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Abstract

Epitopes of an antigen are the surface residues in the spatial proximity that can be
recognized by antibodies. Identifying such residues has shown promising potentiality in
vaccine design, drug development and chemotherapy, thus attracting extensive
endeavors. Although great efforts have been made, the epitope prediction performance
is still unsatisfactory. One possible issue accounting to this poor performance could be
the ignorance of structural flexibility of antigens. Flexibility is a natural characteristic
of antigens, which has been widely reported. However, this property has never been
used by existing models. To this end, we propose a novel flexibility-aware graph-based
computational model to identify epitopes. Unlike existing graph-based approaches that
take the static structures of antigens as input, we consider all possible variations of the
side chains in graph construction. These flexibility-aware graphs, of which the edges are
highly enriched, are further partitioned into subgraphs by using a graph clustering
algorithm. These clusters are subsequently expanded into larger graphs for detecting
overlapping residues between epitopes if exist. Finally, the expanded graphs are
classified as epitopes or non-epitopes via a newly designed graph convolutional network.
Experimental results show that our flexibility-aware model markedly outperforms
existing approaches and promotes the F1-score to 0.656. Comparing to the
state-of-the-art, our approach makes an increment of F1-score by 16.3%. Further
in-depth analysis demonstrates that the flexibility-aware strategy contributes the most
to the improvement. The source codes of the proposed model is freely available at
https://github.com/lzhlab/epitope.

Author summary

Epitope prediction is helpful to many biomedical applications so that dozens of models
have been proposed aiming at improving prediction efficiency and accuracy. However,
the performances are still unsatisfactory due to its complicated nature, particularly the
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noteworthy flexible structures, which makes the precise prediction even more
challenging. The existing approaches have overlooked the flexibility during model
construction. To this end, we propose a graph model with flexibility heavily involved.
Our model is mainly composed of three parts: i) flexibility-aware graph construction; ii)
overlapping subgraph clustering; iii) graph convolutional network-based subgraph
classification. Experimental results show that our newly proposed model markedly
outperforms the existing best ones, making an increment of F1-score by 16.3%.

Introduction 1

A B-cell epitope is a specific region at the surface of an antigen that can be neutralized 2

by antibodies, and this neutralization can consequently elicit crucial immune 3

response [1]. Identification of epitopes can be useful to design vaccines, drugs, reagents 4

and so on [2–5]. Hence, intensive efforts have been made to develop epitope prediction 5

models, including experimental-based and computational-based approaches. 6

Experimental methods, such as X-ray crystallography, nuclear magnetic resonance and 7

phage display [6], are accurate but labor intensive as well as costly, while computational 8

models are more efficient and economical, but suffer from lower accuracy. Due to the 9

difficulty of improving experimental approaches and the fast-evolving computational 10

techniques, massive efforts have been made from the computational perspective. 11

A general protocol of the computational-based epitope prediction models is: i) 12

collecting antigen-antibody interaction complexes to obtain epitopes; ii) engineering 13

features of epitopes from chemo-physical and statistical perspectives, such as residue’s 14

polarity [7], hydrophobicity [8], protrusion index [9], relative frequency [10], et al.;iii) 15

building computational models based on the features, such as machine learning 16

models [11], graph models [12], statistical models [13], et al.; iv) identifying new 17

epitopes via the well trained models. Although dozens of methods have been proposed, 18

the prediction accuracy still has a big room to improve. For instance, the F1-score of 19

the state-of-the-art epitope prediction model is still less than 0.6 [6]. One possible 20

reason could be the ignorance of structural flexibility of antigens. To our best 21

knowledge, all existing approaches, either experimental or computational, are based on 22

the static structures of antibody-antigen interacting complexes, that is, the structures of 23

antigens and antibodies are fixed when epitopes are determined. However, the structure 24

of an antigen can be flexible [14, 15], particularly the side chain of the surface residues. 25

Therefore, incorporating flexibility into epitope prediction models could be helpful and 26

promising. 27

Protein flexibility has been widely reported, and there are three types of flexibility, 28

i.e., local flexibility (at atom/residue level) [16], regional flexibility (at 29

intra-domain/multi-residue level) [17], and global flexibility (at multi-domain level) [18]. 30

