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ABSTRACT 

The brain is a complex, multilayer system in which the functional interactions among its 

subunits vary over time. The trajectories of this dynamic variation contribute to inter-

individual behavioral differences and psychopathologic phenotypes. Despite many 

methodological advancements, the study of dynamic brain networks still relies on biased 

assumptions in the temporal domain. The current paper has two goals. First, we present a 

novel method to study multilayer networks by modelling intra-nodal connections in a 

probabilistic and biologically driven way. We introduce a temporal resolution of the 

multilayer network based on signal similarity within time series. This new method is tested 

on synthetic networks by varying the number of modules and the sources of noise in the 

simulation. Secondly, we implement these probabilistically weighted (PW) multilayer 

networks to study the association between network dynamics and subclinical, psychosis-

relevant personality traits in healthy adults. We show that the PW method for multilayer 

networks outperform the standard procedure in modular detection and is less affected by 

increasing noise levels. Additionally, the PW method highlighted associations between the 

temporal instability of default mode network connections and psychosis-like experiences in 

healthy adults. PW multilayer networks allow an unbiased study of dynamic brain 

functioning and its behavioral correlates. 
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INTRODUCTION 

Multilayer networks rely on the assumption that different network layers can be combined 

in supramodal entities given that elements (nodes) occupying the same place in each network 

may be considered as naturally linked across time or across experimental conditions of a 

task1-5. Defining a supramodal structure allows to investigate dynamic changes in a network 

indexed by dynamic nodal measures such as promiscuity, flexibility, integration, and 

recruitment6-9. Multilayer networks have increasingly been employed in both basic and 

clinical neuroscience, and allowed to describe interesting patterns of dynamic network 

rearrangement underlying normal behavior10,11 as well as clinical conditions such as 

depression12 and schizophrenia13. 

However, actual models of multilayer brain networks are lacking an objective 

methodological procedure to weight network parameters in a biologically-sound fashion. The 

topological and modular properties of multilayer brain networks rely on two key parameters, 

namely gamma (γ) and omega (ω). The former, γ, indicates the weight of the null models 

when computing modularity14-16. Thus, increasing the value of γ results in a more fragmented 

network structure with many small modules17-20. The latter, ω, represents the empirical 

strength of connections that a node has toward himself in consecutive (if multilayer networks 

are built across time) or alternative (if multilayer networks are built across experimental 

conditions) time intervals21,22, so that ω essentially controls the intra-layer versus cross-layer 

modular architecture. The actual standard is to set ω to a fixed number (usually ω=1) but, as 

also noted by many scientists in the field, such assumption is unmotivated and introduces 

strong biases in the analysis. 

Thus, the commonly used approach implies arbitrariness regarding the values of the 

detection of the modular architecture. In particular, by setting ω=1, dynamic (temporal) 

oscillations of nodal activity over time are non-efficiently integrated in the cross-layer 
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modular detection23,16. Many studies that investigated dynamic evolutions of brain activity 

and functional connectivity highlighted classes of brain regions with peculiar functional 

properties in the time domain24-26. For example, regions in the inferior parietal lobule, medial 

premotor cortex, and posterior cingulate cortex have been labelled as functional hubs27 since 

they dynamically link regions in their own modules (cingulo-opercular network, sensorimotor 

network, and default mode network, respectively) with other brain modules28,29. The efficient 

integration of information across networks is crucial both for the control of explicit, 

externally-directed actions30,31 and for implicit, self-related information processing32. 

Aberrant connectional profiles, especially in regions related to the default mode network, 

seem to underlie many psychopathological conditions33,34, and these characteristics may 

depend on dysfunctional dynamic processes10,35,36. Thus, the implementation of a degree of 

control over the temporal domain is necessary to increase the ability to detect true transient 

module configurations during conscious experiences, which are naturally occurring both 

during task execution and during task-free states37. 

