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Efficient processing of sensory data requires adapting the neuronal encoding strategy to 
the statistics of natural stimuli. Humans, for instance, are most sensitive to multipoint 
correlations that vary the most across natural images. Here we show that rats possess 
the same sensitivity ranking to multipoint statistics as humans, thus extending a classic 
demonstration of efficient coding to a species where neuronal and developmental 
processes can be interrogated and causally manipulated. 

It is widely believed that the tuning of sensory neurons is determined by the need to 
efficiently represent the statistical structure of the signals they must encode1. This normative 
principle, known as efficient coding, has been successful in explaining many aspects of 
neural processing in vision2–6,  audition7,8 and olfaction9, and in accounting for general 
mechanisms that are shared across sensory modalities, such as adaptation10 and gain 
control11. At the perceptual level, strong support for the role played by efficient coding as an 
organizing principle comes from psychophysical studies showing that human sensitivity to 
visual textures defined by local multipoint correlations depends on the variability of such 
correlations across natural scenes12,13. This suggests that, as a whole, the visual system 
preferentially encodes features that are less predictable in the environment, and thus are more 
informative about its state. However, it remains unknown whether this is a general principle 
underlying perceptual sensitivity to image statistics across species. Understanding this would 
be a critical step towards determining the neural substrates of efficient coding and the role of 
postnatal visual experience in giving rise to it, as it would enable further investigation with 
invasive recording techniques and altered rearing paradigms14–16. 

To address this question, we measured rat sensitivity to visual textures defined by local 
multipoint correlations. We stayed as close as possible to the paradigm employed in previous 
human psychophysics experiments12,13, training the animals to discriminate  “white noise” 
binary visual textures from textures that contained structured noise. White noise textures 
were generated by sampling each pixel independently, setting it to black or white with equal 
probability. As such, they contained no spatial correlations. Structured textures, on the other 
hand, were designed to enable precise control over the type and intensity of the correlations 
they contained. To generate these textures we built and published a software library17 that 
implements the method developed in Victor and Conte (2012)18. Briefly, for any given type 
of multipoint correlation pattern (also termed a statistic in what follows), we sampled from 
the distribution over binary textures that had the desired probability of occurrence of that 
statistic, but otherwise contained the least amount of structure (i.e., had maximum entropy). 
The probability of occurrence of the pattern was parametrized by the intensity of the 
corresponding statistic, determined by a parity count of white or black pixels inside tiles of 1, 
2, 3 or 4 pixels (termed gliders) used as the building blocks of the texture18. When the 
intensity is zero, the texture does not contain any structure – it is the same as white noise 
(Fig. 1a, left). When the intensity is +1, every possible placement of the glider across the 
texture contains an even number of white pixels, while a level of -1 corresponds to all 
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placements containing an odd number of 
white pixels. Intermediate intensity levels 
correspond to intermediate fractions of 
gliders containing the even parity count. The 
structure of the glider dictates the appearance 
of the final texture – a 1-point glider 
produces textures with different luminance biases; a 2-point glider produces oriented edges; a 
3-point glider produces L-shape patterns; and a 4-point glider produces rectangular blocks 
(see Fig. 1a, right for examples of textures, with the corresponding glider shown on the right). 

For each of these 1- to 4-point image statistics, we trained a group of rats to discriminate 
between white noise and textures containing that statistic with an intensity greater than zero 
(Fig. 1a). The experiment had four phases (see Methods): 1) an initial learning phase, where 
we used a single intensity level of the statistic, close to the maximum (between 0.85 and 
0.95); 2) an additional training phase, where we introduced a new, lower level of the statistic 
every time the rat achieved a certain criterion performance on the previous level using a 
staircase procedure; 3) a main testing phase, where textures were sampled at regular intervals 
along the intensity level axis and were randomly presented to the rats; and 4) a further testing 
phase, where rats originally trained with a given statistic were probed with a different one. 
Each trial of the experiment started with the rat autonomously triggering the presentation of a 
stimulus by licking the central response port within an array of three (Fig.1b). The animal 

