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14 Abstract
15 Working memory is a core component of critical cognitive functions such as planning and decision-
16 making. Persistent activity that lasts long after the stimulus offset has been considered a neural 
17 substrate for working memory. Attractor dynamics based on network interactions can successfully 
18 reproduce such persistent activity. However, it suffers from a fine-tuning of network connectivity, in 
19 particular, to form continuous attractors suggested for working memory encoding analog signals. Here, 
20 we investigate whether a specific form of synaptic plasticity rules can mitigate such tuning problems in 
21 two representative working memory models, namely, rate-coded and location-coded persistent activity. 
22 We consider two prominent types of plasticity rules, differential plasticity targeting the slip of instant 
23 neural activity and homeostatic plasticity regularizing the long-term average of activity, both of which 
24 have been proposed to fine-tune the weights in an unsupervised manner. Consistent with the findings of 
25 previous works, differential plasticity alone was enough to recover a graded-level persistent activity with 
26 less sensitivity to learning parameters. However, for the maintenance of spatially structured persistent 
27 activity, differential plasticity could recover persistent activity, but its pattern can be irregular for 
28 different stimulus locations. On the other hand, homeostatic plasticity shows a robust recovery of 
29 smooth spatial patterns under particular types of synaptic perturbations, such as perturbations in 
30 incoming synapses onto the entire or local populations, while it was not effective against perturbations 
31 in outgoing synapses from local populations. Instead, combining it with differential plasticity recovers 
32 location-coded persistent activity for a broader range of perturbations, suggesting compensation 
33 between two plasticity rules.   

34 Author Summary
35 While external error and reward signals are essential for supervised and reinforcement learning, they 
36 are not always available. For example, when an animal holds a piece of information in mind for a short 
37 delay period in the absence of the original stimulus, it cannot generate an error signal by comparing its 
38 memory representation with the stimulus. Thus, it might be helpful to utilize an internal signal to guide 
39 learning. Here, we investigate the role of unsupervised learning for working memory maintenance, 
40 which acts during the delay period without external inputs. We consider two prominent classes of 
41 learning rules, namely, differential plasticity, which targets the slip of instant neural activity, and 
42 homeostatic plasticity, which regularizes the long-term average of activity. The two learning rules have 
43 been proposed to fine-tune the synaptic weights without external teaching signals. Here, by comparing 
44 their performance under various types of network perturbations, we reveal the conditions under which 
45 each rule can be effective and suggest possible synergy between them. 

46 Introduction
47 Continuous attractors have been hypothesized to support brains’ temporary storage and 
48 integration of analog information (1–3). An attractor is an idealized stable firing pattern that persists in 
49 the absence of stimuli, and integration is allowed if these attractors form a continuous manifold. 
50 Theoretical models predict that neural activity should be restricted within but free to move along this 
51 manifold, making stochastic fluctuation correlated among neurons, as is validated in the brainstem 
52 oculomotor neural integrator (4), the entorhinal grid cell system (5), and prefrontal visuospatial selective 
53 neurons (6). 
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54 Computationally, the performance of continuous attractors is known to be sensitive to network 
55 parameters, which is termed as the “fine-tuning problem” (7,8). The slight imperfection of synaptic 
56 weight asymmetry could make continuous attractors break down into a few discrete attractors or cause 
57 an overall drift of activities. This raises the question of how continuous attractors could exist in the 
58 brain. Noting that the model is just an idealization, earlier studies have proposed that continuous 
59 attractors can be approximated by finely discretized attractors with a hysteresis of coupled bi-stable 
60 units, which would make the system more robust (9,10). Recent theoretical studies suggest other 
61 complementary mechanisms, including derivative feedback and short-term facilitation, with the former 
62 slowing down activity decay (11,12) and the latter transiently enhancing stability (13,14). 

63 These workarounds could make continuous attractors more tolerant to parameter perturbation. 
64 Not mutually exclusively, long-term plasticity is believed to take part in settling a reasonable parameter 
65 range. For example, the plasticity involved in the fish oculomotor integrator has been most studied. 
66 Previous works have proposed either visually supervised plasticity (15–17) or self-monitoring plasticity 
67 acting in the dark (18,19). These plasticity rules utilize time-derivative signals to detect slip of eye 
68 position or neural activity. Note that similar mechanisms can be generalized to mediate the tuning 
69 conditions of the parametric working memory encoding analog information (11,17,20). More broadly, 
70 derivative-based rules have been suggested to learn temporal relationships between input and output 
71 (21–23) and in reinforcement learning (24–26). 

72 Another class of long-term synaptic plasticity suggested for continuous attractors is homeostatic 
73 plasticity, which regularizes the excitability of neurons (27). Many models focused on the role of 
74 homeostatic plasticity to prevent instability. As homeostatic plasticity tends to pull excitation down or 
75 boost inhibition when network activity is higher than a reference value, the positive feedback between 
76 network activity and activity-dependent plasticity can be counterbalanced (28). On the other hand, 
77 Renart et al. (29) considered network storing spatial information in a spatially localized “bump” activity 
78 pattern and proposed an additional role of homeostatic plasticity, that is to regularize the network 
79 patterns and recover tuning condition for spatial working memory perturbed by the heterogeneity of 
80 local excitability. Similarly, Pool and Mato (30) suggested that for developing orientation selectivity 
81 through Hebbian learning in recurrent connections, homeostatic plasticity can enforce symmetry in 
82 synaptic connections such that all orientation can be represented equally in the networks.

83 Both differential and homeostatic plasticity suggested for attractor networks are unsupervised. 
84 External supervisory or reward signals are not required to recover the required tuning condition. As 
85 shown previously, they can act after the offset of sensory signals and might be suitable for memory 
86 tasks that typically have a long memory period without external input. However, previous works have 
87 investigated the effect of differential plasticity and homeostatic plasticity partially for different types of 
88 continuous attractor or under particular types of perturbations in the network parameters. 

89 Therefore, we investigated whether these two forms of learning can recover persistent activity 
90 in continuous attractors, which require fine-tuning conditions of network parameters. As a systematic 
91 study, we considered two different types of continuous attractors, namely, rate-coded and location-
92 coded persistent memory, in a single framework, called the negative derivative feedback mechanisms 
93 (11,12). First, we formally described the fine-tuning problem in a rate-coded attractor system with a 
94 simpler network architecture than a location-coded attractor. We examined the effects of differential 
95 plasticity and homeostatic plasticity and how recovery from perturbation in connectivity depends on the 
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96 learning parameters. Then we extended the scope of our investigation to a location-coded system that 
97 requires spatially structured networks and investigated the recovery of tuning conditions under various 
98 types of perturbations. Finally, we demonstrated that two rules could partially compensate for each 
99 other when they are combined. 

100 Results
101 Rate-coded persistent activity in one homogenous population

102 Before we discuss the synaptic plasticity rule that stabilizes persistent spatial patterns of 
103 activity, we first consider the similar mechanism applied for a rate-coded persistent activity where the 
104 persistent firing rate of memory neurons varies monotonically with the encoded signals (2). Compared 
105 to location-coded memory suggested for maintaining spatial information, the rate coded one has been 
106 suggested to maintain a graded level of information such as somatosensory vibration frequency (31,32). 
107 Previous theoretical works proposed that recurrent circuits can maintain both types of memory based 
108 on similar feedback mechanisms despite the different network architecture (12). Thus, we first gain 
109 insight into how the specific form of synaptic plasticity can stabilize persistent memory in the rate 
110 coding scheme, which has a simpler network structure.

