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Abstract 26 

Spliced fusion-transcripts are typically identified by RNA-seq without elucidating the causal genomic 27 

breakpoints. However, non poly(A)-enriched RNA-seq contains large proportions of intronic reads 28 

spanning also genomic breakpoints. Using 1.274 RNA-seq samples, we investigated what additional 29 

information is embedded in non poly(A)-enriched RNA-seq data. Here, we present our novel, graph-based, 30 

Dr. Disco algorithm that makes use of both intronic and exonic RNA-seq reads to identify not only fusion 31 

transcripts but also genomic breakpoints in gene but also in intergenic regions. Dr. Disco identified 32 

TMPRSS2-ERG fusions with genomic breakpoints and other transcribed rearrangements from multiple 33 

RNA-sequencing cohorts. In breast cancer and glioma samples Dr. Disco identified rearrangement 34 

hotspots near CCND1 and MDM2 and could directly associate this with increased expression. A 35 

comparison with matched DNA-sequencing revealed that most genomic breakpoints are not, or minimally, 36 

transcribed while also revealing highly expressed translocations missed by DNA-seq. By using the full 37 

potential of non poly(A)-enriched RNA-seq data, Dr. Disco can reliably identify expressed genomic 38 

breakpoints and their transcriptional effects. 39 

Keywords: Gene Fusion, RNA Precursors, RNA-Seq, Chromosome Breakage, Genomic Structural 40 

Variation, TMPRSS2-ERG41 
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Introduction 42 

Genomic rearrangements are frequently observed in cancer and these can drive disease initiation and 43 

progression through disruption of tumour suppressor genes and activation of oncogenes 1–3. Marked 44 

examples include TMPRSS2-ERG fusions in prostate adenocarcinoma 4 and BCR-ABL in chronic 45 

myelogenous leukaemia 5. DNA breakpoints and their aberrant ligations are identified by whole genome 46 

sequencing (WGS) but their potential role as driver mutations is mostly unresolved as-of-yet. The 47 

majority of DNA breakpoints involve intergenic and intronic regions and thus not part of messenger RNA 48 

(mRNA) and protein coding sequences 6 and genomic breakpoints of fusion genes are mostly located 49 

intronic 7. To reveal their downstream effects, RNA-sequencing (RNA-seq) is crucial to investigate 50 

changes at the transcriptional level and identify actual (in-frame) fusion transcripts. Conversely, for 51 

fusion-transcripts, identification of the exact genomic breakpoint(s) can be essential to explain changes in 52 

gene expression and to define the origins of alternative promoter usage and altered splicing or 53 

polyadenylation events. Combined genomic and expression data allows to further study functional 54 

consequences of genomic rearrangements and signifies whether the event is merely a passenger or a 55 

putative driver mutation 7,8. However, for many transcriptome studies, the exact genomic breakpoints of 56 

expressed rearrangements have not been resolved as matched WGS, Sanger sequencing, or similar 57 

analyses were not performed. Therefore, we set out to determine whether exact genomic breakpoints 58 

could be identified from RNA-seq data.  59 

Next to targeted gene approaches, there are two main approaches in preparing RNA-seq libraries 9. First, 60 

the more traditional method includes the positive selection of poly-adenylated messenger RNA (mRNA; 61 

poly(A)+) to specifically target mRNA and eliminate abundant ribosomal RNA (rRNA). Alternatively, one 62 

may extract total RNA and use random hexamer primers to initiate cDNA synthesis while removing 63 

abundant unwanted RNAs by various additional methods. This approach is referred to as rRNA-minus 64 

and is commonly applied when (partially) degraded RNA from formalin-fixed paraffin-embedded (FFPE) 65 

samples are sequenced. 66 

rRNA-minus RNA-seq is thus capable of identifying non-poly(A) transcripts such as circRNAs, specific 67 

types of small and long non-coding RNAs and actively-transcribed precursor mRNAs (pre-mRNAs) 10. 68 

Although the exact numbers depend on the used protocol, tissue type, lariats 11 and intron lengths, 69 

typically 30-40% of rRNA-minus RNA-seq reads map to intronic features compared with 5-10% in 70 

poly(A)+ RNA-seq 12. Therefore, rRNA-minus RNA-seq datasets require at least 50% higher sequencing 71 

depth to achieve a similar exon coverage comparable to poly(A)+ RNA-seq, while being capable of 72 

identifying additional RNA classes 9.  73 

Fusion genes such as TMPRSS2-ERG and BCL-ABL are frequently observed as drivers within their 74 

respective malignant tissue 13. Yet, many observed fusion genes are still of unknown consequence and 75 

seen in small frequencies in various cancer types. RNA-seq is highly suitable for fusion gene detection 14–76 

16 . Methods to integrate RNA and DNA fusions and breakpoints allow to further assess functional 77 
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consequences 7,8,17, and are even capable of integrating higher order complex rearrangements, but remain 78 

dependent on the availability of matching DNA data. Current fusion-detection tools such as FusionMap, 79 

FusionCatcher and JAFFA focus on exon regions or splice junctions 18–20 which are the main target of 80 

poly(A)+ RNA-seq. Indeed, these tools also work well on rRNA-minus RNA-seq as these also include 81 

exonic reads. This efficient search space reduction in classical fusion gene detectors in turn reduces the 82 

overall complexity and processing time. However, using rRNA-minus RNA-seq, typically 30-40% of the 83 

aligned reads are intronic and a further 20-25% of all reads are found to be intergenic 12, which are often 84 

a priori neglected. This large number of intronic and intergenic reads provides an opportunity to identify 85 

additional cancer specific transcripts and the exact genomic breakpoints of fusion genes. We have 86 

previously shown in a proof-of-concept that rRNA-minus RNA-seq can identify genomic breakpoints 10. 87 

Here, we present an algorithm named Dr. Disco (https://github.com/yhoogstrate/dr-disco) which 88 

computationally identifies such genomic breakpoints and exon-to-exon junctions in a genome-wide 89 

fashion, taking into account the potential of rRNA-minus RNA-seq. We applied Dr. Disco on five large 90 