The local and regional flexibility are mainly caused by the movement of chemical bonds 31

and bond angles [19], while the global flexibility mostly comes from the hinges, 32

helical-to-extended conformations and side chains [20–22]. Taking as an example shown 33

in Fig 1, the two structures (having the Protein Data Bank (PDB) [23] identifier of 34

1A14 and 7NN9, respectively) have exactly the same sequence of residues, but notably 35

different structures after aligned. The 1A14 is a bonded structure interacting with the 36

anti-influenza virus neuraminidase, while the 7NN9 is an unbound structure. After 37

alignment, the averaged RMSD (root mean square deviation) of the atoms between the 38

two structures is 0.434± 0.636Å, while the RMSD of the atoms at the epitope region is 39

0.576± 0.748Å, which is 1.33 times larger than the former one, indicating a markedly 40

movement of conformation upon binding. More interestingly, the side chain RMSD of 41

the epitope residues is 0.853± 0.993Å, showing a big fluctuation; cf. Fig 1(A) and (C). 42

These observations indicate that using bonded epitope conformations as training data to 43
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figure out epitopes from antigens that have unknown binding partners, to some extent, 44

is inaccurate. This has also been argued by Zhao et al [6]. Unfortunately, all existing 45

models, both experimental and computational, have overlooked this property. 46
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Fig 1. Flexibility illustration. Panel A shows the superimposed structures of a
neuraminidase from an influenza virus with (PDB ID 1A14) and without (PDB ID
7NN9) associated antibodies, in which the epitopes are highlighted in balls and sticks.
Panel B shows the connections between the residue asparagine (on chain N of 1A14 at
position 400) and its neighbors. The solid lines are the connections without considering
flexibility, while the dash lines are the connections after flexibility is incorporated. The
number on the lines are the distance between the linked atoms measured in angstrom
(Å) based on the complex of 1A14. Panel C illustrates the spatial discrepancy between
the epitopes on 1A14 and 7NN9, and Panel D shows the superimposed structure
between the two in cartoon without side chains. Structures are downloaded from the
Protein Data Bank [23] and the figures are generated using the Chimera [24].

To overcome this problem, we propose a graph model that fully considers the local 47

flexibility for epitope prediction; see Fig 2. This model starts with flexibility-aware 48

graphs construction by exploring the distortion of the side chain of all surface residues. 49

These edge-enriched graphs are subsequently partitioned into non-overlapping subgraphs 50

by a message flowing algorithm [25] and expanded into overlapping subgraphs via a 51

community detection algorithm [26]. Finally, a graph convolutional network (GCN) is 52

built to discriminate the expanded subgraphs into epitopes or non-epitopes. 53

Experimental results show that the proposed model elevates the F1-score to 0.656, 54

making an increment of 16.3% compared to the state-of-the-art. In addition, this model 55

is able to identify all single, multiple and overlapping epitopes simultaneously. 56
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Fig 2. The diagram of the proposed flexibility-aware epitope identification
model. It contains graph construction from antigen tertiary structures, flexibility-aware
graph enrichment, edge-enriched graph partition, subgraph expansion and graph
convolutional network-based classification. The core idea is the inclusion of flexibility in
graph construction, which enables big improvement on all the downstream processes.

Materials and methods 57

Data collection 58

The antigen-antibody interacting complexes are obtained from published data [6], in 59

which all redundant antigens as well as epitopes are removed, and single, multiple, even 60

overlapping epitopes have been well recorded. This dataset contains 258 61

antigen-antibody complexes, in which 163 antigens have only single epitope (each 62

antigen has only one epitope), 42 have multiple epitopes (each antigen has more than 63

one separated epitopes) and 53 have overlapping epitopes (each antigen has at least one 64

pair of epitopes that are overlapped with each other). 65

Flexibility calculation 66

The conformation of the composing residues of an antigen are not fixed, rather they are 67

quite flexible. This flexibility mainly comes from the rotation of substructures around 68

