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Abstract

Mechanism-based risk assessment is urged to advance and fully permeate into current safety assessment
practices, possibly at early phases of drug safety testing. Toxicogenomics is a promising source of
comprehensive and mechanisms-revealing data, but analysis tools to interpret mechanisms of toxicity and
specific for the testing systems (e.g. hepatocytes) are lacking. In this study we present the TXG-MAPr
webtool (available at https://txg-mapr.eu/WGCNA PHH/TGGATEs PHH/), an R-Shiny-based
implementation of weighted gene co-expression networks (WGCNA) obtained from the Primary Human

Hepatocytes (PHH) TG-GATEs dataset. Gene co-expression networks (modules) were annotated with
functional information (pathway enrichment, transcription factor) to reveal their mechanistic
interpretation. Several well-known stress response pathways were captured in the modules, are
perturbed by specific stressors and show preserved in rat systems (rat primary hepatocytes and rat in vivo
liver), highlighting stress responses that translate across species/testing systems. The TXG-MAPr tool was
successfully applied to investigate the mechanism of toxicity of TG-GATEs compounds and using external
datasets obtained from different hepatocyte cells and microarray platforms. Additionally, we suggest that
module responses can be calculated from targeted RNA-seq data therefore imputing biological responses
from a limited gene. By analyzing 50 different PHH donors’ responses to a common stressor, tunicamycin,
we were able to suggest modules associated with donor’s traits, e.g. pre-existing disease state, therefore
connected to donors’ variability. In conclusion, we demonstrated that gene co-expression analysis
coupled to an interactive visualization environment, the TXG-MAPr, is a promising approach to achieve
mechanistic relevant, cross-species and cross-platform evaluation of toxicogenomic data.
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Introduction

Mechanism-based risk assessment is the gold standard for safety assessment of drugs and chemicals, but
is resource- and time-intensive (Lanzoni et al., 2019). Establishing mechanisms generally requires
extensive experimentation, leveraged literature data collected over years, and is often based on
preclinical (animal) studies, which may or may not translate to human (Bailey & Balls, 2019; Clark & Steger-
Hartmann, 2018; World Health Organization, 2017). Approaches that rapidly reveal mechanistic detail of
preserved responses between animal and human would advance next generation risk assessment and
impact both predicting and monitoring toxicity (Rivetti et al., 2020). For example, early in development,
drugs that cause preclinical toxicity are often discarded based on preclinical studies without knowing if a
toxicity mechanism will translate to human, thus valuable compounds may be discarded. In addition,
screening for safer compounds is hampered if testing assays do not interrogate compounds against a
mechanism-related event and results are not interpreted in the context of organ-specific toxicity.

Liveris a primary target organ for drug and chemical toxicants due to its role in metabolism and disposition
(J. Zhang & Venkat, 2020). Drug-induced liver injury (DILI) is a major cause of clinical liver failure
(Bjérnsson, 2019; Reuben et al., 2016), drug attrition and black box warnings (Onakpoya et al., 2016;
Solotke et al., 2018; Watkins, 2011). DILI manifests as a variety of clinical pathologies and may depend on
genetic and environmental factors making its prediction a challenge for the current preclinical testing
paradigm (Koido et al., 2020). Likewise, hepatotoxicity and hepatocarcinogenesis are major concerns for
environmental exposures (Colombo et al., 2019; Yorita Christensen et al., 2013). Both non-genotoxic and
genotoxic carcinogens often produce hepatoxicity prior to the emergence of liver tumors in longer term
preclinical studies (Karin & Dhar, 2016). In both situations, hepatotoxicity can be regarded as a multistep,
multicellular disease process, where an initial molecular stress is followed by a series of cellular key events
that couple the initial stress to an apical endpoint observable as a pathology, e.g. hepatotoxicity or liver
tumors. However, in the absence of a mechanism that links cellular (stress) events to a pathology, risk
assessment is typically based on the apical endpoint which can take months or years to develop.

Toxicogenomics, the study of transcriptome responses in toxicology, is a promising tool for a
comprehensive analysis of toxicity to enable mechanism-based risk assessment (Liu et al., 2019). Current
toxicogenomic approaches mainly rely on the analysis of Differentially Expressed Genes (DEGs) or
enrichment analysis using annotated pathway analysis tools (Barel & Herwig, 2018). Such an approach
depends on ontologies with a high degree of redundancy and capture current knowledge of toxicology
and general biology. These approaches are useful but biased toward genes that are well annotated and
are not designed to interpret mechanisms of toxicity applied to specific testing systems (e.g. hepatocytes).
For these and other reasons, and despite several decades of research, toxicogenomics has not produced
the anticipated transformation of current safety assessment standard practice (Vahle et al., 2018).

It is known that groups of genes expressed downstream of a (stress-responsive) transcription factor will
show co-expression (Yin et al., 2021). For this reason, gene co-expression analysis has been applied to
toxicogenomic datasets for rat liver (Podtelezhnikov et al., 2020; J. J. Sutherland et al., 2018), but not for
human hepatocytes up to now. These co-expressed gene sets mediate the cellular response to stress,
providing mechanistic information on the cellular processes and key events involved in adaptation and
progression. Herein, we used weighted gene co-expression network analysis (WGCNA) to identify sets of
co-expressed genes (termed ‘modules’) using the large TG-GATEs toxicogenomic dataset for primary
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human hepatocytes (PHH) as a surrogate to address hepatotoxicity and gene expression in the human
context (lgarashi et al., 2015; B. Zhang & Horvath, 2005). Gene modules were deployed in an R-Shiny
analysis framework accessible via an interactive website, the PHH TXG-MAPr (https://txg-
mapr.eu/WGCNA PHH/TGGATEs PHH/) to facilitate rapid visualization and mechanistic interpretation of
transcriptomic data. Gene module were annotated with external annotation resources (e.g. pathway

enrichment and transcription factor modulation), which are useful in identifying known stress response
pathways and modules populated by novel genes responsive to specific stressors. Using endoplasmic
reticulum (ER) stress as a case study, we show that canonical ER stress response genes are captured in
gene co-expression modules, including novel guilt-by-association genes. We identified ER stress as an
early event in cyclosporine A (CSA)-induced toxicity and showed that ER stress modules respond similarly
between CSA and the prototypical ER stressor, tunicamycin. ER stress and other known stress response
pathways which were captured in the PHH modules, are conserved across species and test systems. Stress
response modules correlate in clusters with defined biological functions triggered by compound exposure.
We showed that datasets of different sources can be analyzed with the PHH TXG-MAPr tool for
mechanistic interpretation. Finally, we leveraged our PHH WGCNA modules to evaluate donor-to-donor
variability upon tunicamycin exposure and identified biological sources of variations. Our results show
that co-expression analysis of toxicogenomic data using the PHH TXG-MAPr framework can support ready
and human-relevant next generation mechanism-based risk assessment.
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Materials and Methods

Gene expression data processing

TG-GATEs data. Microarray data from primary human hepatocytes (PHH) in the TG-GATEs repository were
downloaded and jointly normalized using the Robust Multi-array Average (RMA) method within the affy
R package. To map probe sets to Entrez IDs, the BrainArray chip description file (CDF) version 20 was used
(http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/genomic curated CDF.asp,

HGU133Plus2 array version). Under this annotation, every gene is defined by a single probe set. This
resulted in 19363 unique probe sets, each mapped to a single gene. The TG-GATES (TG) repository
contains 941 PHH treatments, where each treatment is defined as a combination of compound, time and
concentration. Samples treated with vehicles are available for each individual time point. For each
experimental condition (compound/timepoint combination), the limma R package was used to calculate
log2 fold-change values, which was performed by building a linear model fit and computing the log-odds
of differential expression by empirical Bayes moderation. TG-GATEs rat primary hepatocytes (RPH) and
rat in vivo liver datasets have been analyzed following the same steps using suitable BrainArray CDFs
(version 19, Rat2302 array version). Additional human hepatocytes datasets for uploading into the TXG-
MAPr tool were first downloaded from Gene Expression Omnibus (GEO:
https://www.ncbi.nlm.nih.gov/geo/): GSE83958; GSE45635; GSE53216; GSE74000; GSE13430;
GSE104601. The first four datasets were processed similarly to the TG-GATEs PHH dataset, because the
samples were analyzed with the same microarray platform (Affymetrix HGU-133 Plus 2). The GSE13430
and GSE104601 datasets were generated from the Agilent Human 1A Microarray (V2) G4110B and
SurePrint G3 Human GE v2 8x60K microarray platforms, respectively. These datasets were analyzed with
GEOZ2R using the provided NCBI gene annotation. In the case of duplicated measurements (probes) for a
single gene, the most significant probe (adjusted p value) was used for uploading the data.

TempO-Seq S1500+ set PHH data. The inter-individual variability in chemical-induced ER stress signaling
and module activation was evaluated by using available TempO-Seq data of PHHs derived from 50
individuals which were exposed to a wide concentration range of tunicamycin (Niemeijer et al., in press,
Mav et al.,, 2020). In short, plateable cryopreserved PHHs derived from 50 individuals (KalLy-
Cell, Plobsheim, France) were plated in 96 wells BioCoat Collagen | Cellware plates (Corning, Wiesbaden,
Germany) at a density of 70,000 viable cells per well. Cells were allowed to attach for 24 hours and treated
with tunicamycin (Sigma) at a concentration range of 0.0001 to 10 uM for 8 or 24 hours. After exposure,
cells were lysed with 1x TempO-Seq lysis buffer (BioSpyder) and stored at -80°C. Lysates were analyzed
at BioSpyder (Carlsbad, CA, USA) using the TempO-Seq technology in combination with the S1500+ gene
set (Mav et al. 2018). Data analysis is reported in Niemeijer et al. 2021, here briefly summarized:
experiments having library size of raw counts lower than 100,000 counts were filtered out. Raw counts
were normalized with DESeq2 normalization (Love et al., 2014), log2 transformed and analyzed with BMD
express (Phillips et al., 2019).

Weighted gene co-expression analysis
In order to identify co-expressed genes from the PHH data, we used the WGCNA R package (Peter
Langfelder et al., 2020) and applied it to a matrix consisting of 941 rows (PHH experiments) and 17500
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columns (log2 fold change values for genes). Genes were included into the analyses when they showed
FDR (BH) < 0.001 in at least one experiment. We created unsigned gene modules (i.e. grouping together
co-induced and co-repressed genes), and selected the optimal soft power threshold maximizing both the
scale-free network topology using standard power-law plotting tool in WGCNA (Langfelder & Horvath,
2008) and the exclusion of genes having low gene intensity in the DMSO controls (determined via t-tests).
We selected 5 as the optimal soft-power parameter. By further refining modules built using WGCNA
function to merge similar modules (those having correlation of their eigengene values > 0.8), we obtained
398 modules containing 10,275 genes. As described in (Jeffrey J. Sutherland et al., 2016), for each
experiment we calculated the eigengene score (EGs, or module score) which summarizes log2 fold change
of their constituent genes. Briefly, this protocol consisted of performing PCA on the gene matrix of each
module, normalizing the log2FC across the entire dataset using Z-score conversion. To simplify
comparison between modules, the raw module score was normalized to unit variance (fraction between
each module score and its standard deviation across the entire dataset) facilitating comparison across
modules and across treatment. Therefore, the modules score indicates the level of activation or
repression induced by a given treatment, when considering such changes in the context of the large
collection of drug perturbations. Represented as Z-score, an eigengene score greater than +2.0 or smaller
than -2.0 can be considered as a large (and relevant) perturbation in the context of the 941 experiments
Although the EGs represent the overall activation or repression of the module gene members, each gene
is ordered based on intra-modular connectivity with other genes. We calculated then the correlation
between a module eigengene versus underlying genes’ log2 fold change across the 941 experiments
(termed ‘corEG’). The gene with the highest correlation between log2FC and module EGs (so called ‘hub
gene’) is the most representative of the entire module matrix and show stronger connection to the other
module genes. Both positive and negative correlation with the EGs, corEG, were allowed, thus genes that
are inversely correlated can be members of the same module. A negative corEG indicates an inverse
relationship between the gene log2FCs and its module EGs. The matrix containing EGs across all
treatments was organized into a folded hierarchical tree (dendrogram), based on Ward’s hierarchical
clustering of pair-wise Pearson correlations for each module across all treatment conditions. Module
locations on dendrogram branches were identified with a hierarchical anti-clockwise nomenclature
system (Supplementary Figure S1A). Some module branches were elongated to separate module clusters
and improve visualization (Supplementary Figure S1B). Compound correlation was calculated with
Pearson and Spearman correlation using the module EGs across the entire set of treatment conditions
(resulting in 941 instances); similarly, module correlation was calculated across all modules (resulting in
398 instances). Preservation between the modules structure obtained with the PHH TG-GATEs data set
and the RPH TG-GATEs and rat in vivo liver data sets has been performed as follows: 1) rat gene IDs have
been converted to human gene IDs with the Rat Genome Database (Smith et al., 2020), 2) preservation
statistics have been calculated with the WGCNA R package and thresholds for interpretation were
adopted by relevant literature (Langfelder et al., 2011). Briefly, a module showing Z summary >=2 is
considered moderately preserved, >=10 highly preserved. A lower median rank indicates higher
preservation.

Pathway mapping and enrichment analyses

Over Representation Analysis (ORA) was performed via ConsensusPathDB (CPDB version 34), including
the following databases: BioCarta, EHMN, HumanCyc, INOH, KEGG, NetPath, Reactome, Signalink, SMPDB,
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Wikipathways, UniProt, InterPro (Kamburov et al., 2013). GO enrichment was obtained with the R package
topGO, algorithm = "classic", statistic = "fisher" (Alexa & Rahnenfiihrer, 2007). For both resources, we
included in the tool enriched terms satisfying hypergeometric test p-value < 0.01. However, for module
interpretation (Table 1 and Table S8) only the top 10 associated terms per modules were included, that
corresponded to terms having always adjusted p value (FDR) for CPDB lower than 0.05. String DB
(Szklarczyk et al., 2015) was used to obtain protein-protein interaction networks of specific modules. Edge
weights are proportional to the combined score of the nodes that the edges connect (Szklarczyk et al.,
2015). Graphical rendering was obtained with Cytoscape (Shannon et al., 2003) using the StringApp
(http://apps.cytoscape.org/apps/stringapp) bridge component.

