I immune Response Can 

Be Predicted with DNA Methylation Levels near HLA Class I Genes. (A) HLA class I 

and class II expression fold change are compared between C2 and C3 tumors. p values 

are calculated by Wilcoxon rank-sum test and are unadjusted. (B) Spearman 

correlations between HLA class I (HLA-A, HLA-B, HLA-C) expression fold change and 

methylation. p values are calculated from Spearman’s rank correlation and are 

unadjusted. (C) Receiver operating Characteristic (ROC) curve of a logistic regression 

classifier. The logistic regression classifier is trained on the raw β-scores of HLA class I 

genes from DNA methylation arrays in tumor-normal pairs and predicts the immune 

subtype (C2 and C3).  

 

Figure S6. HLA LOH Contributes to Worse Survival but Does Not Downregulate 

HLA Gene Expression. (A) Progression-free survival (PFS) by HLA LOH among all 

heterozygous TCGA BRCA and LUAD patients. (B) same as (A), but among all TCGA 

BRCA patients. (C) same as (A), but among all TCGA LUAD patients. (D) Spearman 

correlation between the mean copy number of HLA-A, (E) HLA-B, (F) HLA-C, and 

expression. The correlation coefficient and p-value are calculated from Spearman's rank 

correlation. The allelic loss represents the number of lost HLA I alleles (raw copy 

number<0.5 and p<0.05 from LOHHLA output). (G) HLA class I expression, and (H) 

expression fold change, between tumors with HLA LOH and those without across BRCA 