the covalent bonds [27], particularly the local flexibility (at atom/residue level) [16] and 69

regional flexibility (at intra-domain/multi-residue level) [17], which can be quantified by 70

the torsion angles of residues [28–30]. See Table S1 for the detailed torsion angles of the 71

twenty standard amino acids. 72

A residue can have several torsion angles based on the number of atoms located at 73

the side chain. For instance, Alanine has no torsion angle, while Proline has five torsion 74

angles; cf. Table S1. A torsion angle is determined by a tuple of four consecutive atoms 75

within a residue [31], in which the angle is the dihedral angle between the two planes 76

formed by three continuously connected atoms. Take the tuple (C, C↵, C� , C�2) in 77

Fig 3 as an example, the torsion angle �1 can be considered as the angle between the 78

plane (C, C↵, C�) and (C↵, C� , C�2). All torsion angles are determined analogously by 79

a sliding a widow of four atoms along a residue. 80

To compute the oscillation of each atom due to distortion, we build a tree structure
in which the root node is the C↵ atom, the leaf node is the farthest atom, and the
intermediate nodes are the atoms between the two. Note that, there can have multiple
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leaf nodes; cf. Fig 3. The content contained in each node is the trajectory of the atom
after distorted. Suppose the vector of an arbitrary atom is v = hx, y, zi and the unit
vector of the rotation axis is k, then the rotated vector vrot of v is

vrot = cos✓v + (1� cos✓)(v · k)k + sin✓k ⇥ v,

where ✓ is the angle of the rotation. By this means, we are able to determine the 81

possible spatial locations of each atom from its static structure after distortion. 82

Note that, the flexibility of a buried atom is markedly reduced, even to none, after 83

protein folding. Thus, we only calculate the flexibility of the surface atoms in this study. 84

That is, the root node is replaced by the most superficially buried atom that is 85

connecting with the exposed atom during flexibility determination; cf. Fig 3. 86

O 

Cβ 

Cγ2 

Cγ1 

O 
N 

O Cδ 

Cα 
C 

χ1 

O 

Cγ2 

Cγ1 

O 
N 

O Cδ χ1 

Cα 
C 

Cβ 

O 

Cγ2 

Cγ1 

O 
N 

O Cδ 
χ2 

Cα 
C 

Cβ χ2 

If Cβ is buried  

Fig 3. Flexibility calculation illustrated by isoleucine. The possible locations of
the atoms at the side chain of the residue are determined by rotating the side chain
around axles one-by-one from the C↵ to the farthest atom C�. The backbone atoms
that are almost static are shown in blue, while the side chain atoms are in gray. The
atoms to be affected by rotating the side chain around an axle are shown in red. In case
C� is buried, we will skip the torsion of �1.

Model construction 87

The proposed model is mainly composed of three steps: (i) flexibility-aware graph 88

construction, (ii) overlapping subgraph clustering and (iii) graph classification. The 89

details of each step are as follows. 90

Step 1: flexibility-aware graph construction 91

A graph G = (V,E) is generated from the surface atoms of an antigen, where V is the 92

set of nodes (surface atoms) and E is the set of edges (connections) between atoms in V . 93

An atom is deemed as a surface atom if its accessible surface area is no less than 94

10Å2 [12] calculated by NACCESS [32] with the default probe size, while an edge is 95

generated if the Euclidean distance between any two nodes is less than 8Å [12]. 96

Unlike existing approaches of building the graph from a static structure of an 97

antigen (a snapshot of huge number of possible states), we consider its flexibility, and 98

generate additional edges for the graph by distortion; see the section ‘Flexibility 99

calculation’. By this means the edges of the graphs can be highly enriched; see Fig 1(B). 100

For instance, after enrichment on edges of the graph generated from PDB 1A14, the 101

number of edges is increased from 635 to 936. To accelerate the determination of edges, 102

the KD-tree data structure is borrowed to calculate the distance between atoms. 103