Transcription factor (TF) enrichment and TF activity scoring

A hypergeometric test was performed on gene members in each WGCNA module to identify its regulatory
TFs using the function phyper within the stat package in R. The gene set of TFs and their regulated genes
(regulons) are derived from DoRothEA (Garcia-Alonso et al., 2019) with two sets of confidence levels: the
“high confidence” level comprises categories A, B and C while the “high coverage” level comprises
categories A, B, C and D. The enriched TFs with p-value less than 0.01 were included in the study. In
parallel, TFs’ activities were estimated as normalized enrichment scores using the function viper from the
viper package (Alvarez et al., 2016) with two confidence sets of TF-regulon from DoRothEA as described.
All parameter settings were assigned as in the original DoRothEA study (Garcia-Alonso et al., 2019).

Web application TXG-MAPr

The user interface application of the TXG-MAPr tool has been implemented using the R-shiny package
(RStudio Inc., 2014). The graphical part of the application has been implemented through the
functionalities of the ggplot2, ape, igraph, hclust and pheatmap R-packages (Csardi & Nepusz, 2006; Kolde
& Kolde, 2015; Paradis & Schliep, 2019; Wickham H, 2008). The credential system to log into the PHH TXG-
MAPr tool is established using the shinyauthr package (https://github.com/PaulC91/shinyauthr). The PHH
TXG-MAPr tool is available at https://txg-mapr.eu/WGCNA_PHH/TGGATEs_PHH/.

Uploading new data files into TXG-MAPr

In order to calculate new EGs for each module from external data, first a modified Z-score is calculated by
dividing the gene log2FC by the standard deviation of the gene log2FC across all TG-GATESs conditions, and
is further weighted by the correlation eigengene score (corEG). (Eg. 1). New EGs for each module are
calculated by summing the Z-scored gene log2FC values of the module genes (n = number of genes in a
module), normalized by the standard deviation of the raw module score in the TG-GATEs dataset (Eq. 2).
When data of certain genes in a module is not available in the uploaded dataset, then the Z-score for that
gene is assumed to be zero, which may create an underestimation of the final module EGs.

log2FC
Z-score = —92° % orEG kq. 1
SD (log2FC)
n__ Z-score Eq. 2
EGs = =1 q

SD (3=, all Z—scores)
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The new module EGs will be overlaid onto the PHH TXG-MAPr dendrogram and will be fully integrated
into the web application for that particular session. Data will be removed when the session is closed.

Data analyses

Cluster correlation of the expanded seed module set: Figures were made using R and the packages ggplot2,
pheatmap, igraph. Heatmap in Figure 3 is obtained with the following steps: 1) selection of ‘seed modules’
i.e., modules having clear interpretation based on term enrichments and TFs associations (see Table 1).
Because TG-GATEs data is a sparse matrix, i.e. not all the compounds have been tested at all concentration
levels and time points, we removed the 2-hour experiments (missing for roughly 50% of the compounds)
and applied imputation of the remaining missing value with Singular Value decomposition via the R
package pcaMethods using the svdimpute function (Stacklies et al., 2007; Troyanskaya et al., 2001). 2)
Pearson correlations between seed modules and all other preserved modules were calculated considering
all remaining EGs from TG-GATEs (119 modules x 779 experiments). Modules were added in (termed ‘add-
in modules’) if the (seed x target) correlation values were > 0.7 to yield the ‘expanded set’ of 87 modules.
Hierarchical clustering was obtained by applying the Ward D2 method, using 1-cor as distance. In
particular, we applied the WardD2 method, including the full implementation of the Ward clustering
criterion. Note that the results of Ward’s agglomerative clustering are likely to delineate clusters that
visually correspond to regions of high densities of points in PCA ordination, e.g. produce ‘round’ clusters
(Murtagh & Legendre, 2014).

Targeted genes set analysis (S1500+): To evaluate the quality of the genes belonging to the BioSpyder
TempO-Seq S1500+ set, we tested for difference of mean absolute corEG with a random draw of genes
from the complete pool of genes available in the TG-GATEs dataset. The randomly selected gene set have
the same size as the overlap of the S1500+ set with the TG-GATEs gene set (n = 1830) and this process
was repeated 10,000 times (Wilcoxon test), adjusting the p value with Bonferroni method. The heatmap
in Figure 5 was obtained with the “complete” clustering algorithm applied to the Euclidean distance
between samples. Donors module clusters were obtained with the same method as for TG-based module
clusters (see paragraph above). The overlap between TG module clusters and donor module clusters was
calculating using the WGCNA R package (Peter Langfelder et al., 2020) using the overlap function, which
calculates the numerical overlaps between groups and quantify the significance by applying Fisher exact
test. Donor traits (phenotypes) associations with modules responses after treatment of donor hepatocyte
cultures were determined as previously described in (J. J. Sutherland et al., 2018). In brief: 1) different
concentrations were analyzed separately, and only after 24 hours of exposure (generally higher
transcriptomic changes). 2) for cluster to traits associations, cluster behaviors were calculated as mean of
the EGs scores of the modules members of each cluster. Since only modules with high correlation populate
a cluster, we expect that averaging their EGs would lead to a concordant score. To understand driver-
modules for each association, we calculated module-to-trait relationships. 3) The association between
cluster (or module) and the occurrence of a donor trait was quantified using Cohen’s d, a measure of
effect size. Since the average absolute module eigengene (avgAbsEG), a measure of overall transcriptional
activity, can have an effect size for traits associations, logistic regression was performed to determine the
contribution of a given module in explaining the residual odds of toxicity after accounting for avgAbsEG,
and the significance of the module represented as adjusted p-values (p-adj).
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Results

The PHH TXG-MAPTr: a tool to visualize and explore biological interpretation in primary
human hepatocyte transcriptomic data

We applied WGCNA to the TG-GATEs primary human hepatocytes (PHH) dataset (Igarashi et al., 2015),
which includes exposure data for 158 compounds at various times and concentration levels to identify the
predominant networks of co-expressed genes (Figure 1A exemplifies the process for a subset of co-
expressed genes). We obtained 398 networks (modules) of highly correlated genes. Modules are labelled
with a number inversely proportional to the number of member genes; larger modules have smaller
number labels. An eigengene score (EGs) was computed for each module as the first principal component
of each module data matrix and further scaled (see Material and Methods). Thus, the EGs represents the
trend (induction or repression) of the entire module based on the included genes. By performing WGCNA,
the final data matrix was reduced to 941 columns (treatments) and 398 rows (module EGs) which
corresponds to a 97.7% reduction in dimensionality of gene expression.

To facilitate the analysis of transcriptomic information from module responses, we developed a module-
based R-Shiny visualization and analysis framewaork, the PHH toxicogenomic (TXG) MAPr (PHH TXG-MAPTr).
The EGs-treatment data matrix was organized into a folded hierarchical tree, or dendrogram, based on
Ward’s hierarchical clustering of pair-wise Pearson correlations for each module across all treatment
conditions (Figure 1B, Supplemental Figure S1A-B). The dendrogram allows one to visually appreciate the
induction or repression of modules EGs (red to blue color scale, respectively) and the proximity to modules
with similar behavior (Pearson R; see Supplementary Figure S2 for dose- and time- response dendrograms
for example compounds). We also incorporated module enrichment measures for biological pathways
and ontologies, transcription factor-target pairs, compound similarity analysis and a variety of other useful
functions for mechanistic analysis and data mining.

To illustrate the utility of the PHH TXG-MAPr analysis framework, we investigated the response of
cyclosporine A (CSA), which was transcriptionally active in PHH and has both mild hepatotoxic and more
severe renal toxicity potential (Rezzani, 2004). Strong induction of modules PHH:13 and PHH:62 can be
seen 24 hours after treatment with 6 uM CSA (Figure 1B). Using the compound correlation functionality,
we sampled all pair-wise Pearson correlation for all 398 module EGs across all treatment conditions; CSA
shows highest similarity to tunicamycin (Pearson R = 0.84), suggesting a common mode of action (Figure
1C, center). Modules at the extremities of the correlation plot (PHH:13 and PHH:62 in the example) can
be highlighted and tabulated to facilitate further analysis. Correlation between gene log2FC from the same
treatment conditions had lower similarity (Pearson R = 0.74; Figure 1C, top). On average, across all TG-
GATEs compounds the EGs-based max Pearson correlations were higher than max correlation based on
gene log2FC (Supplementary Figure S1C), suggesting that analyzing gene networks (modules) improves
the robustness of compound comparison of transcriptomic data by averaging out the variations of
individual gene perturbations. Although PHH:13 and PHH:62 are in different branches they did show a
Pearson correlation of 0.62 for all TG-GATEs treatment conditions (Figure 1C, bottom).
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Tunicamycin (TUN) is a prototypical inducer of ER stress while there are literature reporting that CSA also
perturbs ER functions (Foufelle & Fromenty, 2016; Van Summeren et al., 2013; Vickers et al., 2017).
Therefore, we investigated modules PHH:13 and PHH:62 for genes associated with ER and ER stress.
Module PHH:13 contains 121 genes, including well-known ER stress genes, like HSP90B1 (Grp94), SEL1L,
PDIAG6, HSPAS (BiP/Grp78) and its co-chaperone DNAJB9 (Suppl. Table S2). Since PHH:13 was too large to
visualize in a gene interaction plot, Figure 1D (top) shows the module plot for the smaller module PHH:62
(19 genes). This module contains genes involved in endoplasmic reticulum-associated degradation (ERAD),
such as SELENOS and SELENOK, but also other ER resident genes with less clear connection to ER stress
yet, such as FKBP2, SEC11C and SSR4 (Figure 1D, top). There is a clear time- and dose-dependent induction
of module PHH:62 by CSA, which follows a similar trend for the log2FC induction of the hub-like (highest
corEG) module genes (Figure 1D, center and bottom).

Using the PHH TXG-MAPr module enrichment functionalities, we investigated the enrichment of biological
processes and pathways (see Methods) as well as transcription factors (TFs) enrichment using the
DoRothEA gene set resource (Garcia-Alonso et al., 2018). Results were overlaid on the module
dendrogram (Figure 1E). Not surprisingly, modules PHH:13 and 62 showed the lowest p-values for GO-CC
term “endoplasmic reticulum” as well as terms related to endoplasmic reticulum (ER) stress amongst
others (Figure 1E, top). Module PHH:13 was also enriched for transcription factor ATF6 target genes
(Figure 1E, center) consistent with the presence of more highly annotated ER stress genes. To determine
if PHH:13, the primary module enriched for ATF6 gene targets, reflected general ATF6 activation, we
calculated the ATF6 activation scores for all ATF6 target genes in the 10275 TXG-MAPr genes (see more
details on DoRothEA in the Materials and Methods section) and we observed that ATF6 scores also
showed time- and dose-dependent activation for both CSA and TUN (Figure 1E, bottom).

Using the PHH TXG-MAPr analysis framework, we were able to rapidly identify the activation of an ATF6
regulated ER stress response as an early event following cyclosporine A exposure. Data underpinning
these functionalities, and others not noted here, are accessible in a tabular format in the supplementary
materials (Supplementary Tables S1-S7). The dedicated PHH TXG-MAPr application is available at
https://txg-mapr.eu/WGCNA PHH/TGGATEs PHH/.
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Figure 1. The PHH TXG-MAPr: an innovative tool to visualize and understand PHH toxicogenomic data. A) Example gene
expression data matrix. Log2FC values of genes (rows) are shown for multiple treatment conditions (columns). Four groups of co-
expressed genes (modules PHH:13, 62, 118 and 144), highlighted with boxes and color, show consistent patterns across the
experimental conditions and are exemplified with the gene networks on the right side. Treatments are clustered using Euclidean
distance to group conditions that regulate the same groups of co-expressed genes. B) Phylogenic tree view of module scores at
24hrs cyclosporine A exposure at HI dose level (6 uM). Highlighted modules are PHH:13, PHH:62 and PHH:118 which are strongly
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induced by CSA (orange/red circles), while module PHH:144 is unchanged (yellow circles). C) Comparing modules and compounds.
Top: gene log2 fold change (log2FC) for cyclosporine A (HI dose = 6 uM, 24 hr) are plotted against gene log2FC for tunicamycin
(MED dose = 2 pug/mL, 24 hr), showing a Pearson correlation of 0.74. Center: module EGs for cyclosporine A are plotted against
module EGs for tunicamycin, showing a Pearson correlation of 0.84. Bottom: EGs for module PHH:62 are plotted against EGs for
module PHH:13 (all compounds, concentrations and time points) and show a Pearson correlation of 0.62. Straight blue line
represents a fitted linear model. Grey shades represent confidence interval. D) Grouping genes into modules. Top: gene network
for module 62. Colors qualitatively represent log2FC upon treatment with cyclosporine A at HI dose (6 uM) for 24 hrs. Edges
thickness is proportional to the adjacency value among the genes. The squared gene is the hub-genes. Center: module EGs profile
for module PHH:62 at different cyclosporine A concentrations and time points (LO = 0.24 uM, MED = 1.2 uM, HI = 6 uM). Bottom:
gene log2FC profile for hub-like genes belonging to module 62 at different cyclosporine A concentrations and time points. Color
code of points and edges represents the correlation eigengene (corEG). E) Annotating the modules. Top: Phylogenic tree view
with module color and size proportional to the p-value for the enrichment for the GO category response to endoplasmic reticulum
stress (GO:0006520). Significantly enriched modules with p-values (<0.01) are displayed and modules PHH:13, 15 and 62 are
highlighted in blue. Center: Phylogenic tree view with module color and size proportional to the p-value for the enrichment for
the transcription factor ATF6. Significantly enriched modules for ATF6 with p-values (<0.01) are displayed and modules PHH:13
and 193 are highlighted in purple. Bottom: ATF6 activation score considering all its targets for cyclosporine A (LO = 0.24 uM, MED
= 1.2 uM, HI = 6 uM) and tunicamycin (LO = 0.4 pg/mL, MED = 2 pg/mL, Hl = 10 pg/mL).