Here, we introduce a further parametrization of the detection of dynamic modular 

architectures with the aim to improve the biological appropriateness of community detection 

in multilayer networks. As described above, the current estimation of the modularity relies on 

a structural (γ) and on a pseudo-structural (ω) parameter. Instead, the parametrization 

proposed here accounts or uncertainty in the temporal domain, and replaces ω. We introduce 

beta (β), a parameter that regulates the probability distributions of the strength of edges 

connecting nodes across multiple layers of a multilayer network (intra-nodal, cross-layer 

connections). We also implement a biologically-driven way to assign strengths of intra-nodal 

(temporal) connections from these probability distributions by employing spectral 

coherence38,39 to choose the appropriate probabilistic intra-nodal weights. In other words, our 
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method probabilistically regulates intra-nodal weights across layers based on biological, 

temporal properties of the node's signal. 

Our approach allows different strengths of cross-layer connections to improve the 

appropriateness of the multilayer modular detection. The procedure mirrors the current 

methodology for selecting structural resolutions through the parameter γ and aims at 

investigating modular architectures of the brain by using multiple temporal resolutions as 

well as multiple structural resolutions, to implement a totally unbiased methodology. The 

probabilistic multilayer community detection proposed in this paper is expected to increase 

the sensitivity toward the detection of physiologically plausible, dynamic modular structures, 

by eliminating the biases constrained by a fixed and “guessed” value of ω, thus allowing for 

uncertainties over temporal multilayer network features in the same way as γ allows the 

control over spatial network features. 

We test this new approach both on simulated data and on real data from resting-state fMRI 

acquisitions of 39 healthy participants. The performance of the new method was tested 

together with the standard ω=1 method on synthetic weighted networks obtained by varying 

the number of modules as well as the weight of structured and unstructured noise in the time 

series. Moreover, the association between multilayer network properties and individual 

differences in behavior was tested, focusing on the neural correlates of psychosis-relevant 

personality traits, which have been hypothesized to be related to self-dysfunction and 

network segregation32,40,41. In particular, subclinical, psychosis-relevant personality traits 

were evaluated, which can be detected on a continuum in the general population below any 

threshold of a clinical diagnosis42. Such traits can be considered critical from a clinical point 

of view43, as well as from a phenomenological perspective to provide insight into the 

relationship between neurobiology and the sense of self44. 
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METHODS 

Synthetic Networks 

Three modules in a network of 100 nodes were simulated as follows in 10 consecutive 

time windows. Nodes were initially assigned to the same module across all the time windows 

(30% of the nodes were assigned to module A, 50% to module B, 20% to module C). Then, 

40% of the nodes were chosen at random to be fast/slow/random oscillators (15%, 15%, 10% 

respectively) to simulate diverse physiological properties of brain hubs. Fast/slow/random 

oscillators switched between their module and another random module every 5/3/1 time 

windows, respectively. 

Once defined the modular time-varying structure, time series were created as follows. 

First, for each time window, a prototype matrix of synthetic functional connections was 

simulated as a 100x100 symmetric Lehmer matrix. Since in the Lehmer matrix the values of 

the functional connections increase with proximity to the diagonal and with progressive node 

numbers, such matrix allows the generation of modules with different degrees of intrinsic 

connections, thus, avoiding bias related to connection strengths. A time series was simulated 

for each node from the starting correlation structure and, for each module, the nodes' time 

series were selectively time-shifted to create modular structures. 

Within each node, the time series of 100 voxels were simulated to simulate realistic voxels 

within a parcel. Initially, for each node, the node's time series was assigned to each voxel 

within the node. Then, two sources of noise were simulated to represent physiologically-

unrelated noise (unstructured noise) and the "interference" of nearby biological units in the 

node signal (structured noise). Unstructured noise was simulated - for each voxel - as a 

random time series that was added to the voxel signal in a weighted manner. Structured noise 
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was simulated by initially choosing a random [2 to 5] number of attractors on the external 

surface of the node. A random time series was simulated for each attractor. Then, each voxel 

in the node suffered each attractor's interference depending on its closeness to the attractor. 