Fig. 1 | Visual stimuli and behavioral task. a, 
Schematic of the four kinds of texture 
discrimination tasks administered to the four 
groups of rats in our study. Each group had to 
discriminate unstructured binary textures 
containing white noise (example on the left) 
from structured binary textures containing 
specific types of local multipoint correlations 
among nearby pixels (i.e., 1-, 2-, 3- or 4-point 
correlations; examples on the right).  The 
textures were constructed to be as random as 
possible (maximum entropy), under the 
constraint that the strength of a given type of 
correlation matched a desired level. The 
strength of a correlation pattern was quantified 
by the value (intensity) of a corresponding 
statistic (see main text), which could range 
from 0 (white noise) to 1 (maximum possible 
amount of correlation). The examples shown 
here correspond to intensities of 0.85 (1- and 2-
point statistics) and 0.95 (3- and 4-point 
statistics). b, Schematic representation of a 
behavioral trial. Left and center: animals 
initiated the presentation of a stimulus by 
licking the central response port placed in front 
of them. This prompted the presentation of 
either a structured (top) or an unstructured 
(bottom) texture. Right: in order to receive the 
reward, animals had to lick either the left or 
right response port to report whether the 
stimulus contained the statistic (top) or the 
noise (bottom).  
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then reported whether the texture displayed over the monitor placed in front of him contained 
the statistic (by licking the left port) or white noise (by licking the right port). The rat 
received liquid reward for correct choices and was subjected to a time-out period for incorrect 
ones (Fig. 1b).  

The main test phase yielded psychometric curves showing the sensitivity of each animal in 
discriminating white noise from the structured texture with the assigned statistic (example in 
Fig. 2a, black dots). To interpret results, we developed an ideal observer model, in which the 
presentation of a texture with a level of the statistic equal to s produces a percept x sampled 
from a truncated Gaussian distribution centred on the actual value of the statistic (s) with a 
fixed standard deviation σ that only depends on the identity of the animal19,20. Here, σ 
measures the “blurriness” in the animal’s sensory representation for a particular type of 
statistic (i.e., the perceptual noise) and, consequently, its inverse 1/σ captures its resolution, 
or sensitivity. This resolution determines the perceptual threshold for discriminating a 
structured texture from white noise, because the statistic s must be at least a distance ~σ away 
from 0 in order to be perceived as different from an unstructured image. The support of the 
truncated Gaussian was constrained to the interval [-1,1], as the value of a statistic is limited 
to that range by construction. We assumed that each rat had its own bias α, so that the 
animal’s prior probability of white noise presentation is 𝑝(𝑠 = 0) = !

!"#!"
, and the prior 

probability of patterned texture is 𝑝(𝑠 > 0) = !
$(!"#")

 for each of the K nonzero levels of the 

statistic. Given these assumptions, for each percept x we can define a decision variable 
𝐷(𝑥) = 𝑙𝑛 '(()*|,)

'((-*|,)
, where 𝑝(𝑠 = 0|𝑥) and 𝑝(𝑠 > 0|𝑥) are the posterior probabilities of a 

given percept x being produced by a white noise pattern (s = 0) or by a structured texture (s > 
0). In our model, the rat always reports the most likely answer, so the answer is “noise” when 
D>0 and “structured texture” otherwise. From D(x) we can derive the psychometric function 
giving the probability of responding “noise” at any given level of the statistic s as  

𝑝(𝑟𝑒𝑝𝑜𝑟𝑡𝑛𝑜𝑖𝑠𝑒|𝑠) =
./#

∗(",')!)
' 01./!*!)' 0

./*!)' 01./!*!)' 0
,  

where Φ(x) is the standard Normal cumulative density function and x*(α,σ) is the value of x 
such that D(x*)=0.  In other words, x* is the decision boundary used by the animal to divide 
the perceptual axis into “noise” and “structured texture” regions (see Methods). The 
psychometric function has a sigmoidal shape, which is characterized by the two free 
parameters of the model (α and σ) that can be estimated from the behavioral data by 
maximum likelihood (a psychometric function fitted to the choices of an example rat is 
shown in Fig. 2a, blue curve). The prior bias α is related to the horizontal offset of the curve, 
while the sensitivity 1/σ is related to its slope (see Methods for an example which makes this 
intuition more precise). 
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Fitting this model to the behavioral choices of rats in the four groups led to psychometric 
functions with a characteristic shape, which depended on the order of the multipoint statistic 
an animal had to discriminate (Fig. 2b). In particular, focusing on the values obtained for σ 
revealed the presence of a specific ranking among the groups. This is shown in Fig. 2c, where 
we report the sensitivity 1/σ for the individual rats within each group (dots), as well as their 
group averages (diamonds). We found that the sensitivity to 1- and 2-point correlations was 
higher than the sensitivity to both 3-point (p1<0.001 and p2<0.001, two sample t-test with 
Holm-Bonferroni correction) and 4-point (p1<0.001, p2<0.001) correlations. In addition, the 
sensitivity to 4-point correlations was higher than that to 3-point correlations (p<0.01).  