Module preservation in the PHH-TXG-MAPr

Preservation statistics can be used to determine if networks’ node-edge relationships defined in one
biological system are preserved in another (Langfelder et al., 2011). We evaluated network preservation
of PHH modules versus rat primary hepatocyte (RPH) and in vivo rat liver TG-GATEs datasets using two
different preservation statistics: Z-summary and Median Rank (see Methods, Figure 2A-B, Supplementary
Table S8, Supplementary Figure S3). Z-summary preservation statistic shows higher dependency on
modules size, as noted in literature; large modules such as PHH:13 are highly preserved (Figure 2A, color
scale) (Langfelder et al., 2011). The complementary Median Rank statistic (Figure 2B) is less dependent on
module size and can assign high preservation ranking (quantified with low numerical scores) to small
modules. Therefore, we considered preserved modules as those with Z-summary preservation score for
both systems (RPH and rat liver) higher than 2 or ranked in the top 100 modules for the Median Rank
statistics for both systems (for the latter, arbitrary threshold corresponding to 25% of all the PHH
modules). This selection led to a set of 102 (26%) preserved modules from the PHH TXG-MAPr
(Supplementary table S8), which include the UPR modules PHH:13 and PHH:62.
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Figure 2. Some PHH WGCNA modules are preserved in rat systems and connect to stress response pathways. A) Z summary
preservation score plot. Z summary preservation values of PHH modules in Rat in vivo Liver data (x-axis) are plotted against Z
summary preservation values of PHH modules in Rat Primary Hepatocytes data (y-axis). Modules are colored based on their size
(log10 transformed) and modules PHH:13 and PHH:62 are labeled. Higher scores imply better preservations. B) Median Rank
preservation score plot. Median Rank preservation values of PHH modules in Rat in vivo Liver data (x-axis) are plotted against
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Median Rank preservation values of PHH modules in Rat Primary Hepatocytes data (y-axis). Modules are colored based on their
size (log10 transformed) and modules PHH:13 and PHH:62 are labeled. Lower scores imply a higher rank and greater preservation.
C) Dose- and time-response EGs plots of modules representing stress response pathways. Modules are grouped by stress
processes (roman letters) and their responses upon treatment with representative compounds is shown in dose-response (x axis),
faceted by time. Modules are represented by different symbols, while compounds by different colors.

Stress response pathways represented by PHH modules

Pathway information facilitates mechanism-based risk assessment (Krewski et al., 2020). Therefore, we
used the TXG-MAPr enrichment functionalities to identify modules representing cellular stress response
pathways typically involved in toxicity and activated by stress-responsive TFs. These include the ER stress
response and the larger integrated stress response (ISR), as well as inflammatory pathway, mitochondrial
response, oxidative stress and the DNA damage responses, all of which were previously shown to be
relevant for identifying the modes of action of compound-induced toxicity (Wink et al., 2014). We focused
on modules which 1) were identified by consistent enriched terms and TF associations with p-values <
0.01 and FDR < 0.05, and 2) show a response to prototypical compounds (Figure 2C, Table 1). Below are
the selected stress responses pathways represented by PHH modules which we aim to highlight in this
study:

ER stress and ISR: As noted above, modules PHH:13 and PHH:62 are enriched for terms associated to
endoplasmic reticulum localization, UPR and ERAD as well as transcriptional regulation by ATF6, all of
which are components of the larger ISR (Hetz et al., 2020; Ron & Walter, 2007). We also looked for
modules regulated by ATF4, a transcription factor downstream of the ISR hub, and IF2a, a regulator of
translation after stresses including ER stress, starvation, and viral infection (Pakos-Zebrucka et al., 2016).
Modules PHH:15 and PHH:295 were enriched for ATF4 gene targets, and terms associated with amino
acid metabolism and transport, respectively (Table 1), which are processes that are regulated by ATF4
(Hetz et al., 2020). All four modules respond to cyclosporine A and tunicamycin (Figure 2C, panel i).

Heat-shock, proteasome and lysosome: In response to proteotoxic stress, damaged proteins are bound to
members of heat shock-inducible chaperone system (heat shock response), which facilitate removal of
damaged proteins by lysosomes and/or proteasome degradation. Modules PHH:177, PHH:76 and PHH:82
(proteasome) and PHH:131, PHH:95 (heat shock) are preserved and respond to treatment with allyl
alcohol (Mandrekar et al., 2008) (Figure 2C, panel ii, Table 1). Module PHH:17 (annotated for GO:CC
lysosome and includes SQSTM1) is also found to be preserved and is activated by fluoxetine, a known
phospholipidosis inducer (Breiden & Sandhoff, 2019) (Figure 2C, panel ii, Table 1).

Immune response: Immune response pathways including inflammatory mediators are activated in
hepatocytes during liver injury and in disease states (Campos et al., 2020; Woolbright, 2017). Immune
response and inflammation terms are enriched in several preserved modules (PHH:12, PHH:247, PHH26,
PHH:22 and PHH:136) that respond to inflammatory agents such as interferon-a and TNF-a (Figure 2C,
panel iii, Table 1). Modules PHH:242, PHH:44 and PHH:70 are also annotated for immune response but
not preserved (Table 1). Compound regulation and module enrichment terms identify subgroups of
immune response modules. STAT signaling modules (PHH:12, PHH:247) are strongly induced by
interferon, while NF-kB signaling modules (PHH:22, PHH:136) are mainly induced by TNFa. Module
PHH:26 is induced by both stimuli, but also has a mixed NF-kB and STAT annotation.
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Mitochondria: Mitochondria are an important target for hepatotoxic chemicals and mitochondrial injury
is commonly used to screen for hepatotoxic potential (Rana et al., 2019; Weaver et al., 2020; Yang et al.,
2015). Mitochondrial damage is commonly assessed by changes in respiration and the mitochondrial
membrane potential. Less is known about the regulation of genes coding for mitochondrial proteins in
response to toxic stress. Several preserved PHH modules are found to be annotated with mitochondria-
related and mitochondria-component specific terms (PHH:113, PHH:138, PHH:2, PHH:256, PHH:33,
PHH:97). These modules respond positively to doxorubicin (Osataphan et al., 2020) and are found to be
repressed by ethionine (L. Zhang et al., 2020) (Figure 2C, panel iv, Table 1). Notably, PHH:33 and PHH:97
were annotated by terms relating to regulation of mitochondrial ribosome translational control and
mitochondrial organization. Module PHH:173 shows enrichment for mitochondria genes, but is not
preserved (Table 1).

DNA-damage & oxidative stress: Modules PHH:59 and PHH:83 are enriched for TP53-regulated genes and
annotated for terms consistent with the DNA damage response (DDR). The NFE2L2 (NRF2) associated
modules PHH:144 and PHH:325 include key genes such as SRXN1 and NQO1 which are direct targets of
NRF2, and enrich for terms such as oxidoreductase and glutathione metabolism. In contrast to the other
preserved modules from Table 1, modules associated with NRF2 and TP53 activation are not well-
preserved, but these modules do respond as expected to specific inducers consistent with interpretation
as oxidative stress and DNA damage modules, respectively (Figure 2C, panels v and vi and Table 1). Only
modules PHH:243 (includes GADD45A/B) and PHH:337 (associated with NFE2L2) are found to be
preserved (Table 1).

The examples described above exemplify the utility of PHH TXG-MAPr for identifying modules relevant to
known stress pathway useful for mechanistic interpretation and benchmarking preservation of co-
expression across species and liver in vivo. Other cellular processes and pathways not discussed can be
identified using the main enrichment terms and TFs associations of the whole preserved module set (Table
S8).

15


https://doi.org/10.1101/2021.05.17.444463
http://creativecommons.org/licenses/by-nc/4.0/

z

n

, in order

MedianRank PHHtoRPH. More details can be found

tatistics are

’

this version posted May 18, 2021. The copyright holder for this preprint

Zsum PHHtoRPH

,

made available under aCC-BY-NC 4.0 International license.

Table 1. Overview of the properties of the modules associated with the stress response. Preservation s

summary PHHtoLIVER, MedianRank PHHtoLIVER

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
Supplementary Tables S1-7.

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.17.444463

(£0°G) Suijeuis g3-4N [ed1uoueduOu pajeipaw

(£ €) sutewop Ajiwepsadns ulngo|dounwwi wouj 3jing

(€0T00°0) SX4Y (S8000°0)