RNA-seq datasets spanning multiple malignant tissues (n=1.274) (Table 1). Indeed, we reveal exact 91 

causal genomic breakpoints as derived from RNA-sequencing alone but limited to regions sufficiently 92 

expressed. Furthermore, we show that rRNA-minus RNA-seq data can reveal more transcriptionally 93 

active rearrangements than poly(A)+ RNA-seq and therefore is a useful analysis to supplement WGS. Thus, 94 

rRNA-minus RNA-seq in combination with a suited analysis pipeline gives a more complete view on both 95 

the origin and effects of genomic rearrangements and their direct influence on the expression of 96 

associated genes. 97 

Results 98 

To identify exact genomic breakpoints from rRNA-minus RNA-seq, we developed a novel algorithm and 99 

implemented this in Python, termed Dr. Disco. The tool uses discordant reads 21, reads with a split 100 

alignment or read pairs with an inverted or large insert size. The method uses reads from not only exonic 101 

but also intronic and intergenic regions (Figure 1 and Supplementary Dr. Disco technical 102 

specification). These split and spanning reads are converted and inserted into a breakpoint graph 7. The 103 

graph is analysed to find reads originating from the same junctions. 104 

For terminology, we define exon-to-exon splice junctions as junctions of which it may be expected that 105 

they could be detected by classical fusion detection algorithms. Fusion transcripts which are not a result 106 

of (cryptic-)exon-to-exon splicing are typically intron-to-intron junctions located exactly at genomic 107 

breakpoints. In addition, it is possible that genomic breakpoints are located within exons and do not 108 

result in fused spliced junctions (Figure S1). Because these junctions do not match splice junctions and 109 

are not the primary target of classical fusion gene detection, we also consider them intronic. 110 

Corresponding detected junctions are marked exonic or intronic accordingly. The detailed computational 111 

methodology is described in Supplementary Methods and the Supplementary Dr. Disco technical 112 

specification. 113 

114 
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Comparison poly(A)+ and rRNA-minus RNA-seq 115 

To determine the overlap of genomic breakpoints as detected from DNA-seq with those detected from 116 

RNA-seq using Dr. Disco, seven prostate cancer (PCa) samples (PCa-LINES dataset) were sequenced using 117 

the Complete Genomics WGS platform and with matching poly(A)+ and rRNA-minus RNA-seq. After 118 

filtering out the exon-exon junctions, we found that rRNA-minus RNA-seq identified more (3.4 times) 119 

intronic junctions, thus predicted genomic breakpoints, between chromosomes as compared to poly(A)+ 120 

RNA-seq (Figure 2A). Although poly(A)+ RNA-seq also harbours genomic breakpoints, they are less 121 

confidently called as they have fewer read counts and mostly lie in 3’ UTR terminal exons as in-exon 122 

located genomic breakpoints (Figure S2). Terminal exons are known for their relatively large size as they 123 

are approximately 6-7 times larger than internal exons 22. The number of exonic junctions, thus predicted 124 

mRNA fusions, identified by Dr. Disco is nearly identical for rRNA-minus and poly(A)+ RNA-seq (144 vs 125 

155). Of the exonic junctions detected in rRNA-minus samples, 52% were also found in the poly(A)+ data. 126 

However, another 26% also matched the poly(A)+ data but did not pass filtering, mostly because of 127 

insufficient discordant reads. 128 

Comparison of RNA- with DNA-seq data 129 

Within these 7 PCa samples, the number of genomic breakpoints identified in WGS vastly outnumbered 130 

those extracted from the rRNA-minus RNA-seq (6.8%), indicating that only a fraction of the genomic 131 

rearrangements is expressed at a level to be detected by rRNA-minus RNA-seq. The intronic and exonic 132 

junctions as detected by rRNA-minus RNA-seq show overlap with the genomic breakpoints detected by 133 

WGS (Figure S3). Interestingly, 27 interchromosomal genomic breakpoints were only found by RNA-seq; 134 

6 genomic breakpoints by poly(A)+ only, 17 by rRNA-minus only and 4 by both RNA sequencing methods 135 

(Table S1). 136 

To identify the influence of sequencing coverage and read length on the number of intronic and exonic 137 

junctions, 4 breast cancer (BrCa) RNA-seq samples from the BASIS dataset 23,24 were systematically 138 

truncated (Figure 2B). The number of detected junctions dropped as sequencing reads became shorter, 139 

showing that a minimum length of 55 bases is necessary for accurate detection using Dr. Disco. We 140 

noticed an increase in discordantly-aligned reads when they were truncated to 50bp. This was due to an 141 

overall increase in misalignments that do not resemble actual evidence of genomic rearrangements. 142 

Irrespective of the number of genomic breakpoints present within a sample as determined by WGS, an 143 

increase in overall sequencing depth is positively correlated with an increase in detected junctions 144 

(Figure 2B). 145 

Genomic breakpoints detected by WGS from 207 BrCa samples from the BASIS dataset 23,24 were 146 

compared to their matching rRNA-minus RNA-seq detected junctions. Only interchromosomal entries 147 

were compared to avoid fusion transcripts unrelated to genomic rearrangements such as read-throughs 148 
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or circRNAs. WGS identified a total of 6531 interchromosomal genomic breakpoints and, similar to the 149 

seven prostate cancer samples, the majority of the genomic breakpoints were not detectable in the 150 

matching RNA-seq. Only 409 events (6.3%) were found in both assays, a similar percentage compared 151 

with our analysis on PCa samples (Figure 3A). Dr. Disco detected 377 unique genomic breakpoints (48%) 152 

which were only present within the RNA-seq data, of which 109 of these genomic breakpoints were 153 

identified within eight BrCa samples which also had an overall high number of (WGS-detected) genomic 154 

breakpoints (Figure S4). The density of WGS and RNA-seq detected junctions was highly similar (R2=0.72, 155 

Figure 3B, BrCa plots; Figures S5-S7), with prominent focal peaks near the genomic locus of CCND1, 156 

SHANK2 and FGFR1. 157 

Pan-cancer analysis 158 

We analysed rRNA-minus RNA-seq data (n=651) from different malignant tissues and datasets using the 159 

Dr. Disco algorithm (Figures 3B & 4). This included the earlier described BrCa dataset BASIS (n=207), 160 