The atom-level graphs are upgraded into residue-level graphs by removing redundant 104

and self-contained edges. An edge is deemed as redundant if there exist more than one 105

edge connecting the two nodes, while the self-contained edges are the ones generated 106

from the atoms of the same residue. 107

May 8, 2021 5/15



Step 2: overlapping subgraph clustering 108

The residue-level graph is clustered into overlapping subgraphs via two steps: partition 109

and expansion. Partition splits the whole graph into non-overlapping subgraphs by 110

using the Markov clustering algorithm [25], while the expansion enlarges separated 111

subgraphs into overlapping subgraphs by using the local community detection algorithm 112

DMF-R [26]. 113

Graph partition is conducted on the weighted graph by using MCL [25] with default
parameters, in which the weight wi,j of an edge ei,j is calculated as

wi,j =
X

c

↵c ⇤ wc
i,j , s.t.

X
c
↵c = 1,

where

wc
i,j = |eci,j |/

X
|eci0,j0 |,

i, i0, j and j0 belong to the twenty types of amino acids, c is the type of an edge from 114

‘epitope’, ‘non-epitope’ or ‘boundary’, and |x| denotes the size of x. Note, boundary 115

edges should be cut off in reality, thus wboundary
i,j = 1� wboundary

i,j . 116

The ground truth label of an edge is determined from the aforementioned dataset, 117

where an edge eci,j is labed as ‘epitope’ if and only if both the node i and j are epitopic 118

residues. Similarly, eci,j is marked as ‘non-epitope’ if both the node i and j are 119

non-epitopic residues. An edge eci,j is deemed as a boundary edge if one node is epitopic 120

and the other is non-epitopic. 121

Subgraph expansion is carried out on the partitioned subgraphs by using the 122

DMF-R algorithm. Unlike existing community detection algorithms that require global 123

information, DMF-R only takes the local community as input and considers its 124

characteristics as well. Hence, it is suitable to our subgraph expansion problem, which 125

is in line with the nature of spatially proximity of epitopes. This step is critical to 126

identify overlapping epitopes as they have been widely reported [33,34] while graph 127

partition cannot solve this problem intrinsically. To our knowledge, there is only one 128

study aiming at overlapping epitope identification [6]. 129

Note that, the quality of graph partition and expansion are highly related to the way 130

of graph construction, i.e., flexibility-aware or flexibility-agnostic. With flexibility-aware 131

graph construction, hubs may appear; otherwise, all nodes will have evenly distributed 132

degree. See results later. 133

Step 3: graph classification 134

Expanded overlapping subgraphs are further classified as epitopes or non-epitopes by a 135

newly designed GCN-based algorithm [35,36], which is composed of two graph 136

convolutional layers and two fully connected layers. The graph convolutional layer 137

accounts for graph embedding, while the fully connected layer is for feature learning. 138

Let G = (F,A) be an expanded subgraph having F 2 Rn⇥d be the feature matrix
and A 2 Rn⇥n be the weighted adjacency matrix, where n is the number of nodes and d
is the number of dimensions. The i-th graph convolutional layer is calculated as

F (i) = �(A · F (i�1) ·W (i)),

where W (i) 2 Rd(i�1)⇥d(i)

is a trainable weight matrix to be optimized and �(·) is the
activation function realized as ReLU [37]. Regarding the output of the j-th fully
connected layer, it is computed as

F (j) = �(F (j�1) ·W (j) + b(j)),
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where W (j) 2 Rd(j�1)⇥d(j)

is the parameter matrix to be learned, b(j) 2 Rn⇥1 is the bias 139

and �(·) is ReLU as well. All the weights W (.) are optimized by the stochastic gradient 140

descent algorithm. 141

Due to the imbalanced nature of epitopic and non-epitopic subgraphs, we use the
focal loss [38] to optimize the training process, which is defined as

L(pt) =� ↵t · (1� pt)
� · log(pt),

pt =

(
p if y = 1,

1� p otherwise,

↵t =

(
↵ if y = 1,

1� ↵ otherwise,

where y 2 {0, 1}, p 2 [0, 1], ↵ 2 [0, 1] and � equals 4. 142

Experimental results 143

Evaluation metrics 144

The F1-score, recall and precision are used to quantify the performance of our model as
well as existing models, which are defined as:

F1-score =2 ·Recall · Precision/(Recall + Precision),

Recall =TP/(TP + FN),

P recision =TP/(TP + FP ),

where TP (True Positive) is the number of epitopes fished out correctly, FP (False 145

Positive) is the number of non-epitopes predicted as epitopes incorrectly, and FN (False 146

Negative) is the number of epitopes deemed as non-epitopes. Among these metrics, 147

F1-score is more robust and meaningful as the number of non-epitopes is far larger than 148

that of epitopes. 149

Performance qualification 150

Our proposed model is evaluated by using leave-one-out cross validation on the 258 151

complexes. The averaged F1-score, recall and precision are 0.656± 0.138, 0.587± 0.191 152

and 0.818± 0.150, respectively. Comparing to the exiting best mode Glep [6], the 153

proposed model has made remarkable advancement on epitope prediction, achieving an 154

increment of F1-score by 16.3%. On the same dataset, the F1-score achieved by existing 155

approach ElliPro [39], DiscoTope 2.0 [40], EpiPred [41] and Glep [6] is 0.372, 0.159, 156

0.353, and 0.564, respectively. The detailed performances are shown in Table 1. 157

Table 1. Performance comparison of epitope prediction between our
method and the existing state-of-the-art models.

Method F1-score Recall Precision
ElliPro 0.372± 0.183 0.383± 0.230 0.456± 0.260
DiscoTope 2.0 0.159± 0.173 0.262± 0.309 0.168± 0.215
EpiPred 0.353± 0.208 0.474± 0.283 0.296± 0.188
Glep 0.564± 0.135 0.493± 0.171 0.722± 0.163
Ours 0.656± 0.138 0.587± 0.191 0.818± 0.150

From the table we can see that the performance of our model significantly 158

outperforms existing models. In terms of F1-score, the increment is 76.3%, 312.6%, 159
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85.8% and 16.3% compared with ElliPro, DiscoTope 2.0, EpiPred and Glep, respectively. 160

Besides, the recall and precision obtained by our model are markedly better than that 161

of others as well. The performances of other models are generated from their source 162

codes with default parameters. 163

Flexibility enables performance advancement 164

The key contribution of this study is the incorporation of flexibility into the epitope 165

prediction model. Thus, we carefully examine the impact of flexibility by keeping all 166

other steps unchanged but toggling flexibility only. 167

On average, the F1-score is 0.656± 0.138 and 0.599± 0.157 for the flexibility-aware 168

and flexibility-agnostic model, respectively. Comparing to the later, the former one lifts 169

the F1-score by 9.5%. Without flexibility the F1-score of the proposed model is only 170

increased by 0.035 compared to the state-of-the-art models [6]. However, this value is 171

increased to 0.092 in case flexibility is considered, which is around 3 times higher. See 172

Fig 4 for the detailed performance comparison. 173

p=2.2e−9

0.25

0.50

0.75

1.00

F1−score Recall Precision

Pe
rfo
rm
an
ce

Flexibility−agnostic

Flexibility−aware

Fig 4. The performance comparison between the flexibility-agnostic and
flexibility-aware model.

It is obvious that flexibility has great impact on epitope prediction. We speculate 174

that the impact is mainly from the denser connections of the graphs when flexibility is 175

considered. Based on the data, we found that the averaged degree of each node (residue) 176

was increased from 6.39± 1.71 to 9.04± 2.58, achieving an increment of 41.5%; see 177

Fig 5. Interestingly, the edge enrichment favors nodes with medial degrees, which can 178

be observed from the peak of the bottom left panel of Fig 5. For instance, the averaged 179

difference between the top ten nodes having largest discrepancy of degree is 16.6± 0.8, 180

in which the averaged degree of these nodes is 4.9± 1.2 and 21.5± 0.7 for 181

flexibility-agnostic and flexibility-aware graph, respectively. Notably, these nodes are 182

mainly of Arginine and Lysine, which have been reported as epitope-favored 183

residues [12], indicating that flexibility is particularly helpful to identify 184

epitope-enriched residues. From Fig 5 (the top right panel) we can also see that 185

flexibility enables hubs generation. Hubs are very helpful in graph partition [42], 186

expansion [43] and classification. Without flexibility, the edge-enriched graphs are 187

degradated into ordinary graphs, in which many essential patterns will disappear. 188