To further validate these findings, we performed additional within-group and within-subject 
comparisons. To this end, each group of animals was either tested with a new statistic (e.g., 
all 7 rats originally trained/tested with 3-point correlations were tested with 4-point) or was 
split into two subgroups, each tested with a different statistic (e.g., 8 of the 11 rats originally 
trained/tested with 4-point correlations were tested with 3-point, while the remaining 3 
animals were tested with 2-point). Results of these additional experiments are reported in Fig. 
3, where the average sensitivity of each group when tested on the statistic they learned first 
(i.e., same data as in Fig. 2c) is shown along with the sensitivity of the same group (or two 
subgroups) when tested with the new statistic(s) (error bars are SEM). Rats trained on 1- and 
2-point statistics (to which animals were found to be more sensitive; see Fig. 2c) performed 
poorly when asked to generalize to higher-order correlations (compare green and purple dots 
with red and blue dots on the left half of Fig. 3), while animals trained on the 4-point statistic 
performed on 2-point correlations as well as rats that were originally trained on those textures 
(compare blue dots). This shows that the better discriminability of textures containing lower-
order correlations is a very robust phenomenon, which is independent of the history of 
training and is observable within individual subjects. Moreover, now comparing 3- and 4-

Fig. 2 | Rat sensitivity to multipoint correlations. a, Psychometric data for an example rat trained 
on 2-point correlations. Black dots: fraction of trials in which a texture with the corresponding 
intensity of the statistic was correctly classified as “structured”. Empty black circle: fraction of trials 
the rat has judged a white noise texture as containing the statistic. Blue line: psychometric function 
corresponding to the fitted ideal observer model (see main text). b, Psychometric functions obtained 
for all the rats tested on the four statistics (n indicates the number of animals in each group). c, 
Values of the perceptual sensitivity 1/σ to each of the four statistics. Filled dots: individual rat 
estimates. Empty diamonds: group averages. The dashed line emphasizes the sensitivity ranking 
observed for the four statistics. Significance markers ** and *** indicate, respectively, p < 0.01 and p 
< 0.001 for a two-sample t-test with Holm-Bonferroni correction. 
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points correlations, generalization to 4-point 
discrimination always led to higher 
performance than generalization to 3-point 
(green dots are all above purple dots), 
independently of the statistic on which the 
animal was initially trained. In particular, the 7 
rats switching from the 3-point to the 4-point 
statistic showed slightly but significantly 
higher sensitivity for the latter, despite the extensive training they had received with the 
former (p < 0.05, paired one-tailed t-test). Vice versa, the 8 rats switching from the 4-point to 
the 3-point statistic displayed significantly higher sensitivity for the former (p < 0.01, paired 
one-tailed t-test). This confirms that the larger discriminability of the 4-point statistic, as 
compared to the 3-point one, is a small but statistically robust phenomenon within individual 
subjects. 

Overall, our results  (Fig. 2 and 3) show that rat sensitivity to multipoint statistics is similar to 
that observed in humans and matches their variability across natural images12,13. As such, our 
findings are the first demonstration that a rodent species and humans are similarly adapted to 
process the statistical structure of visual textures. This attests to the fundamental role of the 
statistics of the natural world in shaping visual processing across species and opens a path 
towards a causal test of the efficient coding principle through altered-rearing experiments14–

16. 

Author contributions. Conceptualization: RC, EP, VB, DZ. Data curation: RC. Formal 
analysis: RC, EP. Funding acquisition: VB, DZ. Investigation: RC, AC, AB. Methodology: 
RC, EP, DZ. Project administration: DZ. Resources: DZ. Software: EP. Supervision: VB, DZ. 
Visualization: RC. Writing – original draft: RC. Writing – review & editing: RC EP VB DZ. 