Finally, to mirror common procedures in neuroimaging, each node time series was obtained 

by averaging the time series of the voxels within it. Different weights were considered for the 

two noises (low, medium, high) to investigate the impact of the signal-to-noise ratio to the 

module detection across the two methods. 

Once noisy time series were synthesized, the generalized Louvain function was used to 

detect modules across time points (http://netwiki.amath.unc.edu/GenLouvain/GenLouvain). 

The function was implemented both in the "standard" form (ω=1) as well as using the 

probabilistically weighted method (PW). The whole procedure was repeated for 100 

independent cycles so that, in each cycle, a new modular structure was randomly created. The 

three levels of structured/unstructured noises were introduced. Other values controlling the 

procedure, such as γ and tau (τ), were set to default values (1) for simplicity. The weighted 

approach is described in the next paragraphs. The procedure for obtaining synthetic networks 

is schematised in Figure 1. To assess the independence of methods’ performances on the 

number of modules in the network, the whole procedure was repeated using five isomorphic 

modules of equal size (20% of the nodes assigned to each module). 

Probabilistically Weighted (PW) Multilayer networks 

To implement control over nodal temporal features of the network, we introduced a matrix 

of probability weights W. Values in W were controlled by the temporal resolution parameter 

β and by the temporal features of the nodes. As probability weights, values in W basically 

represent the probability of nodes to be self-connected among different layers of the network. 

Thus, with temporal multilayer networks, W is a N by T-1 matrix in which T is the number of 

time windows and N is the number of nodes in the network. By contrast, if working with task 
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multilayer networks, the matrix W would be a K by N matrix in which K represents within-

node cross-condition interconnections and is calculated as K = Nc! In which Nc is the 

number of experimental conditions (e.g., in a classic two by two factorial psychology 

paradigm, there would be four conditions, and K = 4! = 24). 

To control the strength of cross-layer connections and to mirror the weight of the null 

model for the structural resolution parameter, values of W were defined using a probabilistic 

approach. Initially, a set of Levy alpha-stable distributions, Ω, was generated. Stable 

distributions rely on four parameters, allowing complete control over the shape and the scale 

of the distribution. To reflect correlation (functional connectivity), the values of W 

(probabilities) were sampled within the interval [0 1]. Thus, the location parameter of the 

distributions, μ, was set to 0.50 and the scale parameter, σ, was set to 0.75. The first shape 

parameter, α, was empirically set to 0.40, while the second shape parameter, β, was 

modulated within the range [-1 1] to obtain a series of distributions in which the head and the 

tails are arranged progressively in the interval [0 1]. In other words, a set of probability 

distributions (Ω) was created in which the ratio of low versus high probabilities was 

controlled through the parameter β: with higher, positive values of β, the head and the fat tail 

of a specific distribution in Ω are located toward lower probability values (lower probabilities 

of cross-layer connections); instead, with lower, negative values of β, the head and the fat tail 

of a specific distribution in Ω are located toward higher probability values (higher 

probabilities of cross-layer connections). Values used for β in this study were: [-.75 -.25 0 .25 

.75]. 

Then, the distributions in Ω were used to generate values in W based on the coherence 

between time intervals. More specifically, we used spectral coherence, also known as 

magnitude-squared coherence38,39, across consecutive time windows. Since coherence 

estimates the consistency of amplitude and phase between signals across frequencies, it is 
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biologically appropriate for a node exhibiting coherent signal fluctuations in two adjacent 

time windows (or in two experimental conditions) i and j to have higher probability to be 

connected – to be “self-similar” – between the layers i and j (i.e., it occupied the right tail in 

the stable distribution). Using this procedure, the temporal resolution, β (the β shape 

parameter of the stable distributions), regulated the probabilities of connections among 

adjacent time windows in a way driven by the similarity of the node’s signals in the two time 

intervals. The procedure for estimating probabilistically weighted multilayer modules is 

illustrated in Figure 2. 