111 As the rate-coded network can be built upon a spatially homogeneous structure, its dynamic 
112 principle can be captured in the mean-field equations describing the network dynamics with one 
113 variable (see Methods). Two representative feedback mechanisms have been proposed based on 
114 recurrent network interactions, positive feedback, and negative derivative feedback, both of which is 
115 described by the following equation,

116
𝑑𝑟
𝑑𝑡 =  ― 𝑟 +  𝑤𝑛𝑒𝑡𝑟 ― 𝑤𝑑𝑒𝑟

𝑑𝑟
𝑑𝑡 + 𝐼(𝑡). #(1)

117 In the above equation, r represents the mean firing rate of the network activity. We considered time t 
118 and other time constants are unitless (normalized with the intrinsic time constant of r) for simplicity. 
119 The first and last terms on the right side represent the intrinsic leakage and transient external input. The 
120 second and third terms represent the feedback arising from recurrent inputs. 

121 In the positive feedback models, the excessive excitatory inputs need to be tuned to cancel the 
122 intrinsic leakage such that the net gain wnet in the second term is tuned to be one, whereas wder is 
123 typically zero (11). On the other hand, in the negative derivative feedback models, balanced excitatory 
124 and inhibitory recurrent inputs with different kinetics generate the resistive force against memory 
125 slippage similar to time-derivative activity in the third term. As its strength represented by wder increases 
126 while the second term remains relatively small, the effective time constant of decay of network activity 
127 increases proportionally. Thus, for large negative derivative feedback, the decay of activity slows down 
128 (11). 

129 With a long time-constant of decay, both networks show integrator-like properties such that 
130 during the stimulus presentation, it integrates the external input. After its offset, it maintains persistent 
131 activity at different levels (Fig. 1A). However, any memory circuits keeping the information in continuum 
132 states face a fine-tuning problem (7,8,33). Similarly, for rate-coded persistent memory, despite the 
133 different tuning conditions in positive feedback models and negative-derivative feedback models, the 
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134 deviation from the perfect tuning leads to a gross disruption of persistent activity. For instance, a 
135 reduction in the E-to-E connection mimics the effect of NMDA perturbation in memory cells shown 
136 experimentally (11,34). Such a perturbation causes an imbalance between the recurrent excitation and 
137 inhibition in negative derivative feedback models and leads to the rapid decay of the activity (Fig. 1B). 

138 Figure 1. Recovery of rate-coded persistent activity through differential plasticity.   

139 A: Maintenance of persistent activity through negative-derivative feedback.  With balanced excitation 
140 and inhibition with slower excitation, the network can maintain persistent activity at different rates 
141 (solid, dotted, and dash-dotted curves represent activity for different input strengths).  B: Disruption of 
142 persistent activity (bottom) under the perturbation in the recurrent excitatory connections (arrow in top 
143 panel).  C: Schematics of differential plasticity (top) and recovery of E-I balance under differential 
144 plasticity (bottom).  D: Maintenance of persistent activity after the recovery of E-I balance through 
145 differential plasticity.

146 Stabilization of persistence through differential plasticity 

147 To mitigate this fine-tuning condition and to make the network resilient against perturbations, 
148 several forms of synaptic plasticity have been proposed. Two prominent synaptic plasticities suggested 
149 for persistent activities are homeostatic plasticity (27,29) and differential plasticity (18,19). Here, we 
150 examine how each plasticity can stabilize a rate-coded persistent activity. 

151 First, we consider differential synaptic plasticity where the synaptic update depends on the 
152 firing rate and its time derivative of pre- and postsynaptic activities [(18); Fig. 1C]. Previous work showed 
153 that such a plasticity rule updates the synaptic connection to reduce the overall derivative of network 
154 activities (18). We considered the negative-derivative feedback model composed of one homogenous 
155 population to understand further how the fine-tuning condition can be achieved through the differential 
156 plasticity rule. We assumed that the network receives balanced recurrent excitatory and inhibitory 
157 inputs with its strengths denoted as Wexc and Winh, and excitatory inputs have slow kinetics than the 
158 inhibitory inputs. If initially balanced excitation and inhibition is perturbed by the reduction in the 
159 excitatory connection and excitatory connection changes according to the differential plasticity rule, the 
160 dynamics of the system can be captured by the firing rate r and excitatory connection strength Wexc as 

161
𝑑𝑟
𝑑𝑡

=  ― 𝑟 + (𝑊𝑒𝑥𝑐 ― 𝑊𝑖𝑛ℎ)𝑟 ― 𝑤𝑑𝑒𝑟
𝑑𝑟
𝑑𝑡

 
𝑑𝑊𝑒𝑥𝑐

𝑑𝑡
=  ― 𝛼 𝑑𝑟

𝑑𝑡
𝑟#(2) where wder is proportional to Winh and the difference of the time 

162 constants for excitatory and inhibitory inputs feedback (Methods). 

163 The steady states of the system are r = 0 or dr/dt = 0, where the latter can be achieved for 
164 balanced excitation and inhibition, that is, Wexc becomes closer to Winh for large Winh. However, in 
165 successive trials where each trial is composed of stimulus presentation and delay period, and assuming 
166 that external input during the stimulus presentation reset r without changing Wexc, we found that only 
167 dr/dt = 0, that is, the balanced tuning condition can be achieved (Fig. 1C,D). Once this tuning condition is 
168 achieved, the network can maintain the graded level of persistent activities (Fig. 1D).   

169 We further investigated how the recovery of a tuning condition depends on the parameters of 
170 synaptic plasticity by examining the phase plane of r and Wexc (Fig. 2A). The learning speed α and Winh 
171 have similar effects of modulating the vector field along the Wexc-axis such that increasing Winh is 
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172 effectively the same as decreasing α (Fig. 2B-C; Methods). In other words, stronger derivative feedback 
173 requires a longer time to recover after the same percentage of perturbation, so the recovery duration 
174 should scale with synaptic strength Winh. On the other hand, larger perturbation leads to the initial Wexc 
175 further away from the balanced state, making it longer to recover its tuning condition (Fig. 2D). Finally, 
176 overall input strengths during the stimulus presentation determine the magnitude of r to be reset during 
177 the stimulus presentation such that larger stimulus strength pushes the system in a faster speed regime 
178 and makes the system faster to converge (Fig. 2E).   

179 Figure 2. Recovery dynamics dependence on learning parameters under differential plasticity.

180 A: Phase-plane of activity r and synaptic strength of recurrent excitation Wexc.  The black arrows 
181 represent a vector field for the dynamics of r and Wexc, described in Eq. 2.  The red curve is a trajectory 
182 starting from 10% perturbation in Wexc, that is, Wexc = 0.9Winh with Winh = 500.  During the stimulus 
183 presentation, the trajectory jumps horizontally, and input strengths vary randomly across trials.  B-D: 
184 Dependence of recovery speed on learning and network parameters.  The minimum number of trials for 
185 Wexc to reach up to 1% precision was obtained by varying the learning speed α (B),  Winh (C), perturbation 
186 strength (D), and relative mean input strengths across the trial (E).  

187

188 Homeostatic plasticity is effective but sensitive

189 While differential plasticity has been shown to stabilize the rate-coded persistent activity 
190 (11,18,19), homeostatic plasticity has been suggested to stabilize different forms of memory, such as 
191 spatial working memory (29) and discrete working memory (35,36). The homeostatic plasticity regulates 
192 the excitability of postsynaptic neurons such that in its typical form, all incoming synapses onto the 
193 postsynaptic neurons multiplicatively scale for the long-term average rate to achieve their target firing 
194 rates 𝑟0 (Fig. 3A). As for differential plasticity, we examined the effect of homeostatic plasticity in one 
195 homogenous population for a rate-coded persistent activity, whose dynamics is described as 

196

𝑑𝑟
𝑑𝑡 =  ― 𝑟 + (𝑊𝑒𝑥𝑐 ― 𝑊𝑖𝑛ℎ)𝑟 ― 𝑤𝑑𝑒𝑟

𝑑𝑟
𝑑𝑡

𝑑𝑊𝑒𝑥𝑐

𝑑𝑡 =  ― 𝛼𝑊𝑒𝑥𝑐(𝑟 ― 𝑟0).#(3)

197 The steady-state of such a system is achieved when r=r0 and dr/dt = 0, that is, Wexc ≈ Winh for large Winh. 
198 Note that this is more stringent than those for differential plasticity that requires the latter balance 
199 condition only.  