Fig. 3 | Rat sensitivity to multipoint 
correlations – dependence on 
training history and within-subject 
analysis. Colored dots connected by the 
dashed line show the sensitivities of the four 
groups of rats to the statistics (indicated in 
abscissa) they were originally trained on (i.e., 
same data as the colored diamonds in Fig. 
2c). The other dots show the sensitivities 
obtained when subgroups of rats originally 
trained on a given statistics (indicated in 
abscissa) were tested with different statistics. 
Specifically: 1) out of the nine rats originally 
trained/tested with 1-point correlations (red 
dot), four were tested with 3-point (purple 
dot) and four with 4-point (green dot) 
correlations (1 rat did not reach this test 
phase); 2) out of the nine rats originally 
trained/tested with 2-point correlations (blue 
dot), five were tested with 3-point (purple dot) 
and four with 4-point (green dot) correlations; 
3) out of the eight rats originally 
trained/tested with 3-point correlations 
(purple dot), seven were tested with 4-point 
(green dot) correlations (1 rat did not reach 
this test phase); and 4) out of the eleven rats 
originally trained/tested with 4-point 
correlations (green dot), eight were tested 
with 3-point (purple dot) and three with 2-
point correlations (blue dot).  
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Methods

M.1 Psychophysics experiments
Subjects. A total of 42 male adult Long Evans rats (Charles River Laboratories) were tested
in a visual texture discrimination task. Animals started the training at 10 weeks, after 1 week of
quarantine upon arrival in our institute and 2 weeks of handling to familiarize them with the experi-
menters. Their weight at arrival was approximately 300g and they grew to over 600g over the time
span of the experiment. Rats always had free access to food but their access to water was restricted
in the days of the behavioral training (5 days a week). They received 10–20ml of diluted pear juice
(1:4) during the execution of the discrimination task, after which they were also given free access
to water for the time needed to reach at least the recommended 50ml/Kg intake per day.
The number of rats was chosen in such a way to yield meaningful statistical analyses (i.e., to
have about 10 subjects for each of the texture statistic tested in our study), under the capacity con-
straint of our behavioral rig. The rig allows to simultaneously test 6 rats, during the course of 1-1.5
hours21,22. Given the need for testing four different texture statistics, we started with a first batch
of 24 animals (i.e., 6 per statistics), which required about 6 h of training per day. This first batch
was complemented with a second one of 18 more rats, again divided among the four statistics (see
below for details), so as to reach the planned number of about 10 animals per texture type. The first
batch arrived in November 2018 and was tested throughout most of 2019; the second group arrived
in September 2019 and was tested throughout most of 2020. In the first batch, 4 animals did not
reach the test phase (i.e., the phase yielding the data shown in Fig. 2), because three of them did
not achieve the criterion performance during the initial training phase (see below) and one died
shortly after the beginning of the study. In the second batch one rat died before reaching the test
phase and two more died before the last test phase with switched statistics (i.e., the phase yielding
the data of Fig. 3).
All animal procedures were conducted in accordance with the international and institutional stan-
dards for the care and use of animals in research and were approved by the Italian Ministry of
Health and after consulting with a veterinarian (Project DGSAF 25271, submitted on December 1,
2014 and approved on September 4, 2015, approval 940/2015-PR).

Experimental setup. Rats were trained in a behavioral rig consisting of two racks, each equipped
with three operant boxes (a picture of the rig and a schematic of the operant box can be found in
previous studies21,22). Each box was equipped with a 21.5” LCD monitor (ASUS VEZZHR) for
the presentation of the visual stimuli and an array of three stainless-steel feeding needles (Cadence
Science), serving as response ports. To this end, each needle was connected to a led-photodiode
pair to detect when the nose of the animal approached and touched it (a Phidgets 1203 input/output
device was used to collect the signals of the photodiodes). The two lateral feeding needles were
also connected to computer-controlled syringe pumps (New Era Pump System NE-500) for deliv-
ery of the liquid reward. In each box, one of the walls bore a 4.5 cm-diameter viewing hole, so that
a rat could extend its head outside the box, face the stimulus display (located at 30 cm from the
hole) and reach the array with the response ports.