Uo7 7+¢) Uiewo eddendn {7 5101d923. SUNWIWI JO UOIIBUIGIOISI JIIBWOS UO Paseq b . . DN
1-umaa (2z's) P Ld geddexan ‘(zz's) asuodsas aunuww anndepe {(g/'€) asuodsas sunwuy  X1H (T9€000°0) (rzooo)vizy 08688 sah /osuodsay  TT  959g DIvdl 9ET:HHd
9}s PaAIISU0D ‘Utewop ASojowoy 9y ‘(¢Z'S) esioa/d oy~ T8N ‘(T€000°0) c'oL'soeLe
edde {(ec) kemured gedde SAnewIS adA3 T 4adjay-1 /(8 'v) xa|dwod geddey-4N/geddey ) 8 aunww|
-eddey-3N {(€'5) Aemyied geddex-4N aAneuIR|Y - {18'%) Buyieusis geddes-3/aseunt geddes- V13Y {(S0€000°0) NNF
(22-6) aubiowk (2 6) p331055 (2-0T) Bulleusis (T0t) Awnoe aunjoahd ((z°0T) (s0-31T8) « .mwﬁmvém_ 60
TT'6) UpjoY u 78'6) P2194235 ‘(£°0T) Bul ! SHTIES MRS G S TR Aoy ey (U UL E m.bﬁm ‘(L0 NN.Q N AT DIAN
0T-upinapaul {(6°0T) supnalau| Aq Suljeusis !('ST) g d Suileus; £ -968'T) NNr {(0T-915°T) -29/°T) TaNAN o SOA /9suodsay 9y vLE9 S10X0 TTHHd
(uewny) suaides owoH - Aeemyied Suijeusis 4NL U] 01 AT ED [T (PR CI e 13Y £(0) V134 ‘(0) TANAN {(60-9€¥'T) 134 8LT799€'9 aunww|
: : {(z'TT) aunjo1Ad 01 asuodsaul {(9°GT) @deds Jejn|jadeixe . .
‘(e1-2€7°5) V1Y
(26'v) (uewiny) suaides owoH - Aemiped Buljeuds (58°9) s|ans| uadAxo paseasdap 03 asuodsas (S€6000°0) ETXOS
T-4IH {(20°S) S3Ua9 Y1eaq |12] jo uondudsuel ) . . . ' ‘6vTY°
mA ) ‘op er ‘(96'9) eixodAy 03 asuodsal {(€£°8) s|2A3] uaBAX0 ‘(961000°0) ¥AL3 !(£0 mmmmoo e LD T8TEVIY'E 4 .
s91e|n3aY €5d.1 ‘(90°S) €AING ‘(6v°£) d4omiau (e . B . ‘(€€T00°0) TSVd3 6EECCET'0 ou eixodAy ST T069S €V'*HHd
P 0} dsuodsau 4e|n||a3 {(T6°8) S|aA3] udBAX0 pasealdap -9/9°'9) TSVd3 (80-3v¥'T) . wv4naN
4039ej uopduosuen eydie-T-1H :(s88) Suljeudls 03 asuodsaJ Jen||ad {(80°6) eIxodAy 03 asuodsal Jejnj|ad ‘(oT-aL€" (L0-3ST'S) VT4IH - -
[EAAINS T-41H psanpui-Adessi oiweuApoioyd 1 In|93 {(80°6) eixodAy 01 ] TXHZ ‘(0T-3L€E'S) VT4IH
(9€9) @suodsau ssa.ns ‘(9€°9) (8£°€) Buipuiq utsyoud (¥8100°0) X4Z (9€T00°0)
(YHS) s103da23. SuOWLIOY PI0J3)S 40 3]2Ad duoiadeyd  papjojun (g ) Hed uoiSal Jejn||30enxa {(TT'p) Bulpulq  ¥)13 {(€2T000°0) (£5%00°0) Z4SH 16'L09€
sah 20ys 1e9) o
06dSH ‘(8€°9) IInwins |eulaixa 01 sasuodsal Jejn||a) auoJsadeyd {(z't) uiezoad 12a.1400ul AjjeaiSojodol T493Y4S ‘(E0T000°0) (90-2%0°£) T4SH €/€'855/°S oy H vl TOEE TVIVNG S6:HHd
{(£'9) auouadey) {(gg°9) ssa41s 01 sasuodsau Jejn||a) 0} asuodsaul {(5G°f) u1eio.ad papjojun 03 asuodsal 24191 £(90-965°S) T4SH
(z°8T) ssa41s 1eay 01 asuodsas
(£°TT) 383y 03 suodsau Je|n|22 {(T°ZT) Bulp|oy (¥1€00°0) S04 ‘(¢1200°0)
Je|n||3) {(6T) asuodsau yo0ys 1eay pajelpa- X ! :
niId (61) . Poy 4 pa1elpau-T4SH uiayo4d {(z'ZT) sninwiis ainjesadwa) 03 asuodsal VE4LO {(80-3£6°6) mmamoo e Q123N Nw nwwm . S JooysiesH 1T LEEE TarvNa TET'HHd
40 uoie|ngay {(z'6T) uoleAdesURI) JUIPUIAIP-TISH {(T°ET) 183y 03 asuodsa1 (g'€T) BuIp|Ofa1 uIP30Ld £0X04 {(bT-32°2) T4SH (ST-3S5°2) TdSH  ¥'ST'€609'S
‘(£'6T) uoneande T4sH {(1°0¢) aseyd uonenuany : ’
(€€°€) uoneayipow urs10.d |eUOnE|SURLI-ISOd ‘(7S°E) (5°S)
oy 7 - A== (9v800°0)
2ul915A20uUd|3S {(86°€) Sula104d JO WSIOQRISIA {(TG'y)  WDISAS SUBIGUISIOPUD {(66°G) J40MIBU duRIqWDW ? . . .
(uewny) suaides owoH - wnjnanaJ djwsejdopua wn|na1aJ dlwse|dopua-sueiquIsW J3IN0 Jeajdnu {(90°9) .ﬁm._.w .Am.ﬁmoo E‘zz>_>_ . m..uﬁ mmwm _ sak $S2.3S Y43 6T 987C 2did 29:HHd
ul Suissaooud uiR10.d {(68°7) uone|AsodA|3 aueiqwiaw wn|ndaJd dlwse|dopus {($5°9) wnjndnal .:”mmnwo 0) m“_.z_ ‘(8T2000) S€9'2090'9
payull-N auiSesedsy {(6z'G) wninanai djwsejdopul J1wseldopua {(£8°£) 1Wed wninonaJ diwsejdopus 13 /(29700°0) TTdVHL
(vT'v) Aemyied Buijeusis 3dvIA 8ed /(SS) (uewny) (52'v) apedsed Buljeusis aseun| utdjoad pajeaide (T15000°0)
sualdes OWoH - J2oued 1sealg ‘(£ p) aI|-a0g uleload  -ssauls Jo uone|ndal aanisod {(£z't) apeased HdvIN YHVdd ‘(£6¥000°0) , . (s|jnpow
|ewosoqu S0S ‘(76'7) SYPPED/TTS/30€1/2VL1 pajeAe-ssauls jo uone|ndau aaisod {(gp ) apedsed €0X04 {(T1000°0) w\mwwﬁz soh Svaavo) 8 L¥9T Mq qayo  EYTHHd
uiar0.d [ewosoqry ‘(¥8'S) SYAAvD JdVINGEd Jo uone|nsas aanisod J(gy ) 9peIsed HNF Jo ¥0X04 ‘(50-29'8) ¥aa
urajoud 3|qianpul-a5ewep YNG pue 3sa.Je yimolo uone|ngau anisod {(£T°S) ANAIOR ¥HVIN JO UOIBAIDER  QHVdd {(S0-25L) 90X0A
(85't7) (uondusues|) uoissaidxa (50°5) 3utodyaayd Ay8a3ul YNQ 2101w
3U3D (z6't) uondudsuel| || asesswA|od YNY {(z1°5) Jutod>payd a8ewep YNQ d10HW {(6€°S) sninwis  (£5€00°0) TS13 {(60€00°0) 97€'5985°0
-98G" ou 8
{(87°S) Aemyieq uonduosues| auaueD {(£8'S) €51 Aq  3ySi| 03 asuodsau Jen||92 {(g£°S) snnwins a8ewep 28197 /(S0-9C°¥) €5dL (50-285°) €5dL ‘IST'SY80'T Ll o CLS BRI BRI
uone|ngay |euonduosuel] {(€°0T) S103094J9 £6d 12311Q  YNQ 03 dsuodsau Je|n||ad {(§8'S) AN 03 asuodsau sejn||ad
(8'7) @suodsay ageweq ) , i
VNG {(20€) suiiojost €901 o sioBes euonidiiosuess (€0°€) 14ed 211050142 {(£9°€) JorEIPAW Mwﬂommmﬂ%ﬁ%yﬁqmoo ° (85Y00°0) TAIH ~ 961°8Y9L'T
paiepiieA {(6y'€) 490ued a3esold ur Aemyed g5d Jo ) ) ) N . ¥ 8 i OU ¥aa 1z 8105 9TNYY  65°HHd
voneinBos yNuI {(9€°S) SIoay £5d ouq (sg) o1 ESYAd Aemied Buijeusis onoxdode disuiuy YANH .mmnwwo 0 soes0el esdl - '6Tz8890
(uewny) suaides owoH - Aemyied Suijeusis ¢qd J2dv41(50-2T¢'T) €5dL
(v'61) (5°82) ssa43s win|ndi3al -
s9ua8 auoJadeyd saleAnde (S)TdaX {(S'6T) suldroud Jo  dlwsejdopua 0} dsuodsal (¢ €€) JJOMIBU dueIqUIDW 90 Du.a - . :
wsl|ogeId|\l ‘(¢ €€) Uone|ASOdA|S payull-N duiSesedsy  Winjndal olwse|dopua-aueIqUISU J9IN0 Je3aNuU (6 EE) «Eﬂx ..ao Nw v w&.< (80-35%°¥) 941V mm .mqmm .ﬁ soA 941V 12T 0€T0T 9viad €T'HHd
{(z¥) (uewny) susides owoH - wnjndonaJl dlwsejdopus  sueiqWAW WN|NdRL dlwse|dopus (5 of) wnjndial (et ‘v s) m0¢ (r1-26°€) SLYITELT
u1 Suissa00.d u19304d {(T°0S) Wninanas djwsejdopuy sjwsejdopua {(6'Tt) Hed wnnonal ojwsejdopus 7423 ‘(9T-9€€'€) TSL3
(TT°9) 421I0dsue.) pioe (59°G) wodsueny .
oulwe adA1-1 {(zz'9) s4a1odsuely s apndadosijo aueiquiawsued) piae oluedio {(§9°g) Alanoe Jsyiodsueny mvmvoo. 0) me:V_N . , .
pue pide oulwy ‘(€5°9) 1odsuesy pioe-oulwy aueJquIBWISURI] PIoe oulwe {(T/'G) Jodsues) “(8v00 ow LI £(59700°0) ww mwi . sahk 41V 9 199€8 ZNS3S S6C:HHd
{(98'9) aueiqwiaw ewse|d 3y} ssoJde podsuesy ploe aueiquiawisuedy pioe d1jAxoqued {(g/'g) Auanoe mmm._.mw .?o,mm.v CIBVETY'T
oulwy {(50°8) | Jo30dsuesy auiweAjod/pioe ouiwy Japodijue {(6°S) Hodsue.} SUBIGUISWISURIY PO OUlWE Td¥SS {(80-3LT'T) v41V
(£8°9) wsijoqeis|n (29't7) uone|sueJy ui104d 10} uonejAdeouIwe YN
QuuR AlD ‘(€8" ‘(78" ooy (90-2€0°T) .
119S pue 3uPA|D {(£8°9) elwauIA|SIadAH {(z8'v7) ssa41s winjnanaJ dlwse|dopua 0} asuodsal {(88') s . (62000°0) , .
213039} UON ‘(€8'9) Aduaiolyap aseuadolpAyap spunodwod paje|al pue YNY3-|Adeoulwe Fujuiioy .Emu Awn. 2 ﬁ 2CUWVAL - ¢)laa ‘(S0-26£'6) mS mmmm .w sah 741V 16 T6VT H1D ST'HHd
91e432A|80ydsoyd-¢ (TT°£) uonejAoeouiwe ‘Ajinnoe asesl| {(88't7) spuoq uasAxo-uogJed Suiwioy .Amo..wdm s) mou_ (e TdYSS “(0) v4.LV SIS
VY3 2110503AD {(Lt£) WisIjogeIdW SuLIdS dUIPA|D (88'%) Annnoe asesi| yNYyi-|Aoeouiwe 2v0'T) ¥d83) 1(0) vV
(anjea-d) SonsREs C] u $ auangn au
(dot80j-) shemyzed sdoy (dot80J-) swiay 0O sdoy (enjen-d) v s41 sdoy _m do uo M_wmw‘_ onejouue  auas Nmm“”_: H 25an a|npoN
Jv sdlqdol nensasaid d Aoy IN ai 3 9qnH

16


https://doi.org/10.1101/2021.05.17.444463
http://creativecommons.org/licenses/by-nc/4.0/

this version posted May 18, 2021. The copyright holder for this preprint

made available under aCC-BY-NC 4.0 International license.

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
Table 1. (continued)

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.17.444463

(96°€) urezoud
[eWOsOqY {(88") UONHE|SUL.} [BLPUOYIONIN

(95°€) 1ungns [ewosoqu Jlews
{(99°€) awosoqu {(¢g°€) 1uNgNs |eWOSOqU |[ewS

06°LS

‘(£6'v) uoleniul uone|sue.) [ePUOYIONIN (oo (SET00°0) ¥423 it o SoA 'Cqira  uolpuoydouiN T 9TTIS CSdYN 8ET:HHd
{(£6'7) uoneBuop uoejsues jeupuoyoyy  |SHPUOWROIW ‘(¥8°€) 1unqns |ewosoqu |lews 67'C'SL'SYTIE
"o Je||auesio {(€0'y) uone|sues) |eLIPUOYIONW
{(£6'%) UOPBUIWIDY UOIIR|SUBLY [BLIPUOYIONIA
| . (56°€) xa|dwod aseuadoipAyap
ANM Mvﬂ_ww“mwm_wg _‘xm_ﬁ‘_Eouo.ﬁ“MOmmv oi0l5 HAVN {(S6°€) | Xxa]dwod ujeys Asojeuidsal ,
uiewp Aiojendsay {(sp°g) wodsuen vompae STl 20 L TR B () GEU soh T'OT8  UOMPUOWOWN €T $006L 203N ETTHHA
Asozesidsal pue 3|94 (vD1) PIoe 213 By L s ‘ 6T'00T'VIET'E
"o dod P {(ev't) H(d)a¥N uo Sunoe ‘Auiande
(¢£'v) Spudad yisuel (T5°s) UOLPUOYIOUN 95BIONPAUIOPIXO £(Z9'Y) XIIBW [BLIPUOYI0YIW
(zz's) uonejsuen X o
oo s oo U980 oy st .
[BPUOY0IA {(€€'S) UOREBUO|D UOKE|SUEL} _A. P ) ____Su. :m.mwﬂwo U m_m.m m__L_ - STLBE sok Tqrg  uolpuoyouN o 0S9TS €ESAYN  EE'HHd
|RLIPUOLDOYI {(€€°S) UoneUIWIB) Uonejsuey 00 P)HUNANS] Gl ||ews |elpUOYI0Y v'E'8TTLTT]'E
s {(96'¥) 1ungns jewosoqu ||ews Jejjauesio
[BIPUOYIOHIA {($T"L) UOLIPUOYIOHIN
(L) apndad (#0°S) @dojaAus |elpuoy201IW
Jsuel] {(88'f) Uole|sues) [eLIPUOYIONIA {(11°G) Uoneziuesio uolpuOYIOUW ( ) ,
{(£6'P) UonEINUI UONR|SUE.} [RLIPUOYIOYIA {(TZ'S) BuBJqWIAW [BLIPUOYIONW LE7EY M - om.mw oer., SOA T91g  UOLPUOYIOUN €1 8960€ TINOLS  L6'HHd
{(L6'v7) uoneduo|a uoine|suel) |eLPUOYIOUN {(€8'5) aueaqwiaw Jauul 3jjauesio VSING) -{£9T00°0) TA8N 80°7'61'V9EY'L
‘(£6') uOIBUIWISY UONEB|SUBL) [BLIPUOYIONA  £(ET'9) SUBIGISW JBUUI [BLIPUOYIOHW
uo 3unoe ‘AJIAoe 35810NP3IOPIXO {(SE'Y)
(88') Suionds anneusayy $5920.1d UOONPaJ-UoIepIXo {(TH'fy) Modsuely o) o) “0) ,
{(£8°S) apndad ysues] {(8T°9) aseioNpalopixQ  dUowoy {(z§'p) $s9204d Jen||3d wisiuesio om a._.\ﬂ.u_.w@ 0 &wm_vzz 0 .mmmw\mnmmwmood saA zera UOLIPUOYI0UIA (X774 v159 VOIS T:HHd
{(p€°£) wsIOqeIBA {(68°L) UOLIPUOYIONIA -3|8uls {(66'7) @ueiquiaw Jo Jusuodwod |esdajul 151310} 421310} ¥d83D 15Tl T
‘(97°g) aueaqwiaw Jo Juauodwod JisuLiul
(£z'9) wsijoqe3ay sesns oulwy {(£z°9) (2g'9) (S0-266'T) 9423
eunjels adA) ysuau4 Jo eunels {(£z'9) eunels ‘(S0-9€€'T) TIdS ‘(S0 (99600°0) SS1°88
’ usawn| |lewososA| {(zg'g) 1ed Jejonden (T, ) ) o, soA awososA] L S8S asvyy LT:HHd
adAL youaug Jo euniels :(g'TT) (uewny) Il Wl I zse) 4 _ . ) -280°'T) T4SN {(90-2€0°7)  T4SN ‘(¥SS00°0) 4LIW 88'9°ETCV16C d ) 2 AL
o awWososA| {(T/'8) a|onJeA d1A| {(58'g) ajonden . "
sua|des OWOH - awos0sAT {(9°€T) awososA] J2dv4L {(0T-292°2) 4LIN
(uewny) suaides OWOH - awWoseal0.d {(95°S) geddey-4N/aseuny geddey-| {(56°9) Suljeudis .
21Is paAJasuod ‘Hungns adAl-elaq awosealold geddey-4N/aseuny geddey-| jo uoneingal mwgwo.aw Tids { ( o) " , /
/(59°5) 1ungns adA1-g swoseajo.d {(99°) ‘(5z°£) @suodsal sunwiwi {(8Z°£) | ssepd “mmom. w € Sv\_mﬂ..wmw.e .w@.ow 0 mxumm.woﬂ s BT mmom e T4 wwww%w sunwwy € 9695 8AINSd  9T:HHd
uonejuasaid pue 3uissadoud usdiue {(€1°9) JHIA elA uadiue apndad jo uonejuasaid pue 9 .N vi3d L v1'e) 1441 - S)elvls  rreslieee Y I
1ungns-e1aq awosealoud ‘Y11 asepndad Buissasoud uadnue {(9g’/) asuodsal asuajap 1441 {(T1-95€°S) VLS
(#6°€) uonduosuedy [ediA o uoie|nsau annesau
(v£'€) parerosse .
AYdS ‘(zZ'v) Buileusis uoiapaul (g'y) e T (58600°0) Z4¥1 /(¥0600°0) 8€'8 1vis/
e ; iy aAResau (') s59201d [eun jo uone|nal . - (T1-3v2°€) 2LV1S arencgr SR zera 8 999€8 6d¥Vd  LYTHHd
wiaysAs aunwiw] :._ mc“_m:\,m_m aupjolh) ‘(€8'y) aAREBaU {(g"1) 3142 Sy [EAIA 40 UoREINGa 9X0S (¥1-92°T) ZLVLS 67'2'09'€0€8'T asuodsay aunww|
35U343p [BIARUY H(9Z°L) Aunuiw Sieuul aAIeSau {(€6'1) asuodsal sunwwi ajeuul
(0g) @suodsas aunwiwi
(9°'v2) Anunwwr a1euu /() Buijeus ‘(v°0€) uosapiRu | 9dAy 03 9suodsal {(8°0€) (S0-292'T) TSL3 ‘(vT (£€£00°0) 6441 ‘(0T 2UTTEYS 1S/
e3aq/eydie uotajaiul {(g'gz) AMunwiwi {(z'9g)  dsuodsal sunwwi dleuur {(T°TE) wsiuedio -9ZY'€) TLVLS ‘(P1-98S'T)  -96L°T) TLVLS “(E€T-965°T) -8'0212800°2T saA a4 asuodsay aunwi| €€T ¥960T il ZT:HHd
Buljeusis uoJapIA1U| {(€°8E) ASUIYP [BAIANUY  JBYIO 03 dsuodsal SR {(9'PE) SNIIA 7441 (0) ZLVLS “(0) T4YI 2441 7(0) TLVLS “(0) T4YI
01 asuodsau {(£°9€) snJIA 03 asuodsal asuajep
(uewny) susides owoH - uoianpoud 3| 10}
*€) 9||auesio i
Hiom1au aunuwl feunsanu {(z6) (vewny) 5S¢ EVAPUEBI0 (tezo00) TN . (1£600°0) 84N g
suajdes OWOH - wsijogelaw Jesns appoanu & IooEP@ HER 3 CULTEE L RS A0 T (T 0) ‘(S5T00°0) TLVLS ‘(28000°0) 60€ SE9 ou ey SN LT 9L0L TdNIL 0L:HHd
y s - ‘(82°€) aJpIsaA papunog-sueiquidw {(€°€) €1V1S (¥97000°0) S'0'€9T'¥8E6'0 asuodsay aunww|
pue Jedns oulwy ‘(E€'€) Wisljogeraw ssouueiy 9oeds Jen||3exa {(£€°€) Suipuiq a1e4pAyoqued {(80-98S'T) V134 {(£52000°0) 8134
35019014 {(69°€) WSIjogeIBW SIeSnsouIwy 1n| -(Lg°€) suipuiq PAYoq V134 *(80-985°T) VedVvdL
(9°0T) Ajjlweyiadns (zt°8) AuANE BUI0IAD {(95°g) SIXeloWaYd Sre ,
1|-g-upnajIaul supjowayd (9°0T) 33A203n3) Jo uone|ndal aanisod {(96°6) Sulpulq MwmmehWmewm.hmwt (T9T00°0) Z1X04 ‘(£££000°0) —— PN/
uleWop aX1|-g-UBN3|IUI BUNOWY) {(£°0T)  4oidada dupjowayd ¥IXJ (0T) Aemuyred q w ) 8134 ‘(£9€000°0) TAMAN (S0 T °°% _ ou [RACRE mw_co%m sunwwy 72 616C T12X0 ¥ HHd
ujewop aupjoway) JXD {(8'0T) aUs paAIasuod  Suljeusis pajelpaw-aupjowsayd (1°0T) Suipulq Hmv_w_z 01 .wm v -980°€) 13Y {(S0-9£9°7) V13Y LozoreeTLT Y I
‘aunjowayd XD {(8°0T) aunjowayd IxI 101d3234 aupjowayd {(TT) AlAinde aujowayd 13y (T1-9ST2) V134
(T£ ) (Uewny) sualdes owoH - Aemyjed 11101 {(ZS'¥) Aemuyied Buljeusis z Suluiejuod .
Buijeusis 4NL ‘(84 t) Aemyaed Sujeusis urewop uonezuawosijo Suipuig-apiio3jonu ?.o.wmw 1) . , (T9£00°0) TLVLS ‘(28T000°0) .
T4u1 {(88'p) (uewiny) suaides owoH - Aemyled  (y9'p) sisalodoway Jo uone|ngas aanesau wm .Aao.mﬁ .: ﬁwm ”Go 134 *(S0-97°€) TANAN ‘(SO SE  ou Terd H_uw_n\& sunwwy 8 659¢ 1441 TYTHHd
Suijeusis g eddey-4N ‘(6't) Suljeusis ewwed {(8'v7) ss9204d wa1sAs sunwwi Jo uone|ngal % m.v et ..Go eLL) -96°2) V13Y ‘(S0-922'7) 913y O EET g L
uoJapaIU| {(50°S) Aemuyred Suijeusis |oypd aAIIESaU {(68'17) JuUBWdOojaA3p WIISAS Sunwiwl 8134 /(90-2€°7) TN
(anjea sonsnpeisu  pa $ auangnHy au
dot80]-) skemyied sdo dotS0]-) swasn do, anjea-d B do o puesg uoiejouue Asy auad 3|npo|
(dot3o}-) Yied sdoy (dot30}-) 09 gdoy -d) Qv s41 gdoL (anjea-d) oy s41 gdoy onenasaid  niasasg U8 ol M % auenuz  soany Inpon