200 Figure 3. Recovery of rate-coded persistent activity through homeostatic plasticity.

201 A: Schematics of homeostatic plasticity scaling the strengths of incoming synapses to achieve the target 
202 firing rate r0.  B-C: Recovery of E-I balance (B) and maintenance of persistent activity at the different 
203 levels after the recovery (C).

204

205 Similarly to differential plasticity, we found that the steady-state can be achieved through 
206 homeostatic plasticity. However, it requires additional tuning of input strengths. The input strength set 
207 the initial condition for 𝑟 at the beginning of the delay and the mean of initial r needs to be r0 on 
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208 average. In such a case, the network achieves the balance condition (Fig. 3B) and maintains the rate-
209 coded persistent activity (Fig. 3C). However, for inadequately tuned input, the steady-state cannot be 
210 achieved (Fig. 4A-B). For the mean of the input strength making r in the beginning of the delay period 
211 smaller (larger) than r0, the dynamics of r drifts upward (downward) to achieve r0 on average during the 
212 delay period (Fig. 4A-B, lower panels). Consequently, Wexc is stabilized to be excessive (deficient) 
213 compared to Winh (Fig. 4A-B, upper panels). Thus, the homeostatic rule for rate-coded persistent 
214 memory requires tuning of input strengths and duration to achieve its target rate r0 and balance 
215 condition of recurrent excitation and inhibition.

216 Figure 4. Sensitivity of homeostatic learning rule on learning parameters.

217 A-B: Sensitivity to mismatch between r0 and input strengths. With lower mean input strengths 
218 compared to those in Fig. 3, the mean firing rate at the beginning of the delay period is lower than the 
219 target firing rate r0, and the dynamics drift upward to achieve r0 on average during the delay period (A, 
220 bottom).  This results in excessive Wexc compared to Winh (A, top).  The opposite leads to the decay of 
221 activity and deficient Wexc (B). C: Sensitivity to the learning rate.  For a faster learning rate, the 
222 homeostatic plasticity leads to the oscillation even for property tuned inputs, and the activity can vary 
223 across different trials for the same strength of the input.

224

225 Also, it is notable that the stability analysis further reveals that near the steady-state, the system 
226 shows damped oscillation. Its frequency depends on the speed of the homeostatic learning rule such 
227 that faster learning leads to faster oscillation. In successive trials with reset in r, the faster learning leads 
228 to the ongoing oscillation near the steady-state even for a properly tuned input such that for different 
229 trials, the dynamics cannot be stabilized (Fig. 4C). Overall, the analysis of one homogenous population 
230 shows that although homeostatic rule can recover persistent activity for rate-coded memory, it is 
231 sensitive to input parameters and learning speed.  

232 Location-coded persistent memory in spatially structured network

233 So far, we showed how two prominent plasticity rules could stabilize rate-coded persistent 
234 memory in one homogenous population. However, whether the same mechanism can be generalized to 
235 stabilize location-coded persistent memory is in question because both rules are local, depending on 
236 pre- and postsynaptic activity but have no regularization on a spatial pattern of activities required for 
237 encoding spatial information. Here, we considered the negative derivative feedback model suggested 
238 for spatial working memory (12) and explored under which condition such generalization can be made. 

239 Previous work showed that the principle for negative derivative feedback found for one 
240 homogenous population could be extended to the network with a functionally columnar structure 
241 required to maintain a spatial pattern of persistent activity. Consistent with experimental observations 
242 (37–39), both excitatory and inhibitory neurons in each column have similar spatial selectivity. The 
243 connectivity strengths decrease as the preferred features over the columns get dissimilar (Fig. 5A-B). 
244 Assuming translation-invariance of connectivity strength such that it depends only on the distance 
245 between neurons’ preferred features, the network activity is symmetric under the translation of 
246 stimulus location. 

247 Figure 5.  Location-coded persistent activity and its disruption under perturbation of tuning
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248 A: Schematics of the spatial structure of network for location-coded memory.  We considered that both 
249 excitatory and inhibitory neurons are organized in a columnar structure where each column consists of 
250 neurons with a similar preferred feature of the stimulus.  Blue and red represent excitatory and 
251 inhibitory connections, respectively.  B: Example connectivity matrix showing symmetry under 
252 translation.  We considered the stimulus feature neurons encode the spatial information during the 
253 delay period, which lies on a circle, represented by θ ranging between -π and π.  We assumed 
254 translation-invariance with the synaptic strengths depending only on the difference between preferred 
255 features of post and presynaptic neurons.  C: Decomposition of spatially patterned activity into Fourier 
256 modes.  Under translation-invariance, the activity can be decomposed into Fourier modes, and with 
257 strong negative derivative feedback, the dynamics of each mode become independent.  D:  Location-
258 coded persistent activity under E-I balance.  The activity during five consecutive trials was shown where 
259 the center of input is shifted randomly, showing maintenance of the spatial pattern of activity (upper 
260 panel) as well as elevated persistent activity at the stimulation center (lower panel).  E: Disruption of 
261 persistent activity under 10% global perturbation in the E-to-E connection. 

262

263 Under translation-invariant connectivity and activity patterns, dynamics can be analyzed 
264 through Fourier analysis ((12); Fig. 5C). For a large recurrent excitation and inhibition, the dynamics of 
265 Fourier modes are approximately independent of each other, each of which is analogous to the 
266 dynamics of one homogeneous population. Thus, the condition for negative derivative feedback in each 
267 Fourier mode is similar to the rate-coded network - slower recurrent excitation with the same condition 
268 on the synaptic time constants as in the homogeneous case, and balanced recurrent excitation and 
269 inhibition of that mode represented in terms of the Fourier coefficients of the synaptic strengths.

270 With similar balanced tuning conditions for the location-coded persistent memory, the 
271 perturbation to the synaptic connections leads to a similar disruption in the activity as in the rate-coded 
272 network (Fig. 5D-E). We first considered the multiplicative scaling down of all E-to-E connections, called 
273 a global perturbation (Fig. 5E). This leads to imbalanced excitation and inhibition and decay of activity in 
274 all Fourier modes. Note that the translation-invariant property is maintained under the global 
275 perturbation of the connectivity. Thus, the activity pattern is still symmetric for different stimulus 
276 locations despite its rapid decay to the baseline compared to the unperturbed case. 

277 Effects of plasticity under global perturbation

278 Next, we examine whether differential plasticity and homeostatic plasticity can recover the 
279 balance tuning condition for a spatially structured network. We assumed that the stimulus location 
280 across different trials is uniformly distributed and changes fast enough compared to the speed of the 
281 synaptic plasticity. Even if the connectivity is translation-invariant initially, stimulus at a particular 
282 location can lead to asymmetrical updates in the synaptic connections. Such asymmetrical updates can 
283 be mediated by slow learning and random stimulus locations having uniform distribution (30). 