NGS-ProToCol (normal adjacent prostate; n=41, prostate cancer; n=51; normal adjacent colon; n=18, 161 

colorectal adenoma; n=30 and colorectal carcinoma; n=30) and the Chinese glioma atlas (CGGA) (various 162 

glioma types; n=274) (Table 1). 163 

Intronic and exonic junctions were identified in each dataset. The different malignant tissue types showed 164 

distinct regions enriched with intronic and exonic junctions, as represented in a chromosome plot 165 

(Figure 3B). Known prominent events include TMPRSS2-ERG (chr21) in PCa, EGFR (chr7) in glioma and 166 

CCND1 rearrangements (chr11) in BrCa. The number of breakpoints per sample with associated clinical 167 

parameters is provided in Figure 4. The lowest average number of genomic breakpoints per tissue type 168 

was found in normal adjacent samples (colon=0.5; prostate=0.9) followed by colorectal adenoma (1.1) 169 

(Figures S8-S9). The TMPRSS2-ERG fusion-event was observed in two normal adjacent prostate samples 170 

containing genomic breakpoints exactly identical to their matching malignant sample and were therefore 171 

contaminated with cancer cells (Figure S8B). Of the different malignant tissue types, colorectal cancer 172 

samples were characterized by the lowest average number of junctions (1.1) followed by combined low- 173 

and high-grade glioma (2.1) (Figure S10). Conversely, PCa (4.3) and BrCa (9.3) were characterized by 174 

relatively high numbers of genomic breakpoints per sample. Absolute numbers were used since not only 175 

sequencing depth but also read depth and library preparation differ per dataset. 176 

Several clinical parameters were associated with the number of Dr. Disco-detected genomic breakpoints 177 

per sample (Figure 4). In BrCa, kataegis (p=1.9e-09) was positively associated with the number of 178 

observed genomic breakpoints whereas ER+ BrCa revealed to be negatively associated (p=0.9e-03) with 179 

the number of genomic breakpoints. In glioma, tumour grade IV is positively associated with the number 180 

of genomic breakpoints per sample (p=1.1e-05), whereas tumour grade II (p=2.9e-08) and presence of an 181 

IDH1 mutation (p=0.8e-03) were negatively associated. The number of intronic junctions detected by Dr. 182 

Disco on RNA-seq correlates positively with the number of WGS-detected genomic breakpoints within 183 

BrCa (ρ=0.71, p=2.2e-16, Figure S11). Although trends within PCa were observed for the incidence of high 184 
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Gleason grade (>=8; p=0.08; n=4/50) and metastasis (p=0.16; n=8/51) associated with the number of 185 

genomic breakpoints, it did not reach statistical significance. Because of the relative low number of 186 

genomic breakpoints per sample and the rather low number of colorectal cancer samples, further in-187 

depth analysis on recurrent events could not be performed. 188 

In the BASIS and NGS-ProToCol datasets approximately 65% of all intronic and exonic junctions have 189 

both sides located within an annotated gene (Figure 5). Thus, approximately 35% of these junctions have 190 

at least one side located within an intergenic region, regions that are often dismissed a priori by classical 191 

fusion gene detection tools 19,20. We found transcripts with incorporated cryptic (unannotated) exons. For 192 

instance, a BrCa sample harboured intergenic junctions in SDC4 transcripts using 5 consecutive cryptic 193 

exons (Figure S12). In contrast, a PCa sample had an intergenic rearrangement lacking mRNA level 194 

transcripts, thus only visible by the presence of pre-mRNA (Figure S13). 195 

Genes associated with peaks in breakpoints 196 

There were multiple, cancer type-specific, hotspots of junctions located near known oncogenes (Figure 3) 197 

such as KIT, PDGFRA, EGFR, CDK4, MDM2 (glioma), TMPRSS2, ERG (PCa), FGFR1 and CCDN1 (BrCa). 198 

Recurrent gene fusions are depicted in Table S2 and the list of all identified junctions is provided in an 199 

online data repository (Table S3; doi:10.5281/zenodo.4159414). Enrichment analysis was performed 200 

using HUGO symbols of genes recurrently hit per cohort, indicating the pathway “Transcriptional 201 

misregulation in cancer [KEGG:05202]” is significantly more frequently hit (p=1.6e-04) within PCa due to 202 

TMPRSS2, ERG, ETV1, H3FA3, SLC45A3 and ELK4. Within BrCa, pathways ETF and E2F are significantly 203 

enriched (p=6.75e-10, p=2.8e-06) in ER+ BrCa and “Proteoglycans in cancer” in ER- BrCa (p=1.4e-05). Genes 204 

that are recurrently hit in glioma samples were found more often in pathways “Rap1 signaling pathway” 205 

(p=3.2e-04), “Glioma” (p=5.9e-03) and “Ras Signaling” (p=2.6e-03) (Table S4). 206 

TMPRSS2-ERG 207 

In 32 of the 51 NGS-ProToCol PCa samples Dr. Disco detected the mRNA fusion-transcripts of TMPRSS2-208 

ERG fusions, including a genomic breakpoint in 27/32 samples (Figure 6). These fusions were in 209 

concordance with high ERG expression in those samples only. The detection rate for genomic breakpoints 210 

for this oncogenenic fusion gene is thus markedly higher than for the overall number of genomic 211 

breakpoints. The genomic breakpoint did not pass filtering in sample 072, was marked exonic in sample 212 

027 and was merged with closely adjacent (<450 bp; insert size) exonic junctions in three samples (053, 213 

050 and 065); indicating that breakpoint-spanning reads were present in all 32 samples. Three other 214 

samples (075, 054 and 048) had their ERG-flanking genomic breakpoint located in an intergenic region 215 

upstream to ERG’s first exon (Figures S14 & S16). In these samples, cryptic exons were identified in 216 

TMPRSS2-ERG fusion mRNA transcripts (chr21:38,692,521-38,692,797 and chr21:38,701,593-38,701,947; 217 

hg38). Two of the three samples with their breakpoint before ERG had additional deletions in ERG, 218 

removing exon 2. The most abundant intronic junctions were T1-E4 and T1-E5 (Figures 6 & S15-S16) 219 
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which is in concordance with previous reports 25. Genomic breakpoints were indeed located in hotspot-220 

regions within the first two introns of TMPRSS2 and the last half of ERG intron 3 26. Additional shallow 221 

sequenced FFPE RNA-seq samples which were subsequently analysed by Dr. Disco revealed the 222 