17


https://doi.org/10.1101/2021.05.17.444463
http://creativecommons.org/licenses/by-nc/4.0/

this version posted May 18, 2021. The copyright holder for this preprint

made available under aCC-BY-NC 4.0 International license.

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
Table 1. (continued)

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.17.444463

Aq sanoiqouax jo wsijogeld (€9°8) (3L3H)
SpI2e 210UdL1191eS0219AX0IPAY-(0Z-9T) JO SISAYIUAS

(6°£) sninwns anolqouax 03 asuodsal {(y0°'g)
SNINWIIS 21301qouaX 03 asuodsal Jejn||ad {(€1°8)

(9v€00°0)
THTYN ‘(2T200°0)

68T'S

eydie’

$S941S

‘(18°8) (L3HQ) sp1oe dlouaLilesodldAxolpAyip pue ) €114N *(TLE000°0) 2, ou G €VST TVIdAD  8SE:HHd
(133) Axoda o sisauuks {(6') wsijogersw sapoqousy 3522040 AU0AEIR JROIAOUX (L TG) REMPLA OSYd 1y 1(go-agT7) 9E0'9TYY6LT rraa LR
/(91°6) Aemyaed 103da03y UOGEIOIPAH |AlY ase|AxoipAy-e8awo {(£1°g) ss9204d d1j0geIaW UIX0) WHY 4(S0-32T2) TdS
, , $5220.d J1j0qelaw d1301qouax (g9 g) uadAxo jo wole (S0
(9€°8) aWaH (8€°g) sonogouadx (18'8) w&m U0 Jo uonelodiodul pue ‘Jouop auo se uidloidoaely  -365°L) TdS (S0-95£°9) ,
S1ensqns ME Mwm:mtm - omwa.wEoEuo;\u ‘(6) omg JO UIABJJ p92NpaJ ‘UaBAXo Jejnasjow Jo uondnpal €4S ‘(S0-9T£'9) VyXY wa mmm _ ou R ssa.ns 11 [v9S ¥Od YET:HHd
awouy03Ad A q UonepIXQ .3 1) <mm_>u SSeP-3°057d 0 yopeodioaul yim ‘siouop paited uo Sunoe 1(50-286'S) V4NH €0'TET'SLBS'T ouay
30420343 (7' TT) 11 dnou3 ‘sse|d-3 ‘0Spd dWOYI0IAD ‘AjIA1noe 9se10NpPalopIXo {(£6°8) AllAloe asejewole {(90-29%°7) EVYX04
(g'€7) uondusuesy parejdwal-pioe disjnu
) . | 30 uonen8as {(9'€z) paiejdwal-yNQ ‘uoidiosuesy (0) TS13 . 3
mw wuwuh_mu“mwﬂw_j_ﬁs.e wcmm:_ uwu_m J ) snapn 40 uoneIndal ‘() sseoo.d dpaLpusolq (0) 7423 (0) vdgId JTBEVO sk TV MMQ”_UHH _c 9vs  TIVEL TS ¥HHd
‘(T°£g) uond: 1 :(6°0€. 4-oUulZ (€ I1PNN VNY {(z'b2) pareidwal-yNg ‘uondudsuel (0) Zarsy (0) VIaIuy TTITTUL8TT nd. L
{(€'pz) uonduosuesy paje|dwai-pioe 213)d9NU
(T9°€) ssa0.d d1joqeled uidjoud (9z€00°0)
(vz mwmym_nEwy vNa :o>mco_mm_ mwmmmnwn_ sasesawAjod Juapuadap-uninbign {(£9°€) ssasoud a1jogqeles SX4Y £(S8T00°0) .
M”__om L_Mumt_r gm_mwm_\ﬂ mmunw__ww_““”__ﬂ__.mﬁuwm mv\ . a|nJajowoudew Jen||ad {(€T ) xa|dwod ased 1y 2413 4(202000°0) TIXIN mwﬂ\ ﬂNm_ . soh awoseaold 9T LVLY8 Q6TTONN  Z8:HHd
M Wesv ilLLe) £> W b 19N (I8'E) gy 1quN-41dN-dDA {(6T'S) Buipuiq asedij uistoud  £(9T000°0) £€8L8Z STELIVILET
a1eday YNQ *(£8°€) H10d Aq sISayiuAs uoisajsues ] aji|-uninbign ‘(€z°5) Buipuiq ased)| uaroud uninbign  {(50-95€°8) TSLI
(£8°6) 1 SSBI2 JHIA BlA uasiue apizdad snouagdoxs Jo
(TO°L) NP YL ‘(L6°L) uonejuasaid pue Suissadold uasiue {(£8'6) ss204d  (90£00°0) ,
5W0sea101d ‘(£T'8) Saseursiold HIN ‘(z4'8) Xa|dwos  21|0GeIaW pide oulwe Je|n|[2d jo uole|ndal {(1°0T) 7OTYN £(82T00°0) g m. e .. S9A swoseaold 0T 1986 9ANSd  LLT:HHd
awoseajo.d {(QT) (uBwNY) sualdes OWOH - awoseajold IUIPUdap-dvL ‘| SSejd IHIN ela uadiue apidad 1513 (50-219°6) DA 6I8'ETIVETL'E
snouagoxa Jo uonejuasald pue Suissasoud uasdiue
(€8°2) (56°€) xo|dwod asepndad {(g0'y) asuodsas sunwwi (T5800°0) TIOXOH
uolejAppaN (68°¢) uonedyipow uialo.d [eUONRISURL)  9)BUUI JO UOIIBAIDE (2T ') uondnpsuely jeusis H X !
HeikppaN (68°7) uoneayipow ut [euone| 140 uonennde {(z1'y) uononp ues eud) _smmooe LVYXOH ares o4 Terqg  swosesiond /T 1566 1 9L:HAd
-150d {(S0°€) (uewny) suaides OWOH - SWOSea10.4d Sunenanoe-asuodsas sunwwi aeuul {(Te'y) xajdwod  {(6Z€00°0) ££€9197 €0'V'S6'SSTE Y AdNYNH
{(g'p) uonepeidag awosea10.d /(66'7) dWosealold asepndadopus {(T¢"f) xa|dwod awoseajosd {(6€2000°0) ST4DL
(€2s00°0)
(£0°€) Suipuiq YNQ d103ds TIXI ‘(S0500°0) . (w
-90uanbas {(z9'€) Sulpuig YNQ 2141d3ds-aduanbas ¥4¢3 ‘(¥6%00°0) N.H mmﬁ , . sohA zera eajsumop) 9 6021 az4Ian LEEHHd
‘A}IA110€ 1030 U 1osueJ) || asedawAjod YNY SLTANZ ‘(TE¥00°0) TTY0T'zr68°0 Z4UN
¥aA ‘(L€€00°0) TS13
(£0°€) Ajlwegiadns urewop Sulpuiq (z€€) ssav04d dnayiuisolq ,
fe1- foe J. (£v600°0) 9,788 .
-(d)aVN {(ST°€) Aemyied z4YN {(9€°€) aseronpatopixQ  salads uaBAxo aAnoeal (g€ €) ss920.d dljogeiaw | o) BV 0 ou SELY] X
{(8£'¥) sonaupjooew.eyd ‘Aemyied unignioxoq sa19ads uadouniu annoeal (G €) ssadoud dljoqersw wbx ) m‘moo 0) THOVE vO'SPE'SIST'O I'Tq TN 9 vi8 €480 STEHHd
(68'%) dAVN “(TO'S) AeMyied wisIj0geIdAl uPIgNIoXod  3PIXO0 LU {(£6°€) Ss004d 2133Y3UASOIq BPIXO LU (z1500°0) TAVLVO
(80°t) Buijeusis [eAIAINs (Z4YN) 21234N padnpul (£zT00°0)
-AdeJays o1weuApoloyd {(9€'t) Aiweyiadns uiewop (50°€) siouop annr {(€T8000°0) R
95819NP3IOPIX0 JUdPUAdaP-dAVN ‘(9€'t) ulewop , ZHOVE (S0-220'%) o ou Z4UN T 967L TAYNXL  ¥PT:HHd
35e19NPa.OPIX0 JUBPUaTaP-daYN {(59°%) Aemured 40 dno. nyins € uo BuRoe ‘AUNIOR SSERNP3IOPIO. ¢y3q 1(g0-ag¢T) THOVE ST'SST'BSTE'T
-e13|A 51031d223Y JeajonN (£0°9) Aemyied Z4uN ‘(80-29€°€) 712N
(#°€) uteyd Asojesrdsas {(94°€) sisauasolq
mmw ) 2PAD 2411 AIH J0 mmw;n_ 21el | Xx3]dwod ureyd Asoresidsal [elpuoyI0NW {(9t°€E) ,
{(99:2) Aanfu) pJo) Jeurds (sT'€) Aemysed Suljeudis Ajquiasse | xa]dwiod uteys Aiojesdsal jeupuoyooyw  (8¢100°0) £97'68 ou rera o - A4y E/THAd
(HSL) auowuoH Bunenwing n_o;f uewnH (9y°¢) (o°€) Aiquiasse xa|duwos aseusgoIpAyap 1513 ‘(#£000°0) ¥423 9L°0°€9'YY20°T UpUOYOUA
SUBJIQIAW JAUUI UOLIPUOYIONIA {(G8°E) UOLIPUOYIOHA HQVN ‘(£5°€) Uteyd A1ojelidsal [eLpuoyIOW
(92'7) uone|suel | {(8Z'€) uone|sUBIY [eLPUOYIONN 79'18 uo
A N[E 3
{(p€°€) UoIEIUI UOIIR|SURY [BLIPUOYIONIA 6T TYELSTS T e qire LIPUOYPONIA L 0Ly 8V4INAN  9ST:HHJ
Aws eA salsnels u C] Y $ auanqgn au
(dot80j-) shkemyzed sdoy (dot80J-) swa21 0O sdoy _ N P youeag onejouue audsd 9qnH 3|npoN
-d) gv s41 sdoy onensasaid  AJasald Aoy N Qizanul  angnH

18


https://doi.org/10.1101/2021.05.17.444463
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.17.444463; this version posted May 18, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

PHH stress response modules seed clusters of modules in an interaction map to describe

mechanisms of toxicity

In toxicity pathways, early events are coupled to a cascade of perturbations that lead to an adverse
outcome, e.g. cell death. Using the stress pathway modules as seeds, we created an interaction map
(cluster correlation) between stress pathways and other highly preserved modules that cluster important
cellular processes as well as preserved modules without clear annotation and identify off-diagonal
interactions between important biological themes.