Visual stimuli. Maximum-entropy textures were generated using the methods described by Vic-
tor and Conte18. To this end, we implemented a standalone library and software package that we
have since made publicly available as free software17. In the experiment, we used white noise
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textures as well as textures with positive levels of four different multipoint statistics (Fig. 1a). In
the nomenclature established by Victor and Conte18, these are γ , β , θ and α , corresponding to,
respectively, 1-, 2-, 3- and 4-point correlations. It should be noted that, with the exception of the
extreme value of the γ statistic (γ = 1 corresponds to a fully white image), the intensity level of
a given statistic does not specify deterministically the resulting texture image. In our experiment,
for any intensity level of each statistic, multiple, random instances of the textures were built to be
presented to the rats during the discrimination task (see below for more details).
Subjects had to discriminate between visual textures containing one of the 4 selected statistics and
white noise. Each texture had a size of 39x22 pixels and occupied the entire monitor (full-field
stimuli). The pixels had a dimension of about 2 degrees of visual angle. Given that the maximal
resolution of rat vision is about 1 cycle per degree23,24,25, such a choice of the pixel size guaran-
teed that the animals could discriminate between neighboring pixels of different color. Textures
were showed at full-contrast over the LCD monitors that were calibrated in such a way to have min-
imal luminance of 0.126±0.004 cd/mm22(average ± SD across the six monitors), mean luminance
of 42±5 cd/mm22, maximal luminance of 129±5 cd/mm22and an approximately linear luminance
response curve.

Discrimination task. As shown in Fig. 1b, each rat was trained to: 1) touch the central response
port to trigger stimulus presentation and initiate a behavioral trial; and 2) touch one of the lateral
response ports to report the identity of the visual stimulus and collect the reward (all the animals
were trained with the following stimulus/response association: structured texture→ left response
port; white noise texture→ right response port). The stimulus remained on the display until the
animal responded or for a maximum of 5 seconds, after which the trial was considered as ignored.
In case of a correct response the stimulus was removed, a positive reinforcement sound was played
and a white (first animal batch) or gray (second batch) background was shown during delivery of
the reward. In case of an incorrect choice, the stimulus was removed and a 1-3s time-out period
started, during which the screen flickered from middle-gray to black at a rate of 10 Hz, while a
“failure” sound was played. During this period the rat was not allowed to initiate a new trial. To
prevent the rats from making impulsive random choices, trials where the animals responded in less
than 300 or 400 ms were considered as aborted: the stimulus was immediately removed and a brief
sound was played. In each trial, the visual stimuli had the same probability (50%) of being sampled
from the pool of white noise textures or from the pool of structured textures, with the constraint
that stimuli belonging to the same category were shown for at most n consecutive trials (with n
varying between 2 and 3 depending on the animal and on the session), so as to prevent the rats
from developing a bias towards one of the response ports.
Stimulus presentation, response collection and reward delivery were controlled via workstations
running the open source suite MWorks (https://mworks.github.io).

Experimental design. Each rat was assigned to a specific statistic, from 1- to 4-point, for which
it was trained in phases I and II and then tested in phase III. Generalization to a different statistic
from the one the rat was trained on was assessed in phase IV. Out of the 42 rats, 9 were trained
with 1-point statistics, 9 with 2-point, 12 with 3-point and 12 with 4-point. The animals that
reached phase III were 9, 9, 8 and 11, respectively, for the four statistics.

Phase I. Initially, rats were trained to discriminate unstructured textures made of white noise
from structured textures containing a single high-intensity level of one of the statistics (for 1-point
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and 2-point: 0.85; for 3-point and 4-point: 0.95). To make sure that the animals learned a general
distinction between structured and unstructured textures (and not between specific instances of
the two stimulus categories), in each trial both kinds of stimuli were randomly sampled (without
replacement) from a pool of 350 different textures. Since the rats typically performed between 200
and 300 trials in a training session, every single texture was not shown more than once. A different
pool of textures was used in each of the five days within a week of training. The same five texture
pools were then used again (in the same order) the following week. Therefore, at least 7 days had
to pass before a given texture stimulus was presented again to a rat.
For the first batch of rats, we moved to the second phase of the experiment all the animals that
were able to reach at least an average performance of 65% correct choices over a set of 500 trials
(collected across a variable number of consecutive sessions). Based on this criterion, 2 rats tested
with 3-point textures and 1 rat tested with 4-point textures were excluded from further testing.
For the second batch of rats, we decided to admit all the animals to the following experimental
phases after a prolonged period of training in the first phase. In fact, we reasoned that, in case some
texture statistic was particularly hard to discriminate, imposing a criterion performance in the first
phase of the experiment would bias the pool of rats tested with such very difficult statistic towards
including only exceptionally proficient animals. This in turn, could lead to an overestimation of
rat typical sensitivity to such difficult statistic. On the other hand, the failure of a rat to reach a
given criterion performance could be due to intrinsic limitations of its visual apparatus (such as
a malfunctioning retina or particularly low acuity). Therefore, to make sure that our result did
not depend on including in our analysis some animals of the second batch that did not reach 65%
correct discrimination in the first training phase, the perceptual sensitivities were re-estimated
after excluding those rats (i.e., after excluding 1 rat from the 2-point, 3 rats from the 3-point and
1 from the 4-point groups). As shown in Supplementary Fig. 1, the resulting sensitivity ranking
was unchanged (compare to Fig. 1c) and all pairwise comparisons remained statistically significant
(two sample t-test with Holm-Bonferroni correction).