TMPRSS2-ERG fusion in 181 samples (Figures S15-S16) and confirmed this remarkable breakpoint 223 

preference region within ERG intron 3 more precisely. 224 

PCa cell line VCaP is known to have TMPRSS2-ERG with two additional rearrangements 26,27. We 225 

interrogated the fusion in VCaP using Dr. Disco on both rRNA-minus and poly(A)+ RNA-seq data. Poly(A)+ 226 

RNA-seq shows that only the first exon of TMPRSS2 splices to ERG, even though the genomic breakpoint 227 

to ERG is located in the 5th intron (Figure S17A). The rRNA-minus data confirms this splice junction but 228 

also reveals all the other genomic breakpoints spanning TMPRSS2 and ERG. Read stranding indicates that 229 

a region containing the 4th and 5th exon is inverted, and that its breakpoint-A is an inversion. Breakpoint-B 230 

is an amplification and the junction from TMPRSS2 to ERG is again inverted such that ERG is in its original 231 

orientation, which deletes the genomic region containing exons 2 and 3 of ERG. Thus, only TMPRSS2 exon 232 

1 splices to ERG since exon 2 and 3 are deleted and exon 4 and 5 are inverted (Figure S17B). The small 233 

proportion of reads within the deleted TMPRSS2 exons 2 and 3 in the rRNA-minus data originated from 234 

the non-fusion allele(s). The rRNA-minus RNA-seq data not only revealed both intronic and exonic 235 

junctions but also clarifies the complex downstream effects on transcription. As expected, analysing the 236 

rRNA-minus RNA-seq data with FusionCatcher 15 resulted only in the exonic TMPRSS2-ERG junction, 237 

similar to the Dr. Disco results in poly(A)+ RNA-seq data. 238 

Other PCa-related and detected TMPRSS2 fusions were TMPRSS2-RERE, SERINC5-TMPRSS2, TMPRSS2-239 

TBX3, TMPRSS2-PADI4, MGA-TMPRSS2 and TMPRSS2-CATSPER2 (Table S5). Two novel exons in TMPRSS2 240 

were observed in both fusion and wild-type transcripts (Figure 6). These cryptic exons were both lowly 241 

expressed as they represented ~3% of all TMPRSS2-ERG reads in samples having the splice variant. 242 

Additionally, intergenic TMPRSS2 exon-0 28 was detected by Dr. Disco in fusion mRNA-transcripts within 243 

18/32 TMPRSS2-ERG positive samples. 244 

In one sample we identified an exonic junction originating in ERG and spanning to TMPRSS2 in which the 245 

gene order and included exons indicated that this ERG-TMPRSS2 fusion was caused by a reciprocal 246 

translocation instead of the common 3 Mb deletion (Figure S18). 247 

Large gene amplifications 248 

Hotspot regions (20-30 Mb) enriched with RNA-seq detected breakpoints were observed in the BrCa 249 

(chr11) and glioma (chr12) datasets. These hotspots differ from focal events (e.g. TMPRSS2-ERG) in the 250 

sense that they were larger, had no consistent fusion-partners and often contained multiple hotspot 251 

junctions per sample. To understand their function and what triggers their selective advantage, the 252 

transcriptional effects of these rearrangements were investigated by performing differential gene 253 

expression analysis between BrCa and glioma samples with and without a chr11 and chr12 hotspot 254 
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rearrangement (BrCa: n=122/283; glioma: n=45/274, respectively). BrCa samples having a chr11 hotspot 255 

rearrangement were characterized by a large stretch of significant up-regulated genes within the 256 

respective hotspot region (Figures 7A-C & S19). The large genes SHANK2 and TENM4, both located in 257 

the hotspot region, were the most frequently hit genes (25 and 13 BrCa samples, respectively), yet were 258 

not among the strongest up-regulated genes of the overall region. Instead, genes with an extreme fold-259 

change were FGF4 and CCND1, the cluster KCTD21, ALG8 & GAB2 and genes downstream of TENM4. Up-260 

regulation of the overall region indicates amplifications of CCND1 and/or the gene cluster, which is in 261 

concordance with previous reports 29. The high frequency of junctions in the relatively large, yet not 262 

heavily upregulated SHANK2 (785 kb) and TENM4 (788 kb), suggests they are ‘collateral damage’ of the 263 

amplifications; a hypothesis that has been described in glioma previously 30. This hypothesis is further 264 

supported by the lack of consistent fusion partners, consistency in acting as acceptor or donor and the 265 

absence of a clear spike in cumulative breakpoints (Figure 7A-B; Table S6). 266 

Glioma samples having a junction harbouring the chr12 hotspot region (Figure 7D-F) were analysed 267 

similarly and also showed up-regulation of genes in the hotspot locus, with an increased fold-change of 268 

CDK4, MDM2 and neighbouring genes. Both CDK4 and MDM2 are known to be hyper-amplified in 269 

glioblastoma 31, often by double minute chromosomes 32. The Dr. Disco detected junctions showed a sharp 270 

increase in close proximity of CDK4 (Figure 7D-E), likely indicating a common start of the amplification 271 

event. These breakpoints and up-regulated genes ceased just prior to LRIG3. Similarly, glioma samples 272 

harbouring rearrangement near the common hyper-amplified EGFR showed up-regulation of the 273 

surrounding locus (Figure S20). These results show that using RNA-seq data only, Dr. Disco can identify 274 

genomic breakpoints, which can thereafter be used to reveal associated over-expression of oncogenes 275 

which have resulted from high copy gene amplifications. 276 

Chromothripsis 277 

In VCaP, the q-arm of chr5 has been subjected to chromothripsis as revealed by 468 intrachromosomal 278 

WGS-detected breakpoints 27. Seventeen intronic and exonic junctions were detected by Dr. Disco in 279 

rRNA-minus RNA-seq, identifying evidence for chromothripsis events in VCaP at the (pre-)mRNA level 280 

(Figure S21). In three BrCa samples, high numbers of WGS-detected genomic breakpoints were identified 281 

on the q-arm of chr17 which recurrently involved the genes BCAS3, APPBP2, MED13, USP32 and VMP1 282 

(Figure S22). RNA-seq analysis revealed intronic and exonic junctions in concordance with the WGS data, 283 

which demonstrates the possibility to observe chromothripsis derived junctions in RNA-seq. 284 