The performance of the two methods was assessed by calculating the degree of similarity 

between the true simulated modular structure and the estimated modular structure through 

two commonly used indexes for calculating correlations across modular structures, namely 

the adjusted mutual information index (AMI) and the Rand coefficient.  

Application on resting-state data 

The procedure described above for detecting PW multilayer networks, together with the 

standard ω=1 procedure was implemented also on resting-state data from a sample of 39 

healthy participants (19 females and 20 males, aged 23 ± 2; 35 right-handed and 4 left-

handed) without a history of psychiatric or neurological disease and contraindications for 

MRI scanning participated in the experiment. The experiment was approved by the local 

ethics committee. All participants had a normal or corrected-to-normal vision and provided 

written informed consent before taking part in the study in accordance with the Declaration of 

Helsinki (2013).  

Resting-state Data acquisition 

Each participant performed two consecutive task-free fMRI runs, each consisting of 376 

volumes. The participants were instructed to watch a white fixation cross on a black screen 

without performing a cognitive task. Each run lasted approximately 7.5 minutes. Functional 
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images were acquired using a Philips Achieva 3T scanner installed at the Institute for 

Advanced Biomedical Technologies (Gabriele d’Annunzio University, Chieti-Pescara, Italy). 

Whole-brain functional images were acquired with a gradient echo-planar sequence using the 

following parameters: repetition time (TR) = 1.2 s, echo time (TE) = 30 ms, field of view = 

240x240x142.5 mm, flip angle = 65°, in-plane voxel size = 2.5 mm2, slice thickness = 2.5 

mm. A high-resolution T1-weighted whole-brain image was also acquired after functional 

sessions using the following parameters: TR = 8 ms, TE = 3.7, FoV = 256x256x180 mm, flip 

angle = 8°, in-plane voxel size = 1 mm2, slice thickness = 1 mm. 

Resting-state Data analysis 

Functional connectivity was calculated as the correlation among average parcels' 

timeseries for a total of 418 nodes using cortical and subcortical atlases from Joliot and 

colleagues45 plus the cerebellar atlas from Diedrichsen and colleagues46. These atlases were 

chosen because of the integrative method used to define both cortical and subcortical parcels 

without lateralization biases. The PW method and the standard ω=1 approach were both 

implemented to detect time-varying modular structures across 10 consecutive time windows 

of equal length.  

We tested if brain-behavioral resting-state associations were differentially detected by the 

standard ω=1 and by the PW method. Thus, nodal metrices of flexibility, recruitment, 

integration, and promiscuity were estimated for each subject using both the ω=1 and the PW 

methods. The behavioral variables were represented by five latent, orthogonal psychosis-

relevant factors that have also been used in previous works to study the sense of self and the 

sense of agency32,47,48. We investigated the relation between dynamic multilayer metrics and 

psychosis-related personality traits with a focus on factors related to psychotic disorders49,50. 

These five factors were reliably (Tucker congruence coefficient = 0.95) derived from a factor 

analysis with orthogonal (orthomax) rotation on a series questionnaires that were 
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administered to a larger sample (N=101) including the present fMRI sample (see 

references32,47,48 for the complete procedure) The questionnaires measured basic as well as 

psychosis-relevant personality traits: the Big-Five Questionnaire (BFQ short version51), the 

tolerance of uncertainty scale (IUS-1252), the Schizotypal Personality Questionnaire (SPQ53), 

the Community Assessment of Psychic Experience (CAPE54), and the State-Trait Anxiety 

Inventory (STAI255). The five factors showed the highest loadings in the following subscales: 

factor 1) STAI2, IUS-inhibitory, CAPE-depression, BFI-neuroticism (negative affect); factor 

2) SPQ-cognitive perceptual, CAPE-positive, CAPE-negative (psychosis-like experiences); 

factor 3) IUS-prospective, BFI-extraversion, BFI-agreeableness, BFI-openness (sociality); 

factor 4) SPQ-interpersonal, SPQ-disorganizational (schizotypal); factor 5) BFI-

conscientiousness. 