We used the well-annotated modules identified above (Table 1 and Table S8) as seeds, and identified
preserved ‘add-in” modules (with or without clear enrichment) if they had a Pearson correlation >0.7 with
a seed module, calculated across all TG-GATEs PHH compound treatments. The final expanded set of 87
seed and add-in modules is in Table S8, identified by the column “Cluster”. Figure 3 shows a cluster
correlation analysis of the expanded seed set module EGs based on all TG-GATEs compounds, together
with representative compound responses. Eight distinct clusters emerged with modules annotated for
similar processes forming macro groups; examples are described below. Note that within each group,
modules with limited to no annotation have been included, suggesting they belong to the same response

group.

Cluster 1: immune response. Cluster 1 includes all the seed modules annotated for immune response
pathway terms (Table 1), except PHH:247 (cluster 8). Add-in module PHH:317, which showed no
annotation terms, contains an interleukin receptor (IL18R1), but also some genes induced by
inflammatory molecules, for which little is known regarding involvement with immune response (GSAP,
CSTO). Similar to the observations obtained with TNF-a and interferon-a, inflammatory modules clusters
into two subgroups, one enriched with NF-kB modules, the other in STAT regulated modules.

Cluster 5: mitochondria. Cluster 5 contained seed modules annotated with mitochondria related terms,
but also add-in modules with less clear annotation. Nevertheless, when looking for protein-protein
interactions among genes belonging to this group of modules, high degrees of connections are found for
a large subgroup of genes, connecting within modules and showing high corEG (Wilcoxon rank sum test p
=7.72E-07, Figure S4).

Cluster 3, 4 and 8: cellular stress responses. The above characterized stress modules, like oxidative stress,
ER stress response, heat shock and DDR, clustered in isolated sub-groups within clusters 3, 4 and 8.
However, these clusters also included other processes less commonly associated with prototypical stress
responses. For example, Cluster 3 contained the seed proteasome module (PHH:76), a module containing
two growth arrest and DNA-damage inducible (GADD) genes, GADD45A and GADD45B (PHH:243), the
ATF4-regulated modules (PHH:15 and PHH:295), a module containing several inducible heat shock protein
transcripts (PHH:131) and a module containing two NRF2 target genes, MAFG and MXD1 (PHH:337).
Cluster 3 also contained two RNA processing modules (PHH:42, PHH:19) associated with the
nucleolus/ribosome biogenesis and mRNA processing, respectively. Cluster 8 contains the seed DDR
modules (PHH:59 and PHH:83), both of which contain multiple TP53 regulated genes, and a seed
mitochondrion module (PHH:2) along with modules enriched for fatty acid/cholesterol metabolism
modules (PHH:40, PHH:240) but also cellular homeostasis modules, like PHH:1 (cell cycle), and PHH:11
(metabolism).
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Figure 3. PHH stress modules interaction map. Cluster correlation matrix of the 87 modules correlating with well-annotated
modules. On the left, modules are hierarchically clustered with Ward D2 algorithm using Pearson correlation (red-blue color
scale) as distance. On the far left, the preservation status of each module is indicated with grey color scale (black- preserved, grey
— not preserved). Clusters of modules with concordant annotation are highlighted with dashed squares. On the left, EGs (purple-
orange color scale) for the exemplar compounds tunicamycin, cyclosporine A, Acetaminophen, Omeprazole are shown for the 87
modaules, in dose- and time-responses. On the far right, modules names are shown together with their main annotation (available
for the seed modules), in red highlighted the modules show in table 1.

The expanded interaction map describes the interplay between cellular processes in
response to chemical treatment

The interplay across module clusters appeared to capture elements of the dynamic interactions among
biological response networks (off-diagonal correlation in Figure 3). Clusters can interact positively, e.g.
the mitochondria cluster 5 and the RNA processing cluster 6 (which contains both ribosome RNA (rRNA)

and mRNA processing modules), or negatively, e.g. activation of stress cluster 3 is commonly associated
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with down-regulation of modules in cluster 8 (cell cycle and mitochondrion). Interestingly, half the
modules, largely those annotating for NF-kB, in immune response cluster 1, showed positive correlation
(induced) with activation of processes in clusters 2 and 3 while the other half, including the STAT modules,
were inversely correlated and down-regulated. Cluster 1 showed a similar bifurcation with cluster 8 but
in the opposing direction, i.e. the NF-kB modules positively correlated with clusters 2 and 3 were
negatively correlated with cluster 8 while the STAT modules showed a positive correlation.

An integrated understanding of interaction among complex cellular processes is critical for a mechanism-
based risk assessment and requires identifying KE associations with an apical endpoint. Compound with
higher versus lower risk may perturb more cellular processes in progressing to cytotoxicity while others
may have a more adaptive phenotype. Evidence for progressive perturbation (or lack thereof) can be
derived within the module cluster correlation landscape by comparing the module activation by exemplar
compounds (Figure 3, right). For example, tunicamycin is a prototypical ER stress inducer and has a low
cytotoxic concentration in human hepatocyte cells and a low LD50 of 2 mg/kg in mice (Morin & Bernacki,
1983; S. Zhang et al., 2014). Tunicamycin clearly activates the ER stress response in PHH both via the ATF6
armin cluster 4a (PHH:13 and 62), the ATF4 arm (cluster 3) and fatty acid metabolism (cluster 8 and cluster
4), concurrently with strong repression of rRNA and mRNA processing (cluster 6) and immune response
activation (cluster 1). In contrast, cyclosporine A, which is less toxic with an LD50 in mice ranging from 96-
2803 mg/kg (depending on the route of administration (Sax, 1975)), primarily triggered the ATF6-ER
response (cluster 4a). Taken together, these observations suggest that tunicamycin is inducing a more
severe response impacting diverse cellular biological processes, whereas cells challenged with the used
concentrations of cyclosporine A showed limited module perturbations.

A different picture emerged when we considered two prototypical drugs that can induce oxidative stress:
acetaminophen and omeprazole. For both, immune responses were primarily repressed (cluster 1), while
oxidative stress modules (cluster 4) were activated. In addition, omeprazole activates modules in cluster
3, concurrent with a deactivation of modules in cluster 8. Specific transcription regulation modules are
activated, including PHH:4 which contains several stress-induced TFs (ATF4, ATF3, NFE2L2, TP53) and the
xenobiotic stress module, including CYP enzymes (cluster 4). Interestingly, PHH:358 (cluster 4) contains
CYP1A1 and CYP1A2, canonical AHR targets, and omeprazole is a known AHR ligand (Safe et al., 2020).
Taken together, these observations suggest that omeprazole activates oxidative stress, coupled with the
activation of processes to constrain protein damage (ATF4, proteasome and heat shock modules in cluster
3) and repression of fatty acid metabolism and cell cycle progress (cluster 8).

These examples illustrate the utility of the PHH TXG-MAPr stress-pathway landscape for mechanistic
evaluation of compounds and for comparing compounds with similar modes of action but with different
degrees of toxicity.

Visualizing external datasets in the TXG-MAPr tool reveals good correlation between
different cell types and gene expression platforms in the mode of action

Integrating historical and new datasets to derive mechanistic interpretations is important, but it is often
hard to determine if merged information, such as WGCNA modules, provides a consistent view of
biological responses across experiments. The high variability of gene-level analyses, and the high penalty
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for multiple comparisons also complicate data integration. To validate the utility of the PHH TXG-MAPr
for integrating and comparing external datasets, we created a data upload function, which calculates new
module eigengene scores (EGs) from the gene log2FC of the uploaded data and overlays the scores onto
the module dendrogram for visualization (for further details, see Material and Methods paragraph
Uploading new data files). To further describe CSA mode of action, we processed and uploaded samples
from the GEO database of CSA prolonged repeated exposure followed by recovery in collagen sandwich
cultured PHH (GSE83958 (Wolters et al., 2016)) into the PHH TXG-MAPr tool (Figure 4A). The uploaded
CSA dataset showed strong correlation (Pearson R > 0.8) in module activation and repression among the
three timepoints. A heatmap of module EGs (absolute EGs > 2) separates repressed and activated modules
in different clusters (Figure 4B). ER stress annotated modules (PHH:13 and PHH:62) and an ATF4 module
(PHH:15) are located in the same cluster, which are strongly activated by CSA at high dose levels (Figure
4C). In addition, the 5 day 30 uM CSA treatment with 3 days recovery looks most similar to the CSA_24h_6
MM data from TG-GATEs based on module EGs correlation (R Pearson = 0.67, Figure 4D). The absolute
Pearson correlation between module EGs across the uploaded CSA conditions was higher than the
absolute correlation between the gene log2FC (Supplementary Figure S5F). These uploaded data confirm
that high dose cyclosporine A induces a strong ER stress response amongst others, which is present for
several days during daily exposure and persists even after washout. A similar ER stress response (PHH:13
and PHH:62) was also present in HepG2 hepatocytes exposed to CSA (GEO dataset: GSE45635 (Van den
Hof et al., 2015a)) and ER stress module activation was seen at low (3 uM) and high (20 uM) dose (Suppl
Figure S5A, S6 cluster 5 red line).

Additional datasets of human hepatocytes (PHH, HepG2 and HepaRG) exposed the oxidative stress
inducer acetaminophen (APAP) were analyzed to investigate the application of the PHH TXG-MAPr for a
different compound (Suppl. Figure S5B-E). The APAP datasets show a clear oxidative stress response
(PHH:144, PHH:325) as well as many other module perturbations, which is independent of the cell type or
microarray platform (Figure S6, cluster 8 red line). Pearson correlations between CSA and APAP
treatments in TG-GATEs and the uploaded data from GEO are shown in a cluster correlation plot (Figure
4E). Hierarchical clustering based on correlation distance between samples separates the data based on
the mode of action, clustering ER stress inducers cyclosporine A and tunicamycin together and separated
from oxidative stress inducer acetaminophen. In addition, different hepatocyte cell cultures (3D PHH,
HepG2 and HepaRG) show good correlation with the same compound exposure, suggesting that a similar
mode of action can be captured by other hepatocyte cells. GEO data of PHH exposed to APAP that was
analyzed on two different Agilent microarray platforms correlate well with the TG-GATEs data at the same
concentration (GEO_PHH_APAP_24h_5mM / GEO_PHH.3D_APAP_24h_5mM versus
TG_PHH_APAP_24h_5mM), even though the average module coverage was 84% or 93% for the Agilent
chips (e.g. only 84% or 93% of genes per module were measured in the chip). This indicates that the TXG-
MAPr supports the analyses of gene expression data from different platforms/chipsets. In contrast, low
dose or early time-points do not correlate well with the same compound, likely due to the minimal module
perturbations in these conditions (data not shown).

Overall, the PHH TXG-MAPr upload and analysis functions are powerful tools to compare both global
biological responses across disparate datasets and TG-GATEs data, while identifying specific modes-of-
action, even for other hepatocyte cell types or other microarray platforms, suggesting that co-expression
analysis can obviate technical issues when comparing across expression datasets or platforms.
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Figure 4. Upload external data into the PHH TXG-MAPr. A) Phylogenic tree view of module EGs upon 30 uM cyclosporine A
exposure at 3 day (left), 5 day (middle) and 5 day + 3 day recovery (right). B) Heatmap of all modules that have at least one
condition with absolute EG score > 2 for cyclosporine A treatment. All concentrations and time points from TG-GATEs (0.24, 1.2
and 6 uM) and uploaded GEO: GSE83958 dataset (30 uM) are shown. Modules are clustered by Euclidean distance, Ward.D2
method. The purple color scale indicates to which cluster of Figure3 each module belongs, and grey color scale indicates the
preservation status. C) Zoom in for the third cluster obtained from the heatmap in B. Modules that have a strong annotation for
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ER stress (PHH:13 and PHH:62) or ISR (PHH:15) are in this module cluster and are strongly induced by 6 - 30 uM cyclosporine A.
D) Compound correlation plot comparing the module EG scores of the uploaded 30 uM CSA data at 5 day + 3 day recovery (y-
axis), with CSA_24hr_6uM (x-axis) available in the PHH TXG-MAPr (Pearson R = 0.67). E) Cluster correlation heatmap showing the
Pearson R correlation between the conditions in TG-GATEs data (CSA, TUN, APAP) and the uploaded datasets with CSA and APAP
exposures in PHH, HepG2 and HepaRG cells at various time points (see labels). Compounds cluster by mode-of-action, because
ER stress inducers TUN and CSA are clustering together and show low correlation with the oxidative stress inducer APAP.