284 Under the maintenance of translation-invariance, the differential rule was shown to recover 
285 persistent activity having spatial patterns (Fig. 6). Unimodal activity peaked at the stimulus location can 
286 be maintained at any location after the differential plasticity rule recovers the balance of excitation and 
287 inhibition (Fig. 6A-B).  We quantified the ability to maintain location-coded persistent memory using the 
288 decoding accuracy of spatial information at the end of the delay period (Methods). Initially, after global 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.17.444447doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444447
http://creativecommons.org/licenses/by/4.0/


9

289 perturbation, the decoding error became around one, indicating loss of spatial selectivity, but over the 
290 course of learning with differential plasticity, it becomes close to zero (Fig. 6C). In line with this, the time 
291 constant of decay of different Fourier modes was shown to prolong (Fig. S1). In the eigenvector 
292 decomposition of the connectivity matrix, eigenvectors corresponding to the leading eigenvalues were 
293 found to be similar to Fourier modes, which is a signature of preservation of translation-invariance ((40); 
294 Fig. S1). The ratios of associated eigenvalues increase to one, albeit the different speeds, suggesting the 
295 recovery of balance tuning condition in each mode (Fig. 6D). 

296 Figure 6.  The effect of differential plasticity under weak global perturbation.

297 A:  Recovery of location-coded memory with differential plasticity under 10% global perturbation in the 
298 E-to-E connections.  B: Activity pattern at the end of delay period after the recovery.  With the 
299 connectivity frozen at trial 8000 (arrow in C), the spatial pattern of activity at the end of the delay period 
300 was shown for different stimulus locations.  C: Improvement of decoding accuracy with learning.  An 
301 individual trial refers to one memory task with a specific stimulus location. For each trial, we took the 
302 snapshot of activity as in B and quantified the decoding error using the population vector decoder 
303 (Methods). Dashed line indicates decoding error before perturbation D: Recovery of E-I balance for 
304 different Fourier modes.  The eigenvector decomposition reveals the effective time constant of decay 
305 and recovery of E-I balance in different Fourier modes (Methods; Fig. S1).  E: Mean (black) and standard 
306 deviation (red) of spatial selectivity across neurons quantified by the first Fourier component of each 
307 neuron’s tuning curve at the end of the delay period.  F: Normalized standard deviation of Fourier tuning 
308 in (E) where its decrease with learning indicates recovery of translation invariance.

309 However, if translation-invariance breaks down, then Fourier analysis cannot be applied. This 
310 breakdown can occur either when the learning is too fast such that it cannot overcome asymmetry 
311 introduced by the different stimulus location at each trial or when the perturbation is too strong such 
312 that the activity of some neurons is stabilized to zero. Figure 7 shows the latter case – for stronger 
313 perturbation, the persistence of activity is recovered under differential plasticity, but the spatial pattern 
314 is fragmented by silent neurons (Fig. 7A-B). The decoding accuracy still improves during learning due to 
315 active neurons encoding spatial information (Fig. 7C and 7E). 

316 Figure 7. The effect of differential plasticity under larger global perturbation.

317 A-B: Time course and tuning of activity after the recovery of E-I balance under differential plasticity 
318 (arrow in C), but 15% global perturbation was used.  Differential plasticity stabilizes some neurons’ 
319 activity to zero, making them unresponsive to all stimulus locations. C: Improvement of decoding 
320 accuracy despite silent neurons due to compensation by neighboring active neurons.  D: Normalized 
321 standard deviation of the first Fourier component over neurons, which remains high at the end of trials.  
322 E: Decoding errors under different strengths of perturbations. Dashed line indicates decoding error 
323 before perturbation. F: mean (black) and standard deviation (red) of spatial selectivity (F) under 
324 different strengths of perturbations. 

325

326 For larger perturbation, the recovery of persistent activity and decoding accuracy is not uniform 
327 across different neurons as translation-invariance breaks down. To quantify this heterogeneity, we 
328 calculated the first Fourier component of the tuning curve of each neuron at the end of the delay 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.17.444447doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444447
http://creativecommons.org/licenses/by/4.0/


10

329 period, representing its spatial selectivity, and obtained its mean and variance across neurons (Fig. 6E, 
330 7D, and 7F; Method). Its mean increases with learning, indicating the increase of spatial selectivity with 
331 learning, shown for a broader range of perturbation (Fig. 6E and 7F). For a relatively weak global 
332 perturbation, the variance can transiently increase, reflecting an overall increase of activity level, but the 
333 normalized variance by the mean decreases for smaller perturbation with the translation-invariance 
334 maintained (Fig. 6E-F). However, for larger perturbation, such normalized variance is not reduced to 
335 zero even after decoding accuracy reaches its asymptote, indicating the breakdown of translation 
336 invariance (Fig. 7D and 7F).   

337 While the maintenance of translation-invariance is not guaranteed under differential plasticity, 
338 homeostatic plasticity has been suggested to recover translation-invariance perturbed under cellular 
339 heterogeneity or other types of synaptic plasticity such as Hebbian learning (29). Indeed, the application 
340 of homeostatic learning rule to negative derivative feedback network recovers persistent unimodal 
341 activity at different locations (Fig. 8). As for differential plasticity, decoding accuracy improves with 
342 learning as the E-I balance is recovered (Fig. 8C and 8E). In contrast to differential plasticity, homeostatic 
343 plasticity achieved a low variance of spatial selectivity across neurons for a broader range of global 
344 perturbation, suggesting the maintenance of translation-invariance (Fig. 8D and F). As for a rate-coded 
345 memory network, homeostatic plasticity requires the input strengths to be tuned to match average 
346 delay activity to the target rate. However, the condition on the input strength can be mitigated with 
347 cellular or synaptic nonlinearity for location-coded persistent memory. The information can be decoded 
348 from the peak of the bump activity and is not sensitive to the amplitude of the bump. 

349 Figure 8. The effect of homeostatic plasticity under global perturbation.

350 A-D:  Same as Fig. 7A-D but with homeostatic plasticity, showing recovery of location-coded persistent 
351 activity and translation-invariance.  E: Recovery of E-I balance in different Fourier modes shows the 
352 same recovery speed because homeostatic plasticity multiplicatively scales all afferent weights. F: 
353 Decoding errors (black) and normalized deviations of spatial selectivity (red) for different perturbation 
354 strengths. Dashed line indicates decoding error before perturbation.

355

356 Effects of plasticity under local perturbation

357 We further investigated the effect of differential and homeostatic plasticity, where the balance 
358 of excitation and inhibition is locally perturbed. We considered two different types of local perturbations 
359 – first, postsynaptic perturbations, where synaptic strengths projected onto a particular group of 
360 neurons were perturbed (Fig. 9). For instance, this can be incurred by perturbation in NMDA receptors, 
361 which is considered to be prominent in the E-to-E connections (41). Mathematically, it is analogous to a 
362 row-wise perturbation in the E-E connectivity matrix (Fig. 9A). Another type of perturbation is the 
363 presynaptic one, where outgoing synaptic strengths are perturbed (Fig. 10). This perturbation can be 
364 caused by reducing transmitter release and is analogous to column-wise perturbation in the connectivity 
365 matrix (Fig. 10A). We considered a smooth bell-shaped perturbation assuming that the neurons with 
366 similar preferred spatial selectivity are clustered, and the effect of local perturbation dissipates across 
367 the clusters (42). 

368 Figure 9.  The effect of differential and homeostatic plasticity under postsynaptic perturbations. 
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369 A: Schematics of postsynaptic perturbations where the rows of the connectivity matrix are multiplied by 
370 different scaling factors. Perturbation is centered at θ=0 and bell-shaped. B: Activity pattern under 15% 
371 post-synaptic perturbations before any plasticity. C-D: activity pattern shaped by the differential (C) and 
372 homeostatic (D) plasticity. E-F: Decoding errors (black) and normalized deviations of spatial selectivity 
373 (red) for different perturbation strengths after applying differential (E) and homeostatic (F) plasticity. 
374 Under differential plasticity, some neurons were silenced near the perturbation site (C), and the 
375 translation-invariance breaks down albeit with decent decoding performance (E). In contrast, 
376 homeostatic plasticity recovers the location-coded persistent activity for a broad range of postsynaptic 
377 perturbations (F). 