Brain-behavioral relationships were investigated using whole brain, univariate mixed-

effects models in which the five psychometric factor scores were used as continuous 

predictors for each multilayer metric of interest; random intercepts and slopes were added at 

the individual node level to allow for ROI-specific weighting of brain-behavior correlations; 

random slopes were added at the subject level. When significant associations were detected, 

we located the brain structural correlates using best linear unbiased predictors (BLUPs) to 

generate nodal conditional expectation (ICE) plots and to highlight nodes with the highest 

contribution. 

 

RESULTS  

Results indicated that the PW multilayer networks outperformed by far the standard ω=1 

method in detecting true synthetic multilayer networks. The performance achieved with PW 

multilayer networks on synthetic data was better with every combination of 

structured/unstructured noise tested. 
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With respect to the three-modules structure, the performance of the two methods are 

reported in Figure 3a-c as indexed by the adjusted information index (AMI) and the Rand 

coefficient. To note, the performance of the PW method was better than the performance of 

the standard ω=1 method independently of the β value used for calculating weights. P-values 

for direct t-tests between the performances of the two methods were always smaller than 

.00001 for both AMI indices and Rand coefficients, confirming a higher performance for the 

PW method independently of the index or the β used. However, as reported in Figure 3, the 

difference between the performances of the two methods increased with increasing level of 

noise in the dataset, showing that the PW method is not only more efficient but also less 

affected by high levels of structured or unstructured noise. The same results were obtained 

with five modules (Figure 3d-f): the performance of the PW method was still better than the 

performance of the standard ω=1 method independently of the index or the β value used for 

calculating weights and independently of the noise level (all p-values for direct t-tests < 

.00001). As it can be noticed comparing standard versus PW methods in Figure 3c and Figure 

3f, the standard method did not efficiently detect oscillator nodes and was eventually 

“confused” by flexible nodes, leading to a worse reconstruction of the true modular structure. 

When applied to real data, the PW method was able to identify significant associations 

between two dynamic metrics, namely flexibility and recruitment, and behavioral measures. 

Instead, the standard ω=1 method did not identify any significant brain-behavior association. 

In particular, significant, positive associations were detected between nodal flexibility and a 

behavioral factor related to psychosis-like experiences (F2) by the PW method (Figure 4). 

This association was significant with the majority of β values implemented, that is, with β =-

.75 (fixed effect coefficient = .013 ± .0058, 95% CI [.0017; .0244], p =.024 , t-stat = 2.3), 

with β =-.25 (fixed effect coefficient = .016 ± .0060, 95% CI [.0038; .0276], p = .009 , t-stat 

= 2.6), with β =0 (fixed effect coefficient = .018 ± .0070, 95% CI [.0046; .0319], p = .009, t-
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stat = 2.6), and with β =+.75 (fixed effect coefficient = .019 ± .0062, 95% CI [.0070; .0314], 

p = .002, t-stat = 3.1). Moreover, significant, negative associations were detected between 

nodal recruitment and the same behavioral factor F2 (Figure 5) with β = -.75 (fixed effect 

coefficient = -.013± .0067, 95% CI [-.0266; -.0003], p = .045, t-stat = -2.0), with β = -.75 

(fixed effect coefficient = -.019 ± .0051, 95% CI [-.0277; -.0078], p = .0004, t-stat = -3.5), 

and with β = -.75 (fixed effect coefficient = -.013± .0067, 95% CI [-.0266; -.0007], p = .039, 

t-stat = -2.1). No significant results were observed regarding promiscuity or integrity. 