Leveraging WGCNA to interpret targeted RNA Seq datasets

Although high throughput technologies allow many samples to be processed in parallel, the high costs of
whole transcriptome profiling has led to the use of targeted RNA sequencing approaches which are
gaining popularity for toxicology studies (Mav et al., 2018). We reasoned that mapping a targeted gene
sets to co-expression modules might yield sufficient data to impute more detailed and biologically
relevant information. We tested this concept using the PHH TXG-MAPr by uploading a targeted RNA Seq
data set, TempO-Seq, obtained from treating plated cryopreserved PHH from 50 different human donors
in a detailed dose-response protocol with tunicamycin at two time points (0.0001 to 10 uM, 8 and 24
hours, Niemeijer et al. 2021). We calculated the modules EGs for each donor-concentration-time point
combination, a total of 600 different conditions, following the approach detailed in Material and Methods
section.

Of the 2708 genes measured in the TempO-Seq S1500+ gene set, only 1830 genes are mapped to the PHH
modules (Supplementary Table S9). Genes not mapping were excluded from the PHH network during
modules generation because they did not have robust co-expression patterns and are included in the PHH
TG-GATEs ‘gray’ module (Langfelder & Horvath, 2008). Although some modules were not covered by any
genes from the S1500+ set (coverage of 0%), modules selected in Figure 3 have significantly higher
coverage (Wilcoxon test, greater alternative, p<0.05 and Figure 5A and B), suggesting that the preserved
and well annotated modules are better represented in the S1500+ set. In addition, the coverage was
higher when the hub gene was present in the S1500+ set (Figure 5B). EG calculation depends on both the
fold change and the correlation with the eigengene score of each gene (corEG, a measure of hubness),
therefore we assessed the corEG values for S1500+ genes as a gene quality metric. At the module level,
the average corEG does not seem to be heavily impacted by the subsampling of gene space, and modules
in the expanded seed set (Figure 3) show higher concordance (Figure 5C, Pearson R 0.84 versus Pearson
R 0.65 including all modules). Additionally, the S1500+ set shows higher average corEG compared with
random draws of genes from PHH module (adj. p-value < 0.05, see Material and Methods Data analysis
section). We also assessed coverage within the set of the preserved modules; only two show coverage of
0%, PHH:103 and PHH:105 (Supplementary Table S10). Thus, the S1500+ set represented a set of genes
that overlap, to a greater or lesser extent, nearly all of the preserved modules and higher quality relative
to their corEG values.

To test the impact of calculating EGs based on the S1500+ gene set, we recalculated EGs for all TG-GATEs
samples using only the reduced S1500+ gene set and calculated the Pearson correlation per module
compared to EGs calculated using the complete gene set (Figure 5D). Modules even with minimal, but
above zero, gene coverage show good EGs correlation (always higher than 0.5), and modules in the
expanded seed set (Figure 3) show on average higher correlation (Wilcoxon test, p value of 2.72e-09).
Using the ER stressor tunicamycin as a model compound, we performed a cluster correlation analysis
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using EGs for TG-GATE PHH data, calculated using both whole chip or just the S1500+ genes, and
compared results with a set of TempO-Seq, S1500+ data derived from 50 donor PHH cultures treated with
tunicamycin (Figure 5E, Supplementary Figure 8). The Affymetrix- and S1500+ derived scores for TG-GATEs
tunicamycin treatments were always >0.7 and clustered together. However, there was considerable
variation within the donor set at the highest dose (10 uM). A subset of donors shows higher similarity
within themselves and with TG-GATEs tunicamycin samples, especially for medium concentration and
when calculated with the S1500+ gene set (Figure 5E, donors in upper left quadrant, to compared to TG-
GATEs sample in the right bottom quadrant). Another subset of donors showed lower similarities within
each other and lower similarity with TG-GATEs tunicamycin samples (Figure 5E, lower right quadrant).

Thus, a targeted gene set can be used as input to derive EGs for modules derived from the whole
transcriptome and impute biological responses on EGs.
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Figure 5. Upload of 50 donors PHH study S1500+ TempO-Seq set. A) Histogram of modules coverage when uploading the
targeted TempO-Seq gene set. Frequency (y axis) of modules percentage covered by the uploaded targeted gene set (x axis). B)
Percentage covered (y axis) for PHH modules, grouped on the x axis by whether they are part of the correlation matrix in Figure
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3 (blue) or not (green). The plot is divided into two sections, the first one showing modules where the hub gene was included in
the uploaded gene set, the second one showing modules where the hub gene was not included in the uploaded gene set. C) Mean
correlation Eigengene for each module, whole genes set (x axis) versus after upload with the targeted TempO-Seq gene set (y
axis). Points are colored based on whether they are part of the correlation matrix in Figure 3 (blue) or not (green). D) Pearson R
correlation for each module between EGs calculated with the complete gene set, and EGs calculated with the S1500+ gene set,
for all TG-GATEs experiments. Points are plotted against module coverage (x-axis) and are colored based on whether they are
part of the correlation matrix in Figure 3 (blue) or not (green). Inside: Pearson correlation calculated as previously grouped by
whether they are part of the correlation matrix in Figure 3 (blue) or not (green). Modules with coverage = 0% had been excluded.
E) Cluster correlation heatmap (complete clustering, Euclidean distance) showing the Pearson R correlation between modules
EGs of the 50 donors dataset samples (10 uM, 24 hr, pink color code on the left), TG-GATEs tunicamycin data obtained with the
complete gene set (aquamarine color code on the left), and TG-GATEs tunicamycin data using only the S1500+ gene space (salmon
color code on the left).

Assessing donor variability captured by PHH modules

Since modules with similar biological annotations cluster together based on EGs scores (Figure 3) we
reasoned that identifying sources of variability at the level of clusters might be more robust than at the
individual module level. Therefore, we clustered modules based on the S1500+ EGs of the 50-donor
dataset similarly to Figure 3, and assessed the overlap between clusters (Figure S9). Some, but not all,
modules clusters derived from the donor data show significant overlap with the groups obtained using
the entire TG-GATEs set in Figure 3 (Figure S9B, exact Fisher p-values and numerical overlaps are shown).
Particularly, RNA processing, stress clusters (ATF4 and ATF6) and transcriptions regulation modules are
clustering similarly. The modest overlap is not surprising since the donor dataset is derived with a single
compound with the PHH donors as the primary source of variability (Figure 5E).

We then made use of modules EGs of S1500+ clusters 1-8 to study donor variability in response to
tunicamycin. Donor variability can be attributable to genomic makeup, but also lifestyle, disease and age
status of each individual. Consequently, we analyzed relationships between module scores, reflecting
induction or repression of underlying genes, and the presence (positives) or absence (negatives) of
donors’ traits, i.e. sex, the presence of cancer, liver pathology, hypertension, diabetes, smoking habit
(Supplementary Table S11).

We applied the methodology described in (J. J. Sutherland et al., 2018) and averaged modules EGs within
each module clusters and modelling each concentration separately. We calculated Cohen’s d effect sizes
(eff, (Cohen, 2013)) and performed logistic regression treating avgAbsEG (average absolute cluster score)
as a covariate and quantified the p-value for each module in explaining the odds of toxicity
(signed_log10_p_adj) reflecting the adjustment for differences in overall gene expression, i.e. avgAbsEG
(Supplementary Table S12). Next, we calculated the same relationship for individual modules EGs
(Supplementary Table S13).

Following this approach, we were able to identify modules and the underlying biological processes, which
are uniquely associated with a donor’s trait upon tunicamycin exposure, and with increasing association
levels in a dose-response relationship (Figure 6). Module clusters have variable number of genes included
but still show good gene quality as quantified by the high average correlation with EGs calculated with the
entire TG-GATEs gene set, especially compared to modules excluded in these clusters (Figure 6 and Figure
5D). We focused on the presence of liver pathology, that influences donor’s response based on different
processes both positively and negatively (Figure 6A). Modules annotated for DDR (PHH:83), protein
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folding (PHH:95) and oxidative stress (PHH:325 and PHH:144) are positively associated (induced) with liver
pathology phenotype of the donor (Figure 6A, Supplementary Table S12, Supplementary Figure S10).
Modules annotated for immune response had a negative association (repressed) with liver pathologies
(PHH:12, PHH:26, PHH:44, PHH:22, Figure 6A, Supplementary Table S12 and S8 for module annotation).
In particular, donors with liver pathologies show lower EGs for these modules, corresponding to lower
log2FC values of the genes belonging to the modules, all annotated for being involved in inflammation
and immune response (Figure 6B and Supplementary Figure S10C, showing genes in module PHH:12 with
corEG > 0.8). To a closer inspection, genes with lower log2FCs are the result of already higher basal
expression levels in PHH donors with pre-existing liver pathology (Figure 6D, showing normalized counts
for PHH:12 genes with significant difference between donors with or without liver pathologies, only with
DMSO treatment, Wilcoxon test, adj. p-value < 0.05).

To conclude, pre-existing traits of PHH donors influence the cellular response to an ER stressor
(tunicamycin). Such an influence can be attributable not to different magnitude of ER stress response
activation, but to variations in the activation of accompanying processes like immune response or
oxidative stress.
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Figure 6. Some PHH modules are associated with donor’s traits. A) Dose-response plot of effect size and adjusted p value (log10
transformation, keeping the sign) resulting from the association of modules clusters to donors’ presence of liver pathologies.
Modules clusters indicated by different color, number of donors showing (positive) and not showing (negative) the indicated trait
are shown in the plot label. On the right, effect size and adjusted p value (log10 transformation, keeping the sign) of individual
modaules to trait associations most prominently contributing to the overall cluster associations highlighted with grey shadows.
Modules are colored in different saturation level of the same hue of the cluster they belong to. B) Boxplot of modules’ EGs
negatively associated with liverpath, grouped by increasing concentrations and presence/absence of liver pathologies. C) Boxplot
of normalized counts of genes belonging to module PHH:12 and significantly different between donors with or without liver
pathologies with only DMSO treatment (Wilcoxon test, BH adj. p-value < 0.05).
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Discussion

In this work, we presented a novel Shiny web tool that allows users to apply a gene co-expression network
(WGCNA) approach to investigate toxicity mechanisms rapidly and in the context of biological responses
preserved between human and animals. This unbiased approach is not weighted toward current
knowledge and can reveal unknown relationships between genes and phenotype data, but it also
encompasses known biological response networks through modules annotation. In addition, this
approach is tailored for a gold standard in vitro testing system: primary human hepatocytes (PHH).

Toxicogenomics data can be difficult to interpret due to its high dimensionality and possible low signal-
to-noise ratio (Ideker et al., 2011). We reduced gene expression dimensionality from 10* to 10? by taking
a modular approach and constructing networks of co-expressed genes from a large PHH transcriptomic
dataset (lgarashi et al., 2015). A set of 398 modules are presented in an intuitive visualization format, the
PHH TXG-MAPr. A simplified upload function enables calculation of eigengene scores (EGs) from external
sources, allowing new data to be integrated and interpreted in the PHH TXG-MAPr analysis environment
which contains 158 chemical comparators combined in 941 different treatment conditions. Pathway
enrichment and TF associations contribute to mechanistic interpretation of modules, allowing the user to
identify key processes that are different and in common between compounds responses. This represents
a starting point for mechanistic interpretation across risk assessment applications, for example, to derive
data-driven quantitative AOPs based on MIE and KE represented by module EGs. Stress induced pathways
interact in cascades of perturbations, balancing adaptive and progressive responses. We showed how
modules and correlation between them can represent connected mechanisms (Figure 3) and used these
to describe compounds’ mode of action. Although correlation analysis is not sufficient to establish
causality, it can suggest potential areas for additional analysis in order to define cause-and-effect
relationship, e.g. through validation of a mechanism-based risk assessment framework (Liu et al., 2019).
Additionally, gene co-expression modules allows to understand how applicable a pathway is to other
species (Perkins et al., 2015).

One of the most vexing problems in risk assessment is indeed understanding whether toxicology data are
likely to extrapolate across species, e.g., from rodent to human, or from one model to another, e.g. from
in vitro to in vivo. Co-expression analysis formalizes methods that allow comparison of node-edge
relationships at the gene level (Langfelder et al., 2011). As a result, we were able to define a subset of
modules, and the associated biological themes, with higher preservation between in vitro human and rat
hepatocytes models. Interestingly, a number of preserved PHH modules show also overlap with published
signatures of rat xenobiotic receptor activation (Podtelezhnikov et al., 2020): to mention a few, PHH:358
perfectly overlaps with the AHR signature, PHH:16 shows very high enrichment with gene members of the
SREBP signature and prominent annotation for cholesterol biogenesis (Supplementary Table S9). A
remarkable observation of our results was the notable difference in preservation for some toxicologically
relevant and well characterized stress pathways. For example, ER stress response is highly preserved,
while DNA damage (p53-driven gene expression) and oxidative stress (Nrf2-driven) responses are not.
Interestingly, when comparing module preservation results, we found that in vivo rat liver and RPH show
higher similarities (Pearson R 0.85 and 0.60 for Z-summary and Median Rank, respectively). In addition,
Nrf2/p53 modules show good preservation between PHH and HepG2 data (data not shown), suggesting
the differences in module preservation are influenced by species rather than cultured conditions. We
expect that preservation results depend, to some extent, on the input dataset composition. For instance,
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how well a certain process is captured in gene expression data from the input experiments, which can
influence gene-to-gene correlation patterns, could be a hypothesis to be explored in future studies.
Nevertheless, literature reports that kinetics and activation of the non-preserved Nrf2/p53 processes are
different across species (MacRae et al., 2015; Martin & Chang, 2018; Monroe et al., 2020), suggesting that
preservation of co-expression networks is a promising approach for the evaluation of the applicability
domain of new approach methodologies (NAMs) for extrapolating safety assessments across species
(Parish et al., 2020).