378 Figure 10. The effect of differential and homeostatic plasticity under pre-synaptic perturbations.

379 A: Schematics of pre-synaptic perturbations where the columns of the connectivity matrix are multiplied 
380 by different scaling factors.  B-F: Same as in Fig. 9B-F but under 15% pre-synaptic perturbation.  Unlike 
381 postsynaptic perturbations, differential plasticity recovers persistent activity and translation-invariance 
382 (C, E). In contrast, with homeostatic plasticity, the activity pattern was distorted, resulting in worse 
383 decoding accuracy and translation-invariance for larger perturbations (D, F). 

384

385 We first examined the effect of plasticity in postsynaptic perturbations. In negative derivative 
386 feedback models, the postsynaptic perturbation disrupts local E-I balance, leading to quick decay of 
387 activity in the vicinity of the perturbed site (Fig. 9B). Under relatively weak perturbation, both 
388 differential and homeostatic plasticity can recover E-I balance and the ability to maintain persistent 
389 activity at the perturbed site (Fig. 9E-F). However, when the perturbation becomes larger, differential 
390 and homeostatic plasticity show different recovery patterns as for the global perturbation (Fig. 9C-D). 
391 While homeostatic plasticity recovers both persistent activity and translation-invariance, differential 
392 plasticity persistently silences some neurons and cannot recover translation invariance. The fragmented 
393 spatial activity results in a high variance of spatial selectivity, breaking down translation-invariance, 
394 while the decoding accuracy is still good with compensation by higher activity at the vicinity of silent 
395 neurons (Fig. 9E). In contrast, homeostatic plasticity efficiently recovers translation-invariance caused by 
396 the overall reduction of synaptic strengths onto particular neurons as it multiplicatively scales those 
397 connections (Fig. 9F). 

398 Next, we considered the effect of plasticity under presynaptic perturbations, which showed 
399 better performance of differential plasticity than homeostatic plasticity (Fig. 10). As in the postsynaptic 
400 perturbations, presynaptic perturbation causes activity at the perturbed site to decay because 
401 perturbation in outgoing synapses mostly affects the incoming synapses of neurons with similar spatial 
402 selectivity (Fig. 10B). Differential plasticity can recover persistent activity and translation-invariance for a 
403 broad range of presynaptic perturbation (Fig. 10C, 10E). On the other hand, homeostatic plasticity 
404 cannot stabilize persistent activity for relatively large perturbation, and the distortion of activity pattern 
405 is more substantial near the perturbed site (Fig. 10D). This is because presynaptic perturbation 
406 introduces an asymmetry in the synaptic strengths projecting onto neurons near the perturbed sites, 
407 which cannot be recovered through homeostatic plasticity that regulates the overall scaling of incoming 
408 synapses. Thus, although the average postsynaptic activity is recovered through increased excitability, 
409 the bump activity drifts towards instead of away from the perturbed site after learning, leading to a low 
410 decoding accuracy and breakdown of translation-invariance both (Fig. 10F). 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.17.444447doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444447
http://creativecommons.org/licenses/by/4.0/


12

411 Effect of combining differential and homeostatic plasticity 

412 As differential plasticity and homeostatic plasticity are effective in recovering persistent activity 
413 and translation-invariance under the different types of perturbations, we examined whether the 
414 combination of these two plasticities can utilize the advantage of both plasticities. Following the 
415 previous models considering the combination of Hebbian and homeostatic plasticity, we considered a 
416 multiplicative combination of two plasticities where differential plasticity replaces the Hebbian learning. 
417 The synaptic connection from neuron j to neuron i is expressed as a product of two variables, Wij = giUij 
418 with the dynamics of gi and Uij are given as 

419

𝑑𝑔𝑖

𝑑𝑡 =  ― 𝛼ℎ(𝑟𝑖 ― 𝑟0)𝑔𝑖 
𝑑𝑈𝑖𝑗

𝑑𝑡 =  ― 𝛼𝑑
𝑑𝑟𝑖

𝑑𝑡 𝑟𝑗.#(4)

420 In the above equations, gi reflects the homeostatic scaling, and Uij evolves according to differential 
421 plasticity, with the learning rates given as αh and αd, respectively. 

422 We first examined the effect of combined plasticity under global perturbations. Although 
423 differential plasticity alone can lead to the silence of activity, homeostatic plasticity prevents it by 
424 boosting lower-than-target activity. Thus, combined plasticity could recover location-coded persistent 
425 activity and translation invariance for a broad range of perturbations (Fig. 11A and 11D). Note that such 
426 a recovery is sensitive to the learning rates of the plasticity such that the overall speed of both 
427 differential and homeostatic plasticity needs to be slow, but homeostatic one needs to be relatively fast. 
428 This is because too fast homeostatic learning leads to oscillation, yet it needs to be fast enough to 
429 prevent the breakdown of translation invariance introduced by differential plasticity. 

430 Figure 11. The effect of the combination of differential and homeostatic plasticity. 

431 A-C: Recovery of location-coded persistent activity under combined plasticity after 15% global (A), 
432 postsynaptic (B), and pre-synaptic perturbation (C). Activity pattern after 30% local perturbations is 
433 shown in Fig. S2. D-F: Decoding errors (black) and normalized deviation of spatial selectivity (red) for 
434 different perturbation strengths. 

435

436 The combined plasticity also shows the compensation under both types of local perturbations 
437 (Fig. 11B-C, E-F). For a postsynaptic perturbation under which differential plasticity could not recover the 
438 translation-invariance, the combined one shows the extension of the recovery (Fig. 9C vs. 11B, 9E vs. 
439 11E). The superiority of the combined one is similar for a presynaptic perturbation under which 
440 homeostatic plasticity could not recover both persistent activity and translation-invariance (Fig. 10D vs. 
441 11C, 10F vs. 11F). Note that still, for a larger perturbation, the activity pattern can be distorted, and 
442 translation-invariance is not perfectly recovered (Fig. 11E-F, S2). However, the decoding accuracy is 
443 decent for a broad range for the combined plasticity. 
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444 Discussion
445 In this work, we investigated the effects of local and unsupervised learning on the stabilization of 
446 persistent activity in two representative working memory models encoding analog values, namely, rate-
447 coded and location-coded persistent memory. We examined the effects of differential plasticity and 
448 homeostatic plasticity by systematically varying the magnitude and form of perturbations in synaptic 
449 connections. Consistent with the findings of previous works, differential plasticity alone was enough to 
450 recover a graded-level persistent activity in a homogeneous population (11,18).  On the other hand, 
451 recovery by homeostatic plasticity requires the tuning of learning parameters. For the maintenance of 
452 spatially structured persistent activity, differential plasticity could recover persistent activity, but its 
453 pattern can be irregular for different stimulus locations. On the other hand, homeostatic plasticity 
454 shows robust recovery of translation-invariance against particular types of synaptic perturbations, such 
455 as perturbations in incoming synapses onto the entire or local populations, which are similar to the 
456 inhomogeneity of neuronal gain considered previously (29). However, homeostatic plasticity was not 
457 effective against perturbations in outgoing synapses from local populations. Instead, combining it with 
458 differential plasticity recovers the location-coded persistent activity for a broader range of 
459 perturbations.