As shown in Figures 4 and 5, these associations were strongest in regions of the default 

mode network (DMN), with the greatest effect sizes associated to regions in medial prefrontal 

cortex and posterior cingulate cortex. Interestingly, larger values of β identified a larger 

DMN associated with behavior. In other words, decreased probabilities of intra-nodal 

connections increased the likelihood of a larger group of regions to be progressively involved 

in the brain-behavior associations with respect to node flexibility and recruitment. 

 

DISCUSSION 

The primary aim of this study was to test the performance of the probabilistically weighted 

(PW) method for the detection of cross-layer communities. We implemented this method 

both on synthetic, perturbated time series of a network and on real data from resting-state 

fMRI. When applied on synthetic data, the PW method outperformed the standard ω=1 

method and was less affected by increasing noise levels in the time series. The better 

performance of the PW method was confirmed using two different indices of similarity in the 

modular structure, namely the adjusted mutual information index and the Rand coefficient 

and using modular structures with increasing number of modules. We deduce that these 

results are the direct consequence of a reduced - or practically absent - bias of selection with 

respect to the strength of cross-layer intra-nodal connections in the PW method. When 
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applied to real data, the PW method was able to identify significant associations of two 

dynamic metrics, namely flexibility and recruitment, with behavioral measures. Instead, the 

standard ω=1 method did not identify any significant brain-behavior association. Therefore, 

we postulate that probabilistically weighted multilayer networks may be a desirable 

implementation for future studies and should replace the standard, biased ω=1 method. While 

the results from simulated data are quite explicatory by themselves, further discussion is 

deserved for the results on real resting-state fMRI data. 

Flexibility indicates how frequently a node changes module allegiance over time over 

time. Instead, recruitment indicates the probability of a node to belong to the same 

community as other nodes from its own system. Thus, our results indicate that high levels of 

psychosis-like experiences (F2) in healthy adults correspond to a decreased stability over 

time of nodes within the DMN. These findings are in line with the role of the fragmentation 

of the DMN in the predisposition toward psychopathology involving psychosis and 

dysfunctional behavior33,34,56,57. Moreover, higher flexibility and less stable modular 

organization have already been shown in patients with schizophrenia10,13, whereas higher 

switching has been associated with impaired sleep and decreased behavioral performances5,58. 

In this framework, our findings also fit with default mode-specific network aberrancies 

observed in patients with psychotic disorders32,36,40,41, which also have genetic 

underpinnings59. We contribute to this framework by showing for the first time an association 

between nodal instability within the DMN (especially in medial prefrontal and in posterior 

cingulate cortices) and psychosis-like experiences in a sample of healthy individuals. We 

remark that these findings were possible due to the implementation of the PW method here 

presented. Considering that an aberrant degree of psychosis-like experiences may imply 

difficulties in social interactions60 and eventually impaired social functioning61, future studies 
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are needed to assess how the decreased stability of self-networks (DMN) may predispose 

toward clinical self-disturbances in healthy populations42-44,61.  

When constructing and analyzing brain activity and functional connectivity, ground truths 

are rare and unstable. However, advances in the understanding of dynamic brain networks 

point toward the existence of multi-scale entities in the brain architecture1-5,10-13,16. These 

advances followed recent developments in network science62-65, and generally indicate the 

necessity to implement unbiased methods for detecting communities66-72, possibly controlling 

for multiple stochasticity in the community organization, like in multi-resolution 

approaches32,73,74. In fact, the choice of the resolution parameter γ is important since it 

regulates the number and size of communities in a network14-16. However, in multilayer 

networks, the weight of intra-nodal (cross-layer) links become crucial if we are interested in 

temporal features of the network (e.g., flexibility, recruitment, or promiscuity6-9). The 

implementation of PW multilayer networks allows an unbiased approach to the study of brain 

networks through multiple temporal resolutions and without a-priori guessing the strength of 

cross-layer connections. To note, although the method presented in this paper is intrinsically 

developed, and thus more suitable, for weighted networks, it can also be applied using 

binarized graphs since the intra-nodal weights can be directly transformed in a stochastic 

binary connection value.  