CircRNA detection 285 

Head-to-tail aligned reads (Figure S23) are marked as chimeric (discordant) by STAR and are used as 286 

input for Dr. Disco. Such reads are not only observed in transcripts from genomic tandem duplications, 287 

but also from circular mitochondrial DNA and circular RNAs. Using the PCA-Lines rRNA-minus samples, 288 

we found that 88.6% of the junctions with a head-to-tail orientation were located exactly on exon-289 
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junctions corresponded to annotated circRNAs from circBase 31 (Figure S24). This indicates that Dr. 290 

Disco is also capable of identifying circRNAs within rRNA-minus RNA-seq data. 291 

Discussion 292 

RNA-seq is generally performed on poly(A)+ RNA-seq and fusion gene detection algorithms are mostly 293 

focused on annotated exons or splice junctions. For a broader understanding of the transcriptome, it has 294 

become common practice to sequence ribosome-depleted total RNA (rRNA-minus RNA) 12, especially 295 

used for partially degraded RNA samples. rRNA-minus RNA-seq is interesting as it yields also non-296 

polyadenylated transcripts and pre-mRNA-derived intronic sequences. As a result, there is more genomic 297 

coverage in rRNA-minus RNA-seq alignments and it is closer to whole genome sequencing compared to 298 

poly(A)+ RNA-seq (Figure S25). Because genomic breakpoints are often harboured within introns 6 and 299 

intergenic regions (Figure S26), we interrogated to what extend rRNA-minus RNA-seq can be used to 300 

reveal genomic breakpoints as this also captures intronic (pre-mRNA) reads 10. Here, we show by utilizing 301 

Dr. Disco that rRNA-minus RNA-seq data can indeed reveal exact genomic breakpoints of expressed 302 

transcripts, including intergenic translocations. Detection was limited to approximately 10% of all 303 

present breakpoints but markedly higher for the driver TMPRSS2-ERG fusion gene (85% detected; 100% 304 

presence). Discovering these genomic breakpoints at transcriptional level (RNA) on top of exonic 305 

junctions requires an analysis strategy keeping these two levels of information separated. We show that 306 

the increased search space combined with graph transformation as implemented in Dr. Disco is a solution 307 

to this challenge by providing a unique view on the transcriptome. 308 

CircRNAs are a relatively new group of non-polyadenylated transcripts with more than 90,000 different 309 

human circRNAs identified so far 33,34. The distinctive signature of proximate exonic head-to-tail junctions 310 

sets them apart from other junctions, except for small tandem duplications. A useful addition to the 311 

algorithm could be annotation of the junctions using a circRNA database such as circBase 33. As Dr. Disco 312 

is not specifically designed to identify circRNAs and has stringent cut-off levels, the number of circRNAs 313 

identified by Dr. Disco is much lower as compared with dedicated detection software such as CIRI 35,36. 314 

The number of intronic RNA-seq junctions varied largely between the four different cancer types (PCa, 315 

BrCa, CRC and glioma). This variation is in line with the omics-reported number of structural variants; 316 

low in colorectal cancer 37 while high in breast cancer 38,39, but is influenced by sequencing depth, read 317 

length and library preparation which vary per dataset. 318 

The comparison with WGS data indicated that only a fraction of all genomic rearrangements is 319 

transcribed. It is expected that non-transcribed genomic breakpoints more often involve passenger 320 

events than transcribed genomic breakpoints. Conversely, oncogene driver events such as TMPRSS2-ERG 321 

are characterized by high expression and thus high breakpoint detection rates, as do their mRNA level 322 

fusion genes. Known exceptions that can be considered driver events include promoter and enhancer 323 

rearrangements such as known for AR and FOXP1 40, but also tumour suppressor gene deletions 41,42. 324 
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Although WGS depth surpasses 40x coverage, Dr. Disco showed that 26% and 48% of all RNA-seq intronic 325 

breaks in PCa and BrCa, respectively, were not identified by WGS. Multiple reasons may explain this 326 

discrepancy; high RNA-seq coverage of highly expressed genes (up-to 1000x), clonality as this difference 327 

was in particular high for a small subset of samples, local low coverage in DNA-seq, intergenic exonic 328 

junctions not spanning canonical splice junctions, and selection criteria in software such as conservative 329 

cut-offs for genomic breakpoint detection and read mapping rulings but they may also contain false 330 

positives. For Dr. Disco, both read-length and coverage are directly linked to the number of detected 331 

genomic breakpoints and fusion splice junctions. In the PCa-LINES FFPE dataset, we found that samples 332 

with low insert sizes or short read lengths resulted in insufficient split-reads whilst resulting in many 333 

false positive read-pairs in the full transcriptome analysis, but could still be used effectively in identifying 334 

the targeted, highly expressed, TMPRSS2-ERG fusion events. 335 

From our Dr. Disco analyses, we were able to resolve the genomic breakpoints and splice variants for 336 

various known and novel fusion events. The PCa-specific TMPRSS2-ERG fusions and breakpoints were 337 

investigated in detail and revealed additional cryptic and intergenic exons including TMPRSS2 exon-0 28 338 

and breakpoints located before ERG. For some of these fusion events (e.g. VCaP cell line), the genomic 339 

rearrangement is complex and consists of insertions, deletions and inversions. The use of stranded RNA-340 

seq provides an advantage in deciphering complex genomic rearrangements. In VCaP, an inversion results 341 

in partial anti-sense transcription from which the chronological order of events can be deduced. The 342 

manual unravelling of the complex TMRPSS2-ERG variant in VCaP shows the importance of automatic 343 

resolution of complex genomic rearrangements or poly-fusions. The current implementation of Dr. Disco 344 

does not offer top-level integration for poly-fusions but there are methods available with that aim 7,43. In 345 

addition, the effect of enhancer/promoter rearrangements and head-to-head gene fusions on the local 346 

transcriptome landscape can be resolved by stranded RNA-seq. Besides their unique genomic breakpoints, 347 

complex genomic rearrangements harbouring inversions are also characterized by regions with opposite 348 

strand transcription. Since the current Dr. Disco algorithm uses discordant reads exclusively, extending it 349 

with the detection of regions enriched with concordant opposite stranded reads may strengthen 350 

detection of genomic rearrangements having insufficient breakpoint coverage. RNA-seq data can reveal 351 