460 Persistent activity sustained in the absence of external stimuli has been suggested as a signature 
461 of static attractor dynamics. While most attractor models are based on positive feedback mechanisms, 
462 we considered negative derivative feedback mechanisms with two advantages to investigate the effect 
463 of synaptic plasticity. First, a negative derivative feedback network has similar tuning conditions in both 
464 the rate-coded and location-coded persistent memory with the same condition on the balanced 
465 excitation and inhibition and additional symmetry of translation-invariance for location-coded memory 
466 (12,33). Thus, the analysis of the effect of synaptic plasticity in a relatively simple rate-coded network 
467 could be extended to that in a location-coded network. Second, the negative derivative feedback model 
468 is less dependent on a specific form of intrinsic nonlinearity of neurons, so graded perturbation causes a 
469 graded change in the network’s behavior. On the other hand, intrinsic nonlinearity plays a critical role in 
470 positive feedback networks, which leads to additional complexity in systematically investigating the 
471 effect of synaptic plasticity (43) (but see (44,45)). However, note that our main findings may still be valid 
472 regardless of the specific underlying mechanism of working memory. For rate-coded persistent activity, 
473 previous works have shown that differential plasticity recovers the tuning condition of the positive 
474 feedback mechanism (17,18). We tested two plasticity rules on the location-coded memory based on 
475 positive feedback and verified that homeostatic plasticity is effective against post- but not presynaptic 
476 perturbation; however, differential plasticity can effectively stop drift but may lead to an irregular 
477 pattern, and combination of both provides a partial remedy (Fig. S3).

478 Stable memory formation under the mixture of different forms of synaptic plasticity has been 
479 proposed previously, mainly for discrete attractor networks (35,36,46). In these studies, Hebbian 
480 synaptic plasticity has been suggested to form auto-associative memory guided by external inputs. To 
481 prevent instability caused by Hebbian learning, compensatory mechanisms, such as homeostasis or 
482 short-term plasticity, were required, which must act on a timescale similar to that of Hebbian learning 
483 (47). Our work also suggests synergistic interplay between different types of plasticity, differential, and 
484 homeostatic plasticity, in particular for stabilizing location-coded persistent memory. However, we note 
485 that differential plasticity alone is stable. The role of homeostatic plasticity is to support translation-
486 invariance in a ring-like architecture of recurrent connections (29,30). Thus, the fast dynamics of 
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487 homeostatic plasticity are not required, and excessively fast dynamics can be detrimental due to 
488 oscillatory instability. The interplay between anti-Hebbian learning and activity-dependent synaptic 
489 scaling has been proposed for rate-coded persistent memory (48), where the anti-Hebbian rule itself 
490 stabilizes the network activity and no fast homeostasis is required, as in our work. 

491 In this work, we assumed the existence of synaptic plasticity only during the delay period. 
492 However, differential plasticity might make the network “unlearn” if it operates the same way during 
493 the stimulus period as in the delay period because the activity rise during that time would be 
494 interpreted as positive drift by the plasticity. It is thus essential to constrain derivative-driven learning 
495 only during a period in which the activity ought to be stabilized. In oculomotor literature, such as (17), 
496 this is done by filtering fast-changing activity that is potentially related to burst of the saccadic signal. 
497 When we consider the biological implementation of differential plasticity, there is an alternative way 
498 that this can happen. Xie and Seung (2000), motivated by (23), showed that spike-timing-dependent 
499 plasticity (STDP) is intrinsically sensitive to the time derivative of activities, and it can be approximated 
500 by the differential plasticity considered in our work when the overall potentiation and depression are 
501 balanced (18). Alternatively, Nygren et al. (2019) showed that similar differential plasticity could be 
502 implemented through cancelation with a delayed feedback signal analogous to the derivative feedback 
503 (19). In both cases, the derivative is approximated for slowly changing neural activity, and higher 
504 frequency changes are filtered out. On the other hand, continuous learning with homeostatic plasticity 
505 may require the adjustment of learning parameters because the long-term average firing rates of 
506 neurons must reflect activity during the entire session. 

507 Constraining activity drifts of individual neurons might require stricter conditions than what is 
508 required to achieve stable coding of information during the memory period. While traditional 
509 experimental work identified memory neurons that showed elevated persistence firing with stimulus 
510 selectivity (42), recent population-level analysis revealed the stable readout of information across 
511 various time points despite the diverse temporal dynamics of individual neurons (49,50). Such dynamic 
512 activity in individual neurons may reflect activity in the downstream population that combines stimulus-
513 encoding persistent activity and time-varying activity, possibly reflecting time information (51,52). On 
514 the other hand, memory networks themselves can allow time-varying activity such that attractor 
515 dynamics are formed along with the particular activity pattern or mode, while allowing temporal 
516 fluctuation along with other modes (50,53). For the latter, synaptic plasticity based on the global error 
517 signal has been suggested, which can be a self-supervised signal, such as a drift in the readout activity 
518 (20) or a difference from the target signal (54). Note that the resulting form of synaptic plasticity is 
519 similar to differential plasticity, where the activity drift of individual neurons in differential plasticity is 
520 replaced with the global error signal. Homeostatic processes, such as intrinsic plasticity, inhibitory 
521 plasticity, and synaptic scaling, have also been proposed to elongate memory traces in the presence of 
522 dynamic activity (48,55). In these works, the memory is maintained by a network with minimally 
523 structured connectivity, and the sensitivity to learning parameters has not been analyzed. 

524 Overall, our work demonstrates how unsupervised learning can mediate fine-tuning conditions for 
525 working memory implementing continuous attractors. It aligns with previous works emphasizing the role 
526 of unsupervised learning to generate a basis of activity patterns and dynamics underlying cognitive 
527 functions (56–58). While we focused on unsupervised learning rules regularizing temporal patterns in 
528 the absence of input, they can be combined with other learning rules that can act under the guidance of 
529 external inputs and may make memory networks robust for a broader range of perturbations. Also, we 
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530 considered perturbation and synaptic plasticity only in a specific connection, recurrent E-to-E 
531 connections, but the plasticity of other connections, such as inhibitory plasticity (59–61), has been 
532 suggested to tune network homeostasis and EI balance. Given the importance of balance and 
533 homeostasis in memory circuits, further investigation is needed to examine the effect of unsupervised 
534 plasticity on various synapses. Also, to understand how the learning parameters of these plasticity rules 
535 match with neural activity, a detailed investigation of the underlying biophysical mechanisms needs to 
536 be done, possibly in models involving multiple subcellular compartments. 

537 Methods

538 All codes are available at https://github.com/jtg374/NDF_ringNet_plasticity

539 Simple rate model for a homogeneous population

540 In this section, we show the derivation of a one-dimensional differential equation in Eq. 1 (see 
541 more biological structure and conditions in Lim & Goldman, 2013). For this, we considered one 
542 homogeneous population receiving recurrent excitation and inhibition with different kinetics, described 
543 by three-dimensional differential equations

544 𝜏
𝑑𝑟
𝑑𝑡 = ―𝑟 + 𝑤𝑒𝑥𝑐𝑠𝑒𝑥𝑐 ― 𝑤𝑖𝑛ℎ𝑠𝑖𝑛ℎ + 𝐼(𝑡) #(5)

545 , where three dynamic variables are firing rate r, recurrent excitatory currents sexc, and recurrent 
546 inhibitory currents sinh. We assumed that sexc and sinh are low-pass filtered r with time constants τexc and 
547 τinh, respectively, and sexc ≈ r when 𝑟 hardly changes. 

548 With sexc – sinh ≈ -(τexc - τinh)dr/dt, the above equation can be approximated as a one-dimensional 
549 differential equation, given as

550
𝜏

𝑑𝑟
𝑑𝑡 =  ― 𝑟 + (𝑤𝑒𝑥𝑐 ― 𝑤𝑖𝑛ℎ)𝑠𝑒𝑥𝑐 +  𝑤𝑖𝑛ℎ(𝑠𝑒𝑥𝑐 ― 𝑠𝑖𝑛ℎ) + 𝐼(𝑡) 

≈  ― 𝑟 + (𝑤𝑒𝑥𝑐 ― 𝑤𝑖𝑛ℎ)𝑟 ― 𝑤𝑖𝑛ℎ(𝜏𝑒𝑥𝑐 ― 𝜏𝑖𝑛ℎ)𝑑𝑟
𝑑𝑡 + 𝐼(𝑡)#(6)

551 With wexc - winh and winh(τexc - τinh) denoted by wnet and wder, Eq. 6 is the same as Eq. 1. Such one-
552 dimensional approximation allows analytic investigation on the effects of differential plasticity and 
553 homeostatic plasticity in Eq. 2 and Eq. 3.  