 Concluding, we presented a probabilistic, biologically-driven approach for the unbiased 

selection of cross-layer links in multilayer networks. More specifically, we introduced 

probabilistic links that can be investigated at multiple temporal resolutions, represented by 

multiple shape (β) values in the distribution of intra-node connection weights, and that are 

biologically grounded since they are assigned based on the coherence across time windows. 

Our method allows to investigate multiple temporal resolutions in multilayer networks, 

paralleling the actual unbiased approach proposed for spatial resolution (γ). The higher 
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performance achieved by the PW method, together with the significant associations with 

psychotic-like experiences detected, testifies the usefulness of our unbiased approach towards 

the study of dynamic brain functioning as well as its behavioral and cognitive correlates. 
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FIGURES 

Figure 1. Synthetic multilayer networks. (A) The matrix of synthetic node communities was 

generated for ten consecutive timepoints. To note, the communities were different at each cycle. (B) 

A Lehmer matrix was initially simulated. Values inside the matrix range from 0 to 1 to simulate 

functional connectivity among brain regions. A time series was generated for each of the voxels 

within each of the 100 nodes. Each voxel was affected by unstructured and structured noise. (C. While 

the unstructured noise was a random time series generated independently for each voxel, the 

structured noise was node-specific. The subfigure depicts an example of “noisy attractors” which 

differentially influenced node’s voxels depending on the distance. (D) For each module, nodes' time 

series were selectively time-shifted to create modular structures. After the procedure, at each cycle, a 

series of 100 timeseries arranged with the desired modular structure and with controlled signal-to-

noise ratio was produced. These time series were used as input for the calculation of functional 

connectivity matrices. The figure illustrates the three-modules structure, but the same procedure was 

used for the five-modules structure. 
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Figure 2. Toy example with 4 nodes and 3 layers (A), illustrating the procedure for estimating 

probabilistically weighted cross-layer links. Temporal (biological) features (e.g., frequencies 

distributions) are extracted for each node, in each layer (B). The similarity of temporal features is 

calculated for each adjacent layer (C) using coherence, producing a N x L-1 matrix, where N is the 

number of nodes and L is the number of layers (HH=very high similarity; LL= very low similarity). 

Concurrently, a vector of N x L-1 probability weights, W, is obtained from a sample distribution for 

each value of β considered in the probabilistic analysis (D). For example, with beta = 0.75, the 

majority of links will have a value between 0.1 and 0.2 (E). However, high similarities will be 

associated with higher values. Then, weights are assigned according to both the values in W and the 

signal similarity over time (coherence), so that cross-layer links connecting nodes with high self-
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similarity over time are higher (F). Weights can be eventually used as probabilities for the linkage to 

occur in binary networks (G).  
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Figure 3. Results from simulated data. The PW method (red) outperformed the standard ω=1 

method (blue) considering adjusted mutual information (MI) indices as well as Rand coefficients. The 

result was consistent with both a three-modules (A,B,C) and a five-modules (D,E,F) network 

structure. Examples of differential community detection (for medium noise levels) are shown in (C) 

and (F). It is possible to appreciate that the standard method does not efficiently detect oscillator 

regions and may thus be eventually “confused” by flexible nodes. 
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Figure 4. Significant associations between nodal flexibility and behavioral factor F2 (psychosis-

like experiences) caught by the PW method with increasing values of BETA. Each line in the ICE plot 

represents centered predictions for a node. Only nodes for which the slope was significantly higher 

than the average are represented in the brain topography. Colour intensity indicates the strength of the 

estimate.  
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Figure 5. Significant associations between nodal recruitment and behavioral factor F2 (psychosis-

like experiences) caught by the PW method with increasing values of BETA. Only nodes for which 

the slope was significantly lower than the average are represented in the brain topography. Colour 

intensity indicates the strength of the estimate. 
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