Phase II. In this phase, we introduced progressively lower levels of intensity of each statistic,
bringing them gradually closer to the zero-intensity level corresponding to white noise. To this
end, we applied an adaptive staircase procedure to update the minimum level of the statistic to
be presented to a rat based on its current performance. Briefly, in any given trial, the level of the
multipoint correlation in the structured textures was randomly sampled between a minimum level
(under the control of the staircase procedure) and a maximum level (fixed at the value used in
phase I). Within this range, the sampling was not uniform, but was carried out using a geometric
distribution (with the peak at the minimum level), so as to make much more likely for rats to be
presented with intensity levels at or close to the minimum. The performance achieved by the rats
on the current minimum intensity level was computed every ten trials. If such a performance was
higher than 70% correct, the minimum intensity level was decreased by a step of 0.05. By contrast,
if the performance was lower than 50%, the minimum intensity level was increased of the same
amount.
This procedure allowed the rats to learn to discriminate progressively lower levels of the statistic in
a gradual and controlled way. At the end of this phase, the minimum intensity level reached by the
animal in the three groups was: 0.21 ± 0.12, 0.2 ± 0.2, 0.70 ± 0.22, and 0.56 ± 0.18 (group average
± SD) for, respectively, 1-, 2-, 3- and 4-point correlations.
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Phase III. After the training received in phases I and II, the rats were finally moved to the main
test phase, where we measured their sensitivity to the multipoint correlations they were trained
on. In each trial of this phase, the stimulus was either white noise or a patterned texture with equal
probability. If it was a patterned texture, the level of the statistic was randomly selected from the
set {0.02, 0.09, 0.16, . . . , 0.93, 1} (i.e., from 0.02 to 1 in steps of 0.07) with uniform probability.
The responses of each rat over this range of intensity levels yielded psychometric curves (see ex-
ample in Fig. 2a), from which rat sensitivity was measured by fitting the Bayesian ideal observer
model described below (Fig. 2b and c).

Phase IV. To verify the sensitivity ranking observed in phase III, we carried out an additional
test phase, where each rat was tested on a new statistic, which was different from the one the ani-
mal was previously trained and tested on. The two groups of rats that were originally trained with
the statistics yielding the highest sensitivity in phase III (i.e., 1- and 2-point correlations; see Fig.
2c) were split in approximately equally-sized subgroups and each of these subgroups was tested
with the less discriminable statistics (i.e., 3- and 4-point correlations; leftmost half of Fig. 3). This
allowed assessing that, regardless of the training history, sensitivity to 4-point correlations was
slightly but consistently higher than sensitivity to 3-point correlations. For the group of rats orig-
inally tested with the 3-point statistic, all the animals were switched to the 4-point (third set of
points in Fig. 3). This allowed comparing the sensitivities to these statistics at the within-subject
level (notably, these rats were found to be significantly more sensitive to the 4-point textures than
to the 3-point, despite the extensive training they had received with the latter). For the same reason,
most of the rats (8/11) of the last group (i.e., the animals originally trained/tested with the 4-point
correlations; last set of points in Fig. 3) were switched to the 3-point statistic, which yielded again
the lowest discriminability. A few animals (3/11) were instead tested with the 2-point statistic,
thus verifying that the latter was much more discriminable than the 4-point one (again, despite the
extensive training the animals of this group had received with the 4-point textures).

Data availability. Experimental data will be made freely and permanently available at 26 upon
completion of peer review.

M.2 Ideal observer model
In this section we describe the ideal observer model we used to estimate the sensitivity of the rats
to the different textures. The approach is a standard one and is inspired by that in 19. Because our
intention is to use an ideal observer as a model for animal behavior, we will write interchangeably
“rat”, “animal”and “ideal observer” in the following.