554 In Eq. 5, when we normalized wexc with winh denoted as w = wexc/winh and assumed winh is large 
555 such that wder >> τ, Eq. 6 becomes

556 (𝜏𝑒𝑥𝑐 ― 𝜏𝑖𝑛ℎ)𝑑𝑟
𝑑𝑡 = (𝑤 ― 1)𝑟 +

𝐼(𝑡)
𝑤𝑖𝑛ℎ

#(7)

557 During the delay period with no external input I(t), the dynamics with the differential plasticity in Eq. 2 
558 becomes  
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559
(𝜏𝑒𝑥𝑐 ― 𝜏𝑖𝑛ℎ)𝑑𝑟

𝑑𝑡 = (𝑤 ― 1)𝑟 
𝑑𝑤
𝑑𝑡 = ―

𝛼
𝑤𝑖𝑛ℎ

𝑑𝑟
𝑑𝑡 𝑟#(8)

560 Thus, varying winh has the same effect as changing the learning speed α as illustrated in Fig. 2B,C. On the 
561 other hand, the dynamics with homeostatic plasticity in Eq. 3 becomes 

562
(𝜏𝑒𝑥𝑐 ― 𝜏𝑖𝑛ℎ)𝑑𝑟

𝑑𝑡 = (𝑤 ― 1)𝑟
𝑑𝑤
𝑑𝑡 = ―𝛼𝑤(𝑟 ― 𝑟0)#(9)

563 That is, changing winh has no effect on the recovery speed for homeostatic plasticity.   

564 In Equations 1-3, we set τ and τexc - τinh to be unit time constant 1, and initial wexc, winh and wder 
565 are set to be 500. I(t) is a step function, giving the input for 50 unit time with its strength randomly 
566 distributed as 0 and 1000 during the learning, and three representative traces of r(t) for I(t) = 250, 500 
567 and 1000 were shown before and after learning. For the differential plasticity, the learning speed α is 
568 0.01. For homeostatic plasticity, α is 2×10-5 in Fig. 3 and Fig. 4a and b and 0.001 in Fig. 4c. r0 is 50 in Fig. 3 
569 and Fig. 4c, and 80 and 25 in Fig. 4a, and b. 

570 Spatial structured network model for location-coded persistent activity

571 Following Lim & Goldman 2014, we considered a network organized in a columnar architecture 
572 for spatial working memory with the equations describing the dynamics given as 

573 τ𝐸
𝑑
𝑑𝑡𝑟𝐸(θ) = ― 𝑟𝐸(θ) + 𝑞( π

―π
𝑊𝐸𝐸(θ,θ′)𝑠𝐸𝐸(θ′)𝑑θ′ ―

π

―π
𝑊𝐸𝐼(θ,θ′)𝑠𝐸𝐼(θ′)𝑑θ′ + 𝐼𝑠(θ ― 𝑠)𝐼𝑡(𝑡))

574 τ𝐼
𝑑
𝑑𝑡𝑟𝐼(θ) = ― 𝑟𝐼(θ) + 𝑞( π

―π
𝑊𝐼𝐸(θ,θ′)𝑠𝐼𝐸(θ′)𝑑θ′ ―

π

―π
𝑊𝐼𝐼(θ,θ′)𝑠𝐼𝐼(θ′)𝑑θ′)#(10)

575 where subscripts E and I represent excitatory and inhibitory populations, respectively. The activity and 
576 the connectivity were indexed by their preferred spatial feature, θ, ranging between [-π,π). τE and τI are 
577 the time constants and q(·) is the input-output transfer function, which is the rectified linear function 
578 given as q(x) = x for x > 0 and otherwise, 0.  ↔Wij (i, j = E or I) is the synaptic weight and before 
579 perturbation, it was taken to be translation-invariant and Gaussian-shaped as 

580 𝑊𝑖𝑗(θ,θ′) = 𝐽𝑖𝑗𝑒𝑥𝑝 ( ― (θ ― 𝜃’)/σ2
𝑖𝑗) #(11)

581 As in the homogeneous case, 𝑠𝑖𝑗  (i, j = E or I) represents the synaptic variables whose dynamics 
582 is given as 

583 τ𝑖𝑗𝑠𝑖𝑗(θ) = ― 𝑠𝑖𝑗(θ) + 𝑟𝑖(θ)#(12)

584 Importantly, the excitatory-to-excitatory (E-to-E) time constant needs to be much larger than other 
585 synapses’ to make derivative feedback happen (Lim & Goldman 2013). Detailed parameters used in the 
586 simulation will be given in the section “Table of parameters”. 
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587 Is(θ-s) and It(t) represent the spatial and temporal profiles of external stimulus where s is the 
588 center of the stimulus location. Is(θ) also has a Gaussian shape as

589 𝐼𝑠(θ) = 𝐽𝑜 𝑒𝑥𝑝 ( ― (θ/σ𝑜)2) + ℎ𝑜#(13)

590 It(t) is a pulse function smoothed by a low-pass filter with time constant τo 

591 𝐼𝑡(𝑥) = { ―1 ― exp( ― 𝑡/𝜏𝑜),         if 𝑡 < 𝑡𝑠𝑡𝑖𝑚
𝐼𝑡(𝑡𝑑)exp( ― (𝑡 ― 𝑡𝑑)/𝜏𝑜),         if 𝑡𝑠𝑡𝑖𝑚 ≤ 𝑡 < 𝑡𝑡𝑜𝑡𝑎𝑙

#(14)

592 Perturbation and plasticity model 

593 We considered three types of perturbations in the E-to-E connections. For the global 
594 perturbation, ↔WEE was set to be

595 𝑊𝐸𝐸,perturbed(θ,θ′) = 𝑝uniform𝑊𝐸𝐸,0(θ,θ′)#(15)

596 Postsynaptic perturbation corresponds to a row-wise change as

597 𝑊𝐸𝐸,perturbed(θ,θ′) = 𝑝pre-syn(θ′)𝑊𝐸𝐸,0(θ,θ′)#(16)

598 Similarly, presynaptic perturbation corresponds to a column-wise change as

599 𝑊𝐸𝐸,perturbed(θ,θ′) = 𝑝post-syn(θ′)𝑊𝐸𝐸,0(θ,θ′)#(17)

600 Where p(θ) is a smooth function of θ, given as a Gaussian function

601 𝑝(θ) = 1 ― 𝑝 exp ( ― (θ/σ𝑝)2) #(18)

602 To recover the persistent activity, we considered two types of plasticity, differential and 
603 homeostatic plasticity, described as

604
𝑑𝑊𝑖𝑗

𝑑𝑡 = ― α𝑑
𝑑𝑟𝑖

𝑑𝑡 𝑟𝑗#(19)

605
𝑑𝑊𝑖𝑗

𝑑𝑡 = ― αℎ𝑊𝑖𝑗(𝑟𝑖 ― 𝑟0)#(20)

606 , where αd and αh represents the learning rate of differential and homeostatic plasticity. In the combined 
607 one in Eq. 4, ↔Wij in Eq. 2 and Eq. 3 are replaced by Uij and gi, respectively. The plasticity is only applied 
608 in the delay period, and to minimize the effect of the residual stimulus, we also gated the plasticity with 
609 a factor 1-It(t), though it does not make much difference if we don’t add it. 