Graph expansion identifies various epitopes 189

Most existing epitope prediction models are actually epitopic-residue oriented although 190

they are claimed as epitope oriented. This is because the interaction between antigens 191
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Fig 5. Degree distribution of flexibility-aware and flexibility-agnostic
graphs. The color indicates the density of the distribution, of which orange is denser.
The degree difference is determined on the same residue with and without flexibility
being considered.

and antibodies is not necessarily a one-to-one correspondence. In fact, an antigen can 192

interact with multiple antibodies simultaneously or competitively, resulting in several 193

epitopes either separated or overlapped [44,45]. These epitopes together, however, do 194

not form a big epitope, rather a set of epitopic residues. To solve this problem, we 195

expand subgraphs that are generated from graph partition into larger ones so that 196

shared epitopic residues can be included by more than one epitope, which facilitates the 197

identification of overlapping epitopes. 198

Among the dataset, there have 53 overlapping epitopes. By using our approach, we 199

can identify 96.2% of them, achieving an averaged F1-score of 0.678 at residue level. 200

Compared to the unexpanded version, the averaged F1-score is increased by 31.6%. 201

Expansion is also helpful to improve the performance of single and multiple epitopes 202

identification; see Fig 6. Results show that expansion lifts the averaged F1-score by 203

23.3% and 27.9% for single and multiple epitopes, respectively. Expansion is therefore 204

more helpful for multiple, and overlapping epitopes prediction, particularly the 205

overlapping ones. The F1-score is 0.643, 0.678 and 0.678 for single, multiple and 206

overlapping epitopes identification, respectively; see Fig 6. 207

GCN guarantees good distinguishability 208

The expanded subgraphs are finally classified as epitopes or non-epitopes by using a 209

GCN-based model. The parameters of this model are optimized based on 3,289 210

subgraphs, in which 935 are deemed as epitopes and the rest as non-epitopes. Since 211
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epitopes, i.e., single, multiple and overlapping epitopes, to examine the effectiveness of
expansion under various circumstances.

graph partition and subgraph expansion are not perfect, some residues within an 212

epitopic graph are not necessarily epitopic residues. Hence, we consider a subgraph as an 213

epitope if the proportion of epitopic residues is no less than 30% during model training. 214

The training and validation loss as well as the classification accuracy is show in 215

Fig 7. After two rounds of learning rate decrement, the model is converged to a stable 216

minimum. At this state the best classification accuracy of the test set is 83.1%, and the 217

corresponding F1-score is 0.704. 218

Concluding remarks 219

Epitopes of an antigen can be neutralized by antibodies, identification of these epitopes 220

can be helpful to various applications, e.g., vaccine design and drug development. 221

Hence, intensive efforts have been made to solve this thorny problem, from both 222

experimental [46,47] and computational perspectives [48, 49], particularly the later one. 223

Although chemo-physical properties of antigens, such as hydropathy index [50], 224

protrusion index [39] and statistical proximity [51], have been well explored to identify 225

epitopes, all of them are determined from the static structure of antigens, either bonded 226

or unbound. However, the structure of an antigen is not fixed, particularly the side 227

chain of the surface residues [52]. To incorporate such important information, we have 228

proposed a novel graph-based model that is flexibility-aware. Our model starts with 229

residue-level graphs construction from antigens having tertiary structures, and enriches 230

the edges of the graphs via side chain distortion. These edge-enriched graphs are further 231
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Fig 7. The loss and accuracy of the GCN-based epitope classifier. The
model is trained with manually declined learning rate starting from 0.01, and reduced
by a degree of 10 in case the loss is unchanged.

partitioned into subgraphs by using MCL [25], and are expanded into overlapping 232

subgraphs by DMF-R [26]. Finally, these expanded graphs are classified into epitopes or 233

non-epitopes by a newly built graph convolutional network. Experimental results show 234

that the proposed approach outperforms all existing models, achieving a high F1-score 235

of 0.656. This score makes a 16.3% increment compared to that of the state-of-the-art 236

models. Besides, our model can identify single, multiple and overlapping epitopes 237

simultaneously. Although there still has notably room to improve the performance, this 238

study pioneers a new direction for improving epitopes identification. 239

Supporting information 240

Table S1. The torsion angles of the twenty standard amino acids. 241
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43. Bóta A, Krész M. A high resolution clique-based overlapping community
detection algorithm for small-world networks. Informatica. 2015;39(2):177–187.