Comparison with external datasets is a crucial application of the PHH TXG-MAPr tool. Gene level
comparisons can be risky given the likelihood of variability across models and the low signal-to-noise ratio.
Within TG-GATEs data, we showed that compound correlations are improved at the module level (Figure
1C, S1C, S5F). Additionally, module EGs derived from microarray-based external GEO data shows high
similarity across external and TG-GATEs datasets for the same compounds, suggesting that gene-level
noise is dampened when results are evaluated at the modules level. Using the external GEO datasets, we
also confirmed that ER stress is an early event in the mode of action of CSA in different liver cell types. In
contrast, CSA did not show a good correlation with the MoA of APAP datasets, suggesting that oxidative
stress is a secondary/late effect to high dose CSA exposure. Although several publications indicate that
oxidative stress is involved during CSA induced cholestasis in liver (Kawamoto et al., 2017; Koido et al.,
2020; Wolters et al., 2016), our analysis of CSA exposed hepatocytes using the TXG-MAPr tool showed
that the ER stress should not be neglected in the mechanism of CSA induced liver injury as was also
suggested by other literature (Koido et al., 2020; Van den Hof et al., 2015b). To validate the applicability
of the PHH TXG-MAPTr for other transcriptomic platforms, we showed that Agilent microarray data of APAP
exposure in PHH showed strong correlation with Affymetrix based data in TG-GATEs.

Integrating and comparing data across platforms represent a great challenge, especially in cases where
targeted gene sets have been designed to be representative for the whole transcriptome (Mav et al.,
2018; Soufan et al., 2019). A reduced number of features is convenient to diminish complexity and costs
but can weaken the power of enrichment analysis given the smaller gene set background. Imputing the
entire transcriptome response prior to analysis is one solution to this problem (Mav et al., 2020), but may
not be tailored for the testing system in use. Using the TempO-Seq S1500+ gene set platform, we showed
that EGs calculated with PHH co-expression modules can impute biological response patterns directly
when analyzing and interpreting PHH data from targeted gene sets in the context of whole transcriptomic
data. Although the targeted gene space is dramatically reduced compared to whole transcriptome data
in TG-GATEs (~17%, 1830/10275 genes), the modules included in our collection of mechanistic relevant
modules (Figure 3) had significantly higher coverage compared to the entire module set, and include
genes of high quality (as quantified by the corEG). EGs scores obtained with the complete gene set and
with the S1500+ set are in good agreement, and the mechanistic relevant modules had significantly higher
agreement than the rest. Taken together, these findings suggest that results based on only genes in the
S$1500+ platform can be extrapolated to recapitulate the whole transcriptome modules score variability.

Following this strategy, we circumvented the limited gene coverage of the S1500+ set by leveraging the
correlation structure of modules EGs to define biological responses relevant to the differential sensitivity
across responses of 50 donor hepatocyte treated with an ER stress inducer, tunicamycin. Donors’ traits,
particularly the presence of liver pathologies, show significant dose-response related associations with
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clusters of modules referring to specific biological responses, namely immune, DNA damage, oxidative
stress responses and protein folding. The presence of liver pathologies seems to be associated with a
weakened activation of innate immune response upon ER stress induction. Interestingly, genes involved
in innate immunity in donors with pre-existing liver pathologies show already higher expression values
without treatment compared to donors without liver pathologies. Under normal conditions, if there is
excessive stress, ER stress evokes inflammatory responses via the activation of the three UPR branches,
which may sensitize to adverse events (Duvigneau et al., 2019; Fredriksson et al., 2014; Peng et al., 2020).
Donors with pre-existing liver diseases show already activated inflammation, therefore possibly resulting
in even higher sensitivity. Modules related to DNA damage response, protein folding and oxidative stress
response appear to be mildly sensitized in patients with liver pathologies upon ER stress induction. That
is in accordance with a condition of chronic stress and continuous attempt to restore homeostasis (Garcia-
Ruiz & Fernandez-Checa, 2018). Our results partly overlap with findings in recent GWAS DILI studies,
where cholestatic injury phenotype has been associated with UPR and mitochondrial stress, but most
importantly with an increased sensitivity to ROS upon additional drug treatment (Koido et al., 2020).
Interestingly, ER stress response did not show a connection with donor traits: ER stress related modules,
collectively, were a stable and preserved set of biomarkers for the unfolded protein response. Ultimately
these findings highlight how pre-existing liver diseases can be a confounding factor when interpreting
data from in vitro models using donor hepatocytes and that conserve alterations even in 2D culture

conditions.

In conclusion, the TXG-MAPr takes advantage of the modular nature of gene co-expression networks to
achieve mechanistic relevant, cross-species and cross-platform evaluation of toxicogenomic data. By using
the PHH TXG-MAPr, we were able to reduce toxicogenomic data dimensionality to an interpretable set of
mechanistically relevant groups of co-expressed genes. The network-based structure of the TXG-MAPr
allows one to evaluate the similarity of such components in other experimental systems and species.
Therefore, preserved modules between primary human cells and rat systems could be defined, which
could help with interspecies translation during risk assessment. Finally, we illustrated how data from
multiple sources, including data from targeted gene sets, are applicable to upload in the TXG-MAPr, as
well as how the approach can be applied to shed new light into donor-to-donor variability in a high
throughput transcriptomic setting. Overall, we demonstrated that gene co-expression analysis coupled to
a facile visualization environment, the PHH TXG-MAPr, is a promising approach to analyze in vitro human
transcriptomic data and derive mechanistic interpretation, and therefore a substantial step forward
towards integration of transcriptomic data in mechanistic risk assessment practices.
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Supplementary Figure captions

Figure S1. Module dendrograms construction. A) Module dendrogram is shown together with the anti-
clockwise labelling system of branches. B) Module dendrogram is shown highlighting manual adjustment
of branch lengths C) Boxplot of Pearson correlation between different conditions. TG-GATEs conditions
have been grouped by compound, and Pearson correlation calculated between different treatment
conditions in each group (the same compound at different concentrations/time points). The maximum
Pearson correlation per compound is plotted when considering correlation calculated with all log2FC
genes, log2FC of the genes included in the PHH modules, or modules EGs.

Figure S2. Module dendrograms over time and concentrations and for different compounds in TG-GATEs
at high concentration, 24hrs. A) cyclosporine A module dendrograms at increasing time points (from left
to right) and increasing concentrations (from top to bottom). 2hr time point has not been measured for
this compound. B) Acetaminophen module dendrograms at increasing time points (from left to right) and
increasing concentrations (from top to bottom). 2hr time point has been measured for this compound. C)
Module dendrograms for 5 compounds annotated as “MostDILIConcern” according to the DILIRank
classification. D) Module dendrograms for 5 compounds annotated as “LessDILIConcern” according to the
DILIRank classification. E) Module dendrograms for 2 compounds annotated as “noDILIConcern”
according to the DILIRank classification. F) Module dendrograms for 3 compounds not annotated in the
DILIRank classification.

Figure S3. Z summary and Median Rank in the module dendrogram view. A and B) Z summary
preservation scores of PHH modules in Rat in vivo Liver data TG-GATEs (A) and in Rat Primary Hepatocytes
(RPH) TG-GATEs (B), shown in the module dendrogram view. All modules are colored according to their Z
summary statistic (range from blue to red, being blue Z-summary ~0 and deep red Z-summary ~30). Size
of dots representing the modules is proportional to Z-summary. C and D) Median Rank preservation scores
of PHH modules in Rat in vivo Liver data TG-GATEs (C) and in Rat Primary Hepatocytes (RPH) TG-GATEs
(D), shown in the module dendrogram view. All modules are colored according to their Median Rank
statistic (range from blue to red, being blue MedianRank = 396 and deep red MedianRank = 1). The
modules having Median Rank <100 are shown with dots having double the size.

Figure S4. Protein-Protein Interaction plots of genes in the mitochondrial cluster. A) Protein-Protein
Interaction plot of genes belonging to modules part of the mitochondrial cluster (Figure 3) have been
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generated with String-DB and modified in Cytoscape. Nodes (genes) are colored for module membership.
Edges lengths are proportional to the combined interaction score (http://version10.string-
db.org/help/fag/). B) Same plot, each node is colored for the corresponding gene correlation EG score. C)
Boxplot of absolute gene corEG for the nodes connected in the bigger cluster in plots A and B, or not
connected.

Figure S5. TXG-MAP dendrograms of the uploaded conditions into the PHH TXG-MAPr. A) GEO
GSE45635: HepG2 exposed to 3 and 20 uM CSA at 4 time points (12, 24, 48 and 72 h). B) GEO GSE53216:
HepG2 exposed to 0.5 and 10 mM APAP at 4 time points (12, 24, 48 and 72 h). C) GEO GSE74000: HepG2
and HepaRG, exposed to IC10 concentrations of APAP for 24 hours. HepG2 = 2mM; HepaRG = 13mM. D)
GEO GSE13430: PHH exposed to 5 and 10 mM APAP for 24 hours. Microarray analysis was done on the
Agilent Human 1A Microarray (V2) G4110B platform and shows 84% module coverage when uploading to
the PHH TXG-MAPr. E) GEO GSE104601: PHH in 3D co-culture with Kupffer cells exposed to 0.5, 5 and 10
mM APAP for 24 hour. Microarray analysis was done on the Agilent SurePrint G3 Human GE v2 8x60K
Microarray platform and shows 93% module coverage when uploading to the PHH TXG-MAPr. All other
GEO datasets are analyzed with the Affymetrix Human U133 plus 2.0 array and show 100% module
coverage. F) Absolute Pearson correlation between the uploaded PHH datasets for CSA (GSE83958) and
the 24 hr CSA HI data in TG-GATEs, using log2FC of all genes, log2FC of genes in modules, or module EGs.

Figure S6. Heatmap of the uploaded conditions into the PHH TXG-MAPr. Left, heatmap of all modules
that have at least one condition with EG score > 2 for conditions in TG-GATEs data (CSA and APAP) and
the uploaded datasets with CSA and APAP exposures in PHH, HepG2 and HepaRG cells at various dose
levels and time points (see labels). Modules are clustered by Euclidean distance, Ward.D2 method using
pheatmap package in R. Module annotation is shown in the rows of the heatmap. Right, zoom in for cluster
5-8 obtained from the left heatmap. ER stress and ATF annotated modules (PHH:13, 15 and 62) can be
found in cluster 5 and are induced by cyclosporine A in PHH and HepG2 at higher dose levels. NRF2
annotated modules (PHH:144 and 325) can be found in cluster 8 and are induced by acetaminophen in
PHH and HepG2 at higher dose levels.

Figure S7. Upload of 50 donors PHH study $1500+ TempO-Seq set. A) Z-summary preservation score to
Rat in vivo Liver (TG) of PHH modules (y axis) plotted against the percentage covered after uploading of
the targeted TempO-Seq gene set (x axis). Modules having z-summary score higher than 2, no uploaded
genes (percentageCovered = 0) and part of the correlation matrix in Figure 3 (blue) are labelled. B) Median
Rank preservation score to Rat in vivo Liver (TG) of PHH modules (y axis) plotted against the percentage
covered after uploading of the targeted TempO-Seq gene set (x axis). Modules having Median Rank score
lower than 100, no uploaded genes (percentageCovered = 0) and part of the correlation matrix in Figure
3 (blue) are labelled. C) Z-summary preservation score to RPH (TG) of PHH modules (y axis) plotted against
the percentage covered after uploading of the targeted TempO-Seq gene set (x axis). Modules having z-
summary score higher than 2, no uploaded genes (percentageCovered = 0) and part of the correlation
matrix in Figure 3 (blue) are labelled. D) Median Rank preservation score to RPH (TG) of PHH modules (y
axis) plotted against the percentage covered after uploading of the targeted TempO-Seq gene set (x axis).
Modules having Median Rank score lower than 100, no uploaded genes (percentageCovered = 0) and part
of the correlation matrix in Figure 3 (blue) are labelled. E) Correlation EG distribution for all genes in the
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PHH modules. F) Coverage vs module size. G and H) Distribution of the correlation Eigengene for each
module, S1500+ set (G) and original gene set (H, PHH WGCNA modules gene space). Modules are ordered
on the x axis by module size (from larger to smaller module) and on the y axis boxplots for each individual
module show the distribution of the correlation eigengene. Boxplots are colored based on whether they
are part of the correlation matrix in Figure 3 (blue) or not (green).

Figure S8. Distribution of modules scores for the 50 donors uploaded dataset (all modules). A) Boxplot
of EGs of modules for the 50 donors uploaded dataset. The first sample (TUN) correspond to TG-GATEs
EGs of tunicamycin treated sample B) PCA plots colored by time (left) and concentration (right), using the
entire dataset (first row), only high concentration or 24 hr samples (second row) or only low concentration
or 8hr samples (last row).

Figure S9. 50 donors’ modules correlations. A) Cluster correlation matrix of the 87 modules in Figure 3.
Modules are hierarchically clustered with Ward D2 algorithm using Pearson correlation (red-blue color
scale) as distance. On the left, the preservation status of each module is indicated with grey color scale
(black- preserved, grey — not preserved). Clusters of modules are labelled as they appear in Figure 6. B)
Matrix of overlap between module clusters obtained with TG-GATEs dataset (rows) and with the 50-
donors dataset (column). In each cell, Fisher exact p value of overlap significance and numerical overlap
are shown. Cells are colored proportionally to the p value (white, p value equal to 1, dark green p values
<0.05).

Figure S10. Module to donors’ traits associations. A) Dose-response plot of effect size and adjusted p
value (logl0 transformation, keeping the sign) resulting from the association of modules clusters to
donors’ traits. Plots are divided by different traits and modules clusters indicated by different color.
Number of donors showing (positive) and not showing (negative) the indicated trait are shown in the plot
label. B) Boxplot of log2FC values of genes belonging to module PHH:12 and showing corEG > 0.8. C)
Boxplot of log2FC values of genes belonging to negatively associated modules to liver path (besides
PHH:12) and showing corEG > 0.7. D) Boxplot of EGs of modules positively associated with liver
pathologies, grouped by increasing concentrations and presence/absence of liver pathologies. E) Boxplot
of log2FC values of genes belonging to the positively associated modules to liver path and showing corEG
>0.7.
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