610 Quantify E-I balance through eigenvalue decomposition

611 In Figure 6D and 8E, we quantify the recovery of EI balance by taking the eigenvalues of the 
612 weight matrices. When translation-invariance is preserved, the values of both E-to-E matrix and other 
613 weight matrices will approximately be the Fourier components of the matrices and the tuning conditions 
614 for n-th Fourier modes become 

615 𝜆𝐸𝐸(𝑛)𝜆𝐼𝐼(𝑛) = 𝜆𝐸𝐼(𝑛)𝜆𝐼𝐸(𝑛)#(21)
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616 where 𝜆𝑖𝑗(𝑛) is the 𝑛-th eigenvalue of ↔Wij . In Fig. 6D and 8E, we did the eigenvector decomposition of 
617 the weight matrix ↔WEE and found the eigenvectors resembles Fourier modes and calculate E-I balance 
618 ratio in each mode from the corresponding eigenvalues. 

619 Decoding error

620 We quantified the network’s memory performance by decoding the stimulus at the end of the 
621 delay. Because we used a deterministic simulation, we modeled the noise post-hoc with Poisson random 
622 number generator, assuming the spike generation is random and independent across neurons. For each 
623 neuron, we multiplied its firing rate (in Hz) by 0.2 and used the product as the mean of the Poisson 
624 random number to model its spike count in 200ms. We then decoded the location from the simulated 
625 spike count 𝑛𝜃 with a simple population-vector decoder: 

626 𝑠 = angle( π

―π
𝑒𝑖θ 𝑛θ(𝑠)𝑑θ) = angle( 𝜋

―𝜋
cos(𝑠)𝑛𝜃(𝑠)𝑑𝑠 + 𝑖

𝜋

―𝜋
sin(𝑠)𝑛𝜃(𝑠)𝑑𝑠)#(22)

627 The error is quantified by the cosine distance between the decoded location and true stimulus: 

628 error = 1 ― 𝑐𝑜𝑠(𝑠 ― 𝑠) #(23)

629 For each stimulus, the random generation of spike counts was repeated 20 times and averaged. 
630 We quantified the average error across all stimulus locations by freezing the network connectivity at 
631 each trial. After perturbation, when there is no spatial selectivity at the end of the delay, ŝ would be 
632 uniformly distributed, and the average error would be one, while if the spatially patterned activity is 
633 persistent with no drift, the decoding error would be close to zero. In Figure S3, we divided the stimulus 
634 locations into eight groups and visualized the average error within groups to emphasize that local 
635 perturbation affects decoding accuracy differently depending on stimulus locations. 

636 Spatial selectivity and translation invariance

637 The spatial selectivity of each neuron was quantified by calculating the first Fourier component 
638 of its tuning curve given as 

639 𝑓θ = ‖ 1
2𝜋

𝜋

―𝜋
𝑒𝑖𝑠 𝑟𝜃(𝑠)𝑑𝑠‖#(24)

640 where rθ(s) is the activity of the neuron that is selective to θ at the end of the delay period of a trial 
641 stimulated at s. 

642 We calculated the mean and standard deviation across neurons. 

643 mean(𝑓) =
1

2π

π

―π
𝑓θ 𝑑θ#(25)

644 std(𝑓) =
1

2𝜋

𝜋

―𝜋
(𝑓𝜃 ― mean(𝑓))2𝑑𝜃  (26)

645 The normalized std (std/mean) was used to quantify translation-invariance in Fig. 6-11. 

646 Table of parameters for spatially structured network
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Parameter Description Value

𝑁 Number of population in each group 64
𝜏𝐸 Time constant of excitatory neurons 20
𝜏𝐼 Time constant of inhibitory neurons 10

𝜏𝐸𝐸 Time constant of E-to-E synapses 100
𝜏𝐸𝐼 Time constant of I-to-E synapses 10
𝜏𝐼𝐸 Time constant of E-to-I synapses 25
𝜏𝐼𝐼 Time constant of I-to-I synapses 10
𝜏𝑜 Time constant of external stimulus 100
𝐽𝐸𝐸 Amplitude of E-to-E synaptic weight 100
𝐽𝐸𝐼 Amplitude of I-to-E synaptic weight 100
𝐽𝐼𝐸 Amplitude of E-to-I synaptic weight 200
𝐽𝐼𝐼 Amplitude of I-to-I synaptic weight 200
𝐽𝑜 Amplitude of external stimulus 270

𝜎𝐸𝐸,𝜎𝐼𝐸 Width of excitatory synaptic connections 0.2𝜋
𝜎𝐸𝐼,𝜎𝐼𝐼 Width of inhibitory synaptic connections 0.1𝜋

𝜎𝑜 Width of stimulus 0.25𝜋
ℎ0 Baseline of stimulus 200

𝑝 1 - perturbation strength vary
𝛼𝑑 Learning rate of differential rule 1e-5
𝛼ℎ Learning rate of homeostatic rule 2e-8
𝑟0 Target firing rate of homeostatic rule 20

𝑡𝑠𝑡𝑖𝑚 Stimulation duration 500
𝑡𝑡𝑜𝑡𝑎𝑙 Stimulation plus delay period 3500

647
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778 Supplementary Information
779 Figure S1, related to Fig. 6, Elongation of time constant associated with each eigenvector similar to 
780 Fourier modes under differential plasticity. 

781 A: Time scale of each Fourier mode. For each Fourier mode, a time constant was estimated by projecting 
782 population activity onto a sinusoid of different frequencies and fitting the time course with exponential 
783 decay. The negative reciprocals of these time constants have good correspondence with the eigenvalues 
784 shown in Fig 6D. B: Eigenvectors related to eigenvalues in Fig. 6D during the evolution of learning 
785 dynamics. The real part of the eigenvectors corresponding to the first, third, and fifth leading 
786 eigenvalues (even ones omitted because of redundancy) is plotted. The shape of the eigenvectors is 
787 close to sinusoids, suggesting preservation of translation-invariance. 

788

789 Figure S2, related to Fig. 11. The effect of combined plasticity under larger local perturbation. 

790 A-B: same as Fig 11 B-C, but under 30% local perturbation, as indicated by arrowhead in C-D. C-D: copy 
791 of Fig 11E-F. For larger local perturbation, translation-invariance breaks down while decoding errors are 
792 low. The distortion of activity patterns is dissimilar to that only with differential plasticity because 
793 homeostatic plasticity keeps neurons from falling silent in some trials but not in others. 

794

795 Figure S3. The effect of differential, homeostatic, and combined plasticity rules in positive feedback 
796 network under 30% pre-synaptic perturbation. 

797 A-C: Decoding errors for eight stimulus groups during the recovery. Under the local perturbation, 
798 translation-invariance breaks down in the positive feedback models, and the bump activity tends to drift 
799 as in a negative derivative feedback network.  The effects under pre-synaptic perturbations were only 
800 shown for simplicity.  D: Activity pattern with homeostatic plasticity at around trial 4000 (arrows in A). E, 
801 F: Activity pattern with differential and combined plasticity at around trial 2000 (arrows in B, C).  As in 
802 the negative derivative feedback network, homeostatic synaptic plasticity is not effective under pre-
803 synaptic perturbation (D).  In contrast, differential plasticity effectively stops the drift (E), as well as the 
804 combined plasticity (F). Note that the activity patterns under the differential (B) and combined plasticity 
805 (C) start to break down around 3000 trials after the recovery. This breakdown may arise from 
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806 implementing a raw dr/dt in differential plasticity, which is sensitive to a slight change of activity pattern 
807 as it evolves from stimulus-evoked patterns to the stereotypical delay activity patterns.

808
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