and LUAD. p-value is calculated by Wilcoxon rank-sum test and is unadjusted.  
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Figure 1. HLA Expression Is Differentially Expressed across Tumor Types. (A) Expression of classical and 
non-classical HLA class I and class II genes in tumor samples across 33 TCGA tumor types. Expression of gene X 
is represented as log-transformed Fragments per Kilobase of Transcripts per Million (FPKM). (B) HLA class I 
expression represented as the geometric mean of HLA-A, -B, -C in FPKM, and (C) HLA class II expression 
represented as the geometric mean of HLA-DP (HLA-DPA1, HLA-DPB1), -DQ (HLA-DQA1, HLA-DQB1), -DR 
(HLA-DRA, HLA-DRB1) in FPKM, in tumor-normal pairs. Boxes in the box plot represent interquartile ranges and 
horizontal lines represent 5th-95th percentile ranges. p values between the pairwise tumor-normal samples are 
calculated by Wilcoxon rank-sum test and are unadjusted. Asterisks denote significant FDR-adjusted (Benjamini & 
Hochberg method) p values (*p<0.05; **p<0.01; ***p<0.001). 
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Figure 2. HLA Class I and Class II Gene Expression Are Associated with Immune Activity. (A) Spearman 
correlations between HLA class I, class II expression, TMB, and infiltrating immune cells (orange), pro-
inflammatory genes (blue), and immune checkpoints (green) across 32 TCGA tumor types. Each row within a 
horizontal block represents a distinct tumor type. CD8 Tc1: CD8 cytotoxic T cells; CD4 Tmem: activated CD4 
memory T cells; Th1: T helper 1 cells; Th2: T helper 2 cells; Th17: T helper 17 cells; Tregs: regulatory T cells; NK: 
natural killer cells; M1: Macrophage 1; M2: Macrophage 2. (B) Spearman correlations between the expression of 
classical HLA class I HLA-A, -B, -C, non-classical HLA-E, -G, classical HLA class II HLA-DP (HLA-DPA1, HLA-
DPB1), -DQ (HLA-DQA1, HLA-DQB1), -DR (HLA-DRA, HLA-DRB1), non-classical HLA-DM (HLA-DMA, HLA-
DMB), -DO (HLA-DOA, HLA-DOB), and cytolytic activity (CYT). p values are calculated from Spearman’s rank 
correlation and are unadjusted. (C) Principal Component Analysis (PCA) on 32 tumor types by their expression of 
classical and non-classical HLA class I and class II genes. Principal Component 1 (Dim1) and Principal 
Component 2 (Dim2) are shown. High cytolytic activity (CYT high) is defined as the top 75% of all tumors’ mean 
CYT. 
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Figure 3. HLA-I Evolutionary Divergence (HED) Score in Tumors with High HLA Expression Is Associated 
with Improved Survival. (A) HED score distribution among 8801 tumor samples from 30 tumor types. (B) HED 
score vs. HLA class I expression. High cytolytic activity (CYT high) is defined as the top 75% of all tumor samples. 
The vertical line represents the median HED score, and the horizontal line represents the 90th percentile HLA 
class I expression. Four quadrants are defined accordingly. (C) Progression-free survival (PFS) by high HLA I 
expression and HED (Quadrant I) and low HLA I expression or HED (Quadrant II, III, IV). p-value, HR, and 95% 
confidence interval are calculated by the Log-rank test. (D) The hazard ratio (HR) of the effects of HED and HLA I 
expression on PFS, with low HED low HLAI as reference. Squares represent the HR and horizontal bars represent 
95% confidence intervals. HR and p values are calculated from Cox Proportional-hazards Model. HED: HLA-I 
evolutionary divergence score; HLAI: HLA class I expression. 
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Figure 4. HLA Expression Predicts the Immune Subtypes and Is Associated with Improved Survival. (A) 
HLA class I expression, and (B) HLA class II expression between tumors and matched normal samples across six 
immune subtypes, C1-C6. Boxes in the box plot represent interquartile ranges. P values between pairwise tumor-
normal samples are calculated by Wilcoxon rank-sum test and are unadjusted. Asterisks denote significant FDR-
adjusted (Benjamini & Hochberg method) p values (*p<0.05; **p<0.01; ***p<0.001). C1: wound-healing; C2: IFN- 
dominant; C3: inflammatory; C4: lymphocyte-depleted; C5: immunologically quiet; C6: TGF- dominant. (C) 
Expression fold change of classical and non-classical HLA class I and class II genes between tumors and matched 
normal samples across six immune subtypes. The heatmap is scaled by columns. (D) Receiver Operating 
Characteristic (ROC) curve of a neural network model. The model is trained on log-transformed expression levels 
for classical and non-classical HLA class I and class II genes and predicts the immune subtypes of tumors. Micro-
average area under the curve (AUC) as well as AUC for individual immune subtype predictions are presented. (E) 
Helper 1 T cells (Th1) signatures across 4 groups based on their HLA class I and class II expression fold change. 
High HLA I and high HLA II are defined as the top 50% of all tumor samples, respectively. Pairwise p values are 
calculated by Wilcoxon rank-sum test and are unadjusted. p-value across all 4 groups is calculated by the Kruskal-
Wallis test. (F) The hazard ratio (HR) with CYT, HLA I fold change, HLA II fold change as explanatory variables, 
and PFS as the dependent variable. Squares denote the HR and horizontal bars represent 95% confidence 
intervals. HR and p-value are calculated from Cox Proportional-hazards Model. CYT: cytolytic activity; HLA I: HLA I 
expression fold change; HLA II: HLA II expression fold change.
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Two-sided Fisher’s Exact Test: p=2.64e-05
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Figure 5. HLA Class I Methylation Is Favored in A Subset of Hot Tumors and Dampens Immune Activity. (A) 
A kernel density plot of HLA class I methylation levels and expression across groups with high (top 75%) or low 
cytolytic activity. Methylation level was represented as the tumor:normal ratio of mean -scores across all CpG sites 
near HLA I genes. Correlation coefficient and p values are calculated from Spearman's rank correlation. CYT: 
cytolytic activity; Hypomethylation: HLA I methylation level < 0.75; Hypermethylation: HLA I methylation level > 
1.25. (B) HLA class I methylation levels across five immune subtypes (excluding C5 with no available data). Boxes 
in the violin plot represent interquartile ranges. p values between pairwise immune subtypes are calculated by 
Wilcoxon rank-sum test and are unadjusted. p-value across six immune subtypes is calculated by the Kruskal-
Wallis test. (C) Left panel: the Spearman correlations between cytolytic activity (CYT) and HLA class I methylation 
in C2 and C3 tumors. p values within each immune subtype are calculated from Spearman's rank correlation. 
Right panel: HLA class I methylation in tumors with high cytolytic activity (top 50%) across C2 and C3. p-value is 
calculated by Wilcoxon rank-sum test and is unadjusted. (D) Association between HLA II fold change and aberrant 
methylation states near HLA I genes. Two groups are defined based on HLA II fold change in all samples. 
Numbers on pie charts indicate the number of tumor samples showing hypermethylated or hypomethylated HLA I 
genes. p-value is calculated from two-sided Fisher's Exact Test.
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Figure 6. HLA LOH Is Exploited by Hot Tumors with Worse Patients’ Survival. (A) Association between 
cytolytic activity and HLA LOH. Two groups are defined based on cytolytic activity in Tumors (high CYT: top 50%). 
Numbers on pie charts indicate the number of tumors harboring HLA LOH. p-value is calculated from two-sided 
Fisher's Exact Test. (B) Tumor samples harboring HLA LOH across five immune subtypes (excluding C5 with no 
available data) in TCGA BRCA and LUAD, respectively. Percentage on top of each bar represents the percent of 
tumor samples with HLA LOH within the corresponding immune subtype. (C) Spearman correlation between the 
mean copy number of HLA class I genes (HLA-A, HLA-B, HLA-C) and HLA class I expression. The correlation 
coefficient and p-value are calculated from Spearman's rank correlation. The allelic loss represents the number of 
lost HLA I alleles (raw copy number<0.5 and p<0.05 from LOHHLA output). (D) The hazard ratio (HR) of the effect 
of HLA class I expression on PFS. Circles represent the HR and horizontal bars represent 95% confidence 
intervals. HR and p values are calculated from the log-rank test. High HLAI: high HLA class I expression (top 
50%); low HLAI: low HLA class I expression. 
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