genomic breakpoints, (cryptic and/or intergenic) splicing and gene expression information, which 352 

together can reveal consequences and their selective advantage for cancer development and progression 353 

and be a useful supplement to DNA-seq. 354 

In both BrCa and glioma, RNA-seq data revealed hotspot regions of junctions with the subsequent up-355 

regulation of known amplified oncogenes within these regions. This integrated RNA-seq analysis utilizing 356 

recurrent junctions coupled with gene expression analysis of neighbouring genes directly uncovered 357 

known oncogenes. This shows which changes at RNA level are most prominent, and thus which genes are 358 

most strongly influenced by these genomic aberrations. Then the direction of transcription provides 359 

additional context, by showing that there are no consistent acceptor/donor genes. Indeed, as DNA 360 

detection of translocations is the golden standard, a combined RNA DNA analysis would yield more 361 
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comprehensive results. Furthermore, the expression analysis indicated that certain detected fusion 362 

transcripts such as TEM4 and SHANK2 fusions are likely not driving cancer in these cases. In BrCa, the 363 

RNA detected junctions originating from driver gene amplifications were often located within the sizeable 364 

genes SHANK2 and TENM4. It is likely that selection of breakpoints near SHANK2 is influenced by being 365 

adjacent to CTTN, a gene containing an enhancer often co-amplified with CCND1 41. The hotspots found in 366 

TMPRSS2-ERG, CCDN1, CKD4/MDM2 were based on frequent events, but also rare and single 367 

combinations of transcribed rearrangements and aberrant gene expression can be extracted from Dr. 368 

Disco employed on RNA-seq data. 369 

In the VCaP cell line and three BrCa samples, chromothripsis derived junctions were observed at RNA 370 

level. Similar to the observation of regular genomic rearrangements, the majority of the chromothripsis 371 

rearranges were not detected on RNA level. Solely based on RNA-seq data, it will be difficult to prove 372 

presence of chromothripsis as not all parameters that define this specific process can readily be extracted 373 

(e.g. copy-number variations, short insertions, loss of heterozygosity) 44,45. However, potential indicators 374 

for chromothriptic events within cancer cells can be extracted using Dr. Disco. 375 

Approximately 35% of the junctions in rRNA-minus datasets were full or partial intergenic events, of 376 

which exonic junctions often included cryptic exons. Also, for well-known in-frame gene-gene fusions 377 

such as TMPRSS2-ERG, many novel cryptic exons were identified that, although often rare, can result in 378 

sections of nonsense protein. Cryptic exons may encode completely novel neo-antigens that are more 379 

divergent than point mutation-based neo-antigens and could therefore likely be more immunogenic 46. 380 

Deciphering the consequence of rearrangements, annotation of novel cryptic exons and their coding 381 

potential for nonsense protein sequences is therefore relevant for therapeutic interventions using 382 

tumour-specific antigens 47. 383 

Facilitated by Dr. Disco, we set out to extract both intronic and exonic junctions from comprehensive 384 

rRNA-minus RNA-seq datasets and identified novel DNA breakpoints, circRNAs, gene fusions, cryptic 385 

exons, chromothripsis events and were able to link expressed rearrangements to transcriptional outcome. 386 

Performing analysis as presented can be an informative supplement to WGS analysis because of stranding, 387 

expression levels and analysis of gene structures. However, in case of lacking WGS data such analysis can 388 

provide additional information as compared to poly(A)+ RNA-seq, but  will require deeper coverage to 389 

achieve similar exon depth. Thus, rRNA-minus RNA-seq provides unique and more complete information 390 

on non-polyadenylated and aberrant transcripts and, if the pre-mRNA is sequenced, the genomic 391 

breakpoints that underlie transcriptional changes. 392 

393 
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Methods 394 

Sequencing and datasets 395 

Datasets analysed in this study are the BrCa dataset BASIS (n=207) 23,24, NGS-ProToCol (normal adjacent 396 

prostate; n=41, prostate cancer; n=51; normal adjacent colon; n=18, colorectal adenoma; n=30 and 397 

colorectal carcinoma; n=30) 34,48 and the Chinese glioma atlas CGGA (various glioma types; n=274) 49 of 398 

which the data accession identifiers are given in Table 1. 399 

For the NGS-ProToCol cohort, RNA was extracted using RNA-Bee (Campro Scientific, Berlin, Germany) 400 

and the library prepared for RNA-seq used the NEBNext Ultra Directional RNA Library Prep Kit for 401 

Illumina with rRNA reduction. The sample preparation was performed according to the protocol 402 

‘NEBNext Ultra Directional RNA Library Prep Kit for Illumina’ (NEB, Cat. #E7420S/L and E6310S/L/X). 403 

Briefly, rRNA was reduced using RNase H-based method. Then, fragmentation of the rRNA reduced RNA 404 

and a cDNA synthesis was performed. This was used for ligation with the sequencing adapters and PCR 405 

amplification of the resulting product. The quality and yield after sample preparation were measured 406 

with the Fragment Analyzer (Advanced Analytical). Clustering and DNA sequencing using the Illumina 407 

cBot and HiSeq 2500 was performed according to manufacturer’s protocols. A concentration of 16.0 pM 408 

of DNA was used as input. HiSeq control software HCS (v2.2.58) was used. Image analysis, base calling, 409 

and quality check was performed with the Illumina data analysis pipeline RTA (v1.18.64) and Bcl2fastq 410 

(v2.17). The 126 bp stranded Illumina HiSeq 2500 paired-end reads have a peak in fragment size of 300-411 

600 bp and the samples have an average depth of 70 million paired-end reads. 412 

The PCa-LINES dataset consists of PCa cell lines PC346C and VCaP and additional PCa patient samples G-413 

089, G-110, G-295, G-316 and G-346. Each of these samples were WGS DNA sequenced and processed 414 

using the complete genomics platform 27,50. The matching poly(A)+ RNA-seq samples were taken from the 415 

TraIT-Cell Line Use Case 51,52. The matching rRNA-minus samples of G-089, G-295, G-316, G-346, VCaP 416 

and PC346C were processed similarly as the rRNA-minus samples from the NGS-ProToCol dataset. rRNA-417 

minus RNA-seq sample G-110 was sequenced in the NGS-ProToCol study as sample 7046-004-052. 418 