44. Gieras A, Cejka P, Blatt K, Focke-Tejkl M, Linhart B, Flicker S, et al. Mapping
of conformational IgE epitopes with peptide-specific monoclonal antibodies
reveals simultaneous binding of different IgE antibodies to a surface patch on the
major birch pollen allergen, Bet v 1. The Journal of Immunology.
2011;186(9):5333–5344.

45. Bhandari D, Chen FC, Hamal S, Bridgman RC. Kinetic Analysis and Epitope
Mapping of Monoclonal Antibodies to Salmonella Typhimurium Flagellin Using a
Surface Plasmon Resonance Biosensor. Antibodies. 2019;8(1):22.

46. Carboni F, Adamo R, Fabbrini M, De Ricco R, Cattaneo V, Brogioni B, et al.
Structure of a protective epitope of group B Streptococcus type III capsular
polysaccharide. Proceedings of the National Academy of Sciences.
2017;114(19):5017–5022.

May 8, 2021 14/15



47. Maritan M, Veggi D, Cozzi R, Dello Iacono L, Bartolini E, Lo Surdo P, et al.
Structures of NHBA elucidate a broadly conserved epitope identified by a vaccine
induced antibody. PLOS ONE. 2018;13(8):1–21.

48. Kringelum JV, Nielsen M, Padkjær SB, Lund O. Structural analysis of B-cell
epitopes in antibody: protein complexes. Molecular Immunology.
2013;53(1-2):24–34.

49. Zheng W, Ruan J, Hu G, Wang K, Hanlon M, Gao J. Analysis of conformational
B-cell epitopes in the antibody-antigen complex using the depth function and the
convex hull. PLOS ONE. 2015;10(8):1–16.

50. Adekiya TA, Aruleba RT, Khanyile S, Masamba P, Oyinloye BE, Kappo AP.
Structural Analysis and Epitope Prediction of MHC Class-1-Chain Related
Protein-A for Cancer Vaccine Development. Vaccines. 2018;6(1):1.

51. Jespersen MC, Mahajan S, Peters B, Nielsen M, Marcatili P. Antibody Specific
B-Cell Epitope Predictions: Leveraging Information From Antibody-Antigen
Protein Complexes. Frontiers in Immunology. 2019;10:298.

52. Bansal N, Zheng Z, Merz KM. Incorporation of side chain flexibility into protein
binding pockets using MTflex. Bioorganic & Medicinal Chemistry.
2016;24(20):4978–4987.

May 8, 2021 15/15



Table S1: The torsion angles of the twenty standard amino acids.

Amino acid
Torsion angle (�)

Reference
�1 �2 �3 �4 �5

GLY – – – – – –
ALA – – – – – –
CYS – – – – – [1]
VAL 21 – – – – [1]
SER 16 – – – – [1]
THR 16 – – – – [1]
ILE 45 47 – – – [2]
LEU 36 40 – – – [2]
ASP 29 71 – – – [2]
ASN 21 59 – – – [2]
HIS 22 56 – – – [2]
TRP 30 38 – – – [2]
PHE 29 71 – – – [1, 2]
TYR 17 46 – – – [1, 2]
GLU 30 39 71 – – [1, 2, 3]
GLN 30 39 59 – – [1, 2, 3]
MET 36 39 38 – – [2]
LYS 29 36 32 40 – [2]
ARG 31 30 37 40 7 [2]
PRO 26.8 36.5 32.2 17.3 9.8 [4]

Note, the side chain torsion angle must be formed from at least two heavy
atoms, thus the GLY and ALA have no torsion angle.
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