M.2.1 Preliminaries

The texture discrimination task is a two-alternative forced choice (2AFC) task, where the stimulus
can be either a sample of white noise or a sample of textured noise, and the goal of the animal
is to correctly report the identity of each stimulus. On any given trial, either stimulus class can
happen with equal probability. The texture class is composed of K discrete, positive values of the
texture. In practice, K = 14, and these values are {0.02,0.09, . . . ,0.93,1}, but we’ll use a generic
K in the derivations for clarity. The texture statistics are parametrised such that a statistic value of
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zero corresponds to white noise. Therefore, if we call s the true level of the statistic, the task is a
parametric discrimination task where the animal has to distinguish s = 0 from s > 0.

M.2.2 Key assumptions

1. each trial is independent from those preceding and following it (both for the generated tex-
ture and for the animal’s behavior);

2. on any given trial, the nominal (true) value of the statistic is some value s. Because the tex-
ture has finite size, the empirical value of the statistic in the texture will be somewhat differ-
ent from s. We lump this uncertainty together with that induced by the animal’s perceptual
process, and we say that any given trial results on the production of a percept x, sampled
from a truncated Normal distribution centered around the nominal value of the statistic and
bounded between a =−1 and b = 1:

p(x|s,σ ,a,b) =
1
σ

φ

(
x−s
σ

)
Φ

(
b−s
σ

)
−Φ

(
a−s
σ

)
where φ(·) is the probability density function of the standard Normal and Φ(·) is its cumula-
tive density function. Setting the bounds to -1 and 1 allows us to account for the fact that the
value of a statistic is constrained within this range by construction. We will keep a and b in
some of the expressions below for generality and clarity, and we will substitute their values
only at the end.

3. we assume that each rat has a certain prior over the statistic level that we parametrise by the
log prior odds:

α := ln
p(s = 0)
p(s > 0)

Where α depends on the rat. More specifically, we assume that each rat assigns a prior prob-
ability p(s = 0) = 1/(1+ e−α) to the presentation of a noise sample, and a probability of
1/[K(1+ eα)] to the presentation of a texture coming from any of the K nonzero statistic
values. In formulae:

p(s) =
δs,0

1+ e−α
+

1
K

K

∑
k=1

δs,sk

1+ eα

where δ is Kronecker’s delta, and sk > 0,k ∈ {1, . . . ,K} are the K possible nonzero values
of the statistic. Note that this choice of prior matches the distribution actually used in gener-
ating the data for the experiment, except that α is a free parameter instead of being fixed at
0.

4. we assume that the true values of α , σ , a and b are accessible to the decision making process
of the rat.

M.2.3 Derivation of the ideal observer

For a particular percept, the ideal observer will evaluate the posterior probability of noise vs texture
given that percept. It will report “noise” if the posterior of noise is higher than the posterior of
texture, and “texture” otherwise.
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More in detail, for a given percept x we can define a decision variable D as the log posterior ratio:

D(x) := ln
p(s = 0|x)
p(s > 0|x)

= ln
p(x|s = 0)
p(x|s > 0)

+ ln
p(s = 0)
p(s > 0)

(1)

With this definition, the rat will report “noise” when D > 0 and “texture” otherwise.
By plugging in the likelihood functions and our choice of prior, we get

D(x) = α + ln

 1
σ

φ(x/σ)

Φ

(
b
σ

)
−Φ

(
a
σ

)
− ln

 1
K ∑

k

1
σ

φ

(
x−sk

σ

)
Φ

(
b−sk

σ

)
−Φ

(
a−sk

σ

)
 (2)

Now, remember that given a value of the percept x, the decision rule based on D is fully determinis-
tic (maximum a posteriori estimate). But on any given trial we don’t know the value of the percept
— we only know the nominal value of the statistic. On the other hand, our assumptions above spec-
ify the distribution p(x|s) for any s, so the deterministic mapping D(x) means that we can compute
the probability of reporting “noise” as

p(report noise|s) = p(D > 0|s) =
∫

x:D(x)>0
p(x|s)dx (3)

We note at this point that D(x) is monotonic: indeed,

dD(x)
dx

=− x
σ2+

−

 1
K ∑

k

exp
[
− (x−sk)

2

2σ2

]
Φ

(
b−sk

σ

)
−Φ

(
a−sk

σ

)

−1

1
K ∑

k

exp
[
− (x−sk)