In the BASIS RNA-seq dataset, total RNA was extracted and cleaned from abundant RNAs such as rRNA 419 

and tRNA using duplex-specific nuclease treatment prior to random primed cDNA synthesis 53. The BASIS 420 

DNA-seq data preparation and analysis is described elsewhere 23 and coordinates were converted to hg38 421 

using pyliftover where needed. 422 

The detection of genomic breakpoints from additional TMPRSS2-ERG fusions determined by targeted 423 

DNA-seq was described elsewhere 26 and genomic coordinates were obtained from this study accordingly. 424 

DNA breakpoints of TMPRSS2-ERG and chromothripsis on chr5 in VCaP were described elsewhere 26,27. 425 

The predicted CMS classes for the NGS-ProToCol colon samples were described elsewhere 48. 426 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.17.441778doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.441778
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

Computational data analysis 427 

RNA-seq data was aligned with STAR 54 version 2.4.2 with fusion settings using hg38 as reference genome. 428 

A more detailed description of the used methodology is given in Supplementary methods. Dr. Disco 429 

version 0.17.8 (git commit 2a9ff32950b71029b124ff4d16544b2953c57dbe) was used for all analysis. Dr. Disco is 430 

available under a Free Open-Source Software license at the website: https://github.com/yhoogstrate/dr-431 

disco. For this study, we designed a free software package to generate Lorenz and coverage plots: 432 

https://github.com/yhoogstrate/bam-lorenz-coverage. Processed bam files used to estimate general 433 

genome coverage statistics were obtained from EGAS00000000052 55. Pathway enrichment was 434 

performed with g:Profiler (https://biit.cs.ut.ee/gprofiler/gost) 56 using gene identifiers as a non-ordered 435 

query. For differential expression analysis, the annotation of the results of Dr. Disco and further 436 

integration with gene sets for determining intergenic and protein coding status, Ensembl gene annotation 437 

89 was used. 438 

Plots were made with R 3.6.2 (base R, ggplot2, plotrix and circlize) and illustrations with Inkscape. 439 

Differential gene expression analysis was performed using the edgeR 3.2.8 library 57. Associations 440 

between the frequency of breakpoints per sample and clinical parameters were tested using the Mann 441 

Whitney U test in R. For the Venn diagrams describing overlap across intronic, exonic and WGS junctions, 442 

both sides of the junctions must be within 40 genomic nucleotides in proximity to be considered a match. 443 

Chromosomal differential expression plots were made using base R. For a given locus and q-value 444 

threshold, a cohort is separated in a mutant and wildtype group by having one or more intronic or exonic 445 

junctions within the given locus. Differential expression analysis is performed across these groups using 446 

edgeR. Every gene located on the chromosome on which the locus is located, is plotted with its genomic 447 

centre as defined by Ensembl 89 on the x-axis and with edgeR’s log fold change on the y-axis. A gene that 448 

is up-regulated in the mutant group has a positive log fold change and a gene that is down regulated a 449 

negative log fold change. When the gene is not significantly differentially expressed across the wildtype 450 

and mutant group (q-value below predetermined threshold) the gene will be coloured grey. If the 451 

difference is significant, it will be coloured green (up) or red (down). 452 

Data Access 453 

Dr. Disco is available at the following url: https://github.com/yhoogstrate/dr-disco. 454 

Raw sequencing is accessible at the following public repositories: EGAS00001002816, 455 

EGAS00001002854, EGAS00001001178, EGAD00001006366, GSE48865, EGAS00001001178, 456 

EGAS00001001476 (Table 1). 457 

The concatenated results on all samples (Table S3) using the Dr. Disco v.0.17.8 pipeline is available at: 458 

https://doi.org/10.5281/zenodo.4159414. 459 
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Legends supplementary files 599 

Additional file 1 – Supplementary Figures S1-S26 600 

Additional file 2 – Table S1 601 

Dr. Disco detected intronic junctions expected to be genomic breakpoints but not matching with WGS 602 

detected breakpoints in the 7 PCa samples with matching poly(A)+ and rRNA-minus RNA-seq data (PCa-603 

LINES dataset). Results are ordered by presence in either rRNA-minus, poly(A)+ or both datasets. 604 

Additional file 3 – Table S2 605 

Recurrent fusion genes as found by Dr. Disco in the NGS-ProToCol prostate cancer and colon datasets and 606 

the BASIS breast cancer dataset. Glioma samples were excluded because they were sequenced unstranded. 607 

Fusion genes present in at least 2 samples of the same tumour type are considered recurrent; only entries 608 

that passed filtering and were marked as ‘linear’ to avoid circRNA entries were included; both intronic 609 

and exonic entries were included but were de-duplicated per sample; only 1 unique occurrence of a 610 

fusion gene per sample; no self-fusions (TMPRSS2-TMPRSS2); no intergenic fusions; no fusions involving 611 

chrM or alternate loci.  If there are multiple genes spanning the breakpoint, the Cartesian product of the 612 

gene names is used; when A,B -> C is found, this is expanded to: 1x A->C and 1x B->C. 613 

Additional file 4 – Table S3 614 

Large concatenated results table on all samples of the Dr. Disco study. Available online because of the 615 

large file size: https://doi.org/10.5281/zenodo.4159414. 616 

Additional file 5 – Table S4 617 

G:Profiler pathway enrichment analysis on genes that are recurrently hit. (A) ER-negative BrCa samples 618 

from the BASIS cohort; (B) ER-positive BrCa samples from the BASIS cohort; (C) glioma samples from the 619 

CGGA and (D) PCa samples from the NGS-ProToCol cohort. Colon samples were not included because of 620 

the relatively small number of recurrently hit genes. For the BrCa dataset only genes that were hit in 3 or 621 

more distinct samples were used in the analysis. For the glioma and PCa samples, only genes that were hit 622 

in 2 distinct samples were used in the analysis. Entries suspected to be circRNAs were excluded. 623 

Additional file 6 – Table S5 624 

The concatenated Dr. Disco detected junctions related to TMPRSS2-ERG in the NGS-ProToCol PCa samples. 625 