2

2σ2

](
−x−sk

σ2

)
Φ

(
b−sk

σ

)
−Φ

(
a−sk

σ

)

=−

 1
K ∑

k

exp
[
− (x−sk)

2

2σ2

]
Φ

(
b−sk

σ

)
−Φ

(
a−sk

σ

)

−1

1
K ∑

k

exp
[
− (x−sk)

2

2σ2

]
sk
σ2

Φ

(
b−sk

σ

)
−Φ

(
a−sk

σ

)
< 0 for all x

(4)

where for the last inequality we have used the fact that a < b and therefore Φ((b− sk)/σ) >
Φ((a− sk)/σ). This result matches the intuitive expectation that a change in percept in the pos-
itive direction (i.e., away from zero) should always make it less likely for the observer to report
“noise”.
Because D(x) is monotonic, there will be a unique value of x such that D(x) = 0, and the integration
region x : D(x) > 0 will simply consist of all values of x smaller than that. More formally, if we
define

x∗ = x∗(α,σ) such that D(x∗) = 0 (5)
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we can write

p(report noise|s) =
∫ x∗

a

1
σ

φ(x−s
σ
)

Φ

(
b−s
σ

)
−Φ

(
a−s
σ

) dx

=
Φ

(
x∗(α,σ)−s

σ

)
−Φ

(
a−s
σ

)
Φ

(
b−s
σ

)
−Φ

(
a−s
σ

)
=

Φ

(
x∗(α,σ)−s

σ

)
−Φ

(
−1−s

σ

)
Φ

(
1−s
σ

)
−Φ

(
−1−s

σ

)
(6)

where in the last passage we have substituted a =−1 and b = 1.

M.2.4 Example: single-level discrimination case

To give an intuitive interpetation of the results above, consider the case where K = 1, so the possible
values of the statistic are only two, namely 0 and s1. In this case,

D(1) = α + ln
Φ

(
b−s1

σ

)
−Φ

(
a−s1

σ

)
Φ

(
b
σ

)
−Φ

(
a
σ

) −
2xs1− s2

1
2σ2

= α +β −
2xs1− s2

1
2σ2

where

β := ln
Φ

(
b−s1

σ

)
−Φ

(
a−s1

σ

)
Φ

(
b
σ

)
−Φ

(
a
σ

)
so that we can write x∗ in closed form:

x∗(1) = D(1)−1(0) =
s1

2
+

σ2

s1
(α +β )

which can be read as saying that the decision boundary is halfway between 0 and s1, plus a term
that depends on the prior bias and the effect of the boundaries of the domain of x (but involves the
sensitivity too, represented by σ ).
Simplifying things even further, if we remove the domain boundaries (by setting a→ −∞ and
b→ +∞), we have that β → 0. In this case, by plugging the expression above in Equation 6 we
obtain

p(report noise|s) = Φ

[
σ

s1
α− (s− s1/2)

σ

]
(7)

and therefore we recover a simple cumulative Normal form for the psychometric function. By look-
ing at Equation 7 it is clear how the prior bias α introduces a horizontal shift in the psychometric
curve, and σ controls the slope (but also affects the horizontal location when α 6= 0).
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M.3 Fitting the ideal observer model to the experimental data
Independently for each rat, we infer a value of α and σ by maximising the likelihood of the data
under the model above. More in detail, for a given rat and a given statistic value s (including 0),
we call Ns the number of times the rat reported “noise”, and Ts the total number of trials. For a
given fixed value of α and σ , under the ideal observer mode the likelihood of Ns will be given by a
Binomial probability distribution for Ts trials and probability of success given by the probability of
reporting noise in Equation 6,

ps(Ns|α,σ) =

(
Ts

Ns

)
p(rep. noise|s,α,β )Ns

(
1− p(rep. noise|s,α,β )

)Ts−Ns

Assuming that the data for the different values of s is conditionally independent given α and σ ,
the total log likelihood for the data of the given rat is simply the sum of the log likelihoods for the
individual values of Ns

ln p({Nsk}
K
k=1|α,σ) =

K

∑
k=1

ln psk(Nk|α,σ)

We find numerically the values of α and σ that maximise this likelihood, using Matlab’s mle func-
tion with initial condition α = 0.1, σ = 0.4. Note that evaluating the likelihood for any given value
of α and σ requires finding x∗, defined as the zero of Equation 2. We do this numerically by using
Matlab’s fzero function with initial condition x = 0.
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