Additional file 7 – Table S6 626 

Dr. Disco output of detected junctions related to SHANK2 and/or TENM4 as found in the BASIS BrCa 627 

dataset. 628 

Additional file 8 – Supplementary methods 629 

Additional file 9 – Dr. Disco technical specification 630 
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Figure 1. Overview intronic RNA and Dr. Disco algorithm. (A) Schematic representation of fusion-gene RED-BLUE. Due to relatively large intron 
sizes, in-gene genomic breakpoints are expected to occur most often intronic. The fusion could result in different isoforms of mature mRNA as indicated 
with fusion splice junctions (brown). Fusion splice junction spanning reads form the classical source of evidence for detecting mature mRNA fusion-
events. In rRNA-minus data, intronic pre-mRNA reads (pink) may cover the causal genomic breakpoints. (B) Flowchart of the Dr. Disco pipeline. RNA-
seq data is aligned to obtain discordant aligned reads; reads are transformed into edges that are inserted into a graph. In the graph, edges 
corresponding to either intronic or exonic junctions are kept separate. Detection of junctions is performed by analysing the graph for clusters. An 
additional splice variant correction is applied. Each identified junction variant is marked intronic or exonic and then filtered and annotated.
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Figure 2. Overlap across sequencing types and library size influence. (A) Venn diagram with overlap of cumulative interchromosomal junctions of 7 
WGS PCa samples rRNA-minus and poly(A)+ RNA-seq (PCa-LINES dataset). Overlap in only intronic junctions representing genomic breakpoints (left) 
and only exonic splice junctions (right). Of the 69 exonic junctions only found in rRNA-minus RNA-seq, 40 were detected in the matching poly(A)+ but 
did not pass filtering. Of the 80 poly(A)+-only exonic junctions, 58 were found in rRNA-minus but did not pass filtering. (B) The number of predicted 
junctions as function of sequencing depth (left) and read-length (right) reduction. BrCa samples were selected for high sequencing depth (PR18022 & 
PR18037) or a high number of junctions (PR4841 & PR8660). Left: The number of predicted junctions per sequencing-depth (10-100%) with the full 
read-length (2x75 bp). Reducing the sequencing depth, also for samples with a high sequencing depth, reduces the number of detected junctions. Only 
sample PR4841 reaches a plateau. Right: Each data point represents the number of predicted junctions per given read-length, with full sequencing-
depth. Truncating sequencing-reads results in a lower number of predicted junctions. However, below 55 nucleotides this number of increases.
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Figure 3. Integration RNA-seq analysis with WGS results. (A) Number of detected genomic breakpoints per subgroup in WGS and rRNA-minus 
RNA-seq data of 207 matching BrCa samples. Rectangles in blue indicate presence only in WGS data, in red only in RNA-seq data and in pink in both. 
To avoid artifacts from RNA post-processing such as circRNAs and read-throughs, only interchromosomal entries were interrogated. Of the 
interchromosomal WGS breakpoints, 6059 did not have sufficient discordant reads in the RNA-seq data. Of 62 genomic breakpoints, the threshold of 
sufficient discordant RNA-seq reads was exceeded, but it was not detected by Dr. Disco or did not pass filtering. 425 breakpoints were detected in both 
the assays and 361 RNA-seq detected breakpoints did not match a WGS entry. (B) Chromosome plot representing the density of inter and 
intrachromosomal genomic breakpoints. For the BrCa samples, Dr. Disco RNA-seq analysis (red) and WGS breakpoints (green) are depicted. The 
number of RNA-seq genomic breakpoints in the colorectal cancer and adenomas is low and no recurrent breakpoints were identified yet. The number of 
genomic breakpoints in colorectal adenomas was lower than in colorectal cancer. The observed peaks in colorectal cancer originated from multiple, 
sample specific, junctions (Figure S9).
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Figure 4. Results summary. Intronic and exonic junctions are given per sample for the NGS-ProToCol, BASIS and CGGA datasets with their associated clinical parameters. For the colon samples, the predicted CMS 
classes are provided, for the prostate cancer samples the Gleason grade and metastatic progression are provided, for the breast cancer samples the ER, BRCA1, BRCA2, kataegis and Dr. Disco detected chr11-hotspot 
status are provided and for the glioma samples the grading, recurrence, IDH1 mutation status, gender and the Dr. Disco detected EGFR and chr12 hotspot status are provided.
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Figure 5. Genic/Intergenic junction status. (A) The frequency of intronic and exonic junctions with one or both breakpoints in gene and/or 
intergenic regions (Ensembl 89). Because the glioma dataset was sequenced unstranded, junctions with one intergenic side are grouped together. In all 
datasets, approximately 3/8 of the junctions have at least one intergenic side. Both inter- and intrachromosomal junctions were included, suspected 
circRNAs were discarded; unlocalized and unplaced sequences (chrUn_...) and alternate loci (chr..._alt) were discarded. Matching intronic and exonic 
predictions of the same variant were treated as a single entry.
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Figure 6. TMPRSS2-ERG junction map. Summary of TMPRSS2 and ERG junctions and breakpoints in NGS-ProToCol RNA-seq and non-
matching targeted DNA-seq (Weier dataset). Gene structures are indicated at the bottom. Intronic Dr. Disco detected junctions (representing genomic 
breakpoints) and genomic breakpoints from the Weier dataset are indicated in blue and exonic junctions in red. (A) For TMPRSS2, most breakpoints are 
detected after exon 1, up to exon 3. At mRNA level, apart from the first exons (1a and 1b), exon 0 and exon 2 were commonly included in fusion 
transcripts. Also, two novel recurrent cryptic exons (*1 and *2) were often observed in fusion transcripts. (B) In ERG we observe in the NGS-ProToCol 
data three samples (048, 054 & 075) that have their genomic breakpoints before ERG and result in transcripts with additional, novel, intergenic cryptic 
exons. 
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Figure 7. Differential gene expression in junction hotspot regions. (A-C) Overview of chr11 junctions, breakpoint positions and hotspot associated 
differential gene expression in BrCa, using RNA-seq data only. (A) Intrachromosomal junctions not marked as putative circRNA, indicated by horizontal 
lines. (B) Breakpoint positions from intronic and exonic, inter- and intrachromosomal junction. (C) Chromosomal differential expression plot for locus 
chr11:60,000,000-90,000,000 (grey square) with a q-value threshold of 0.001. Genes with the highest number of rearrangements, SHANK2 and 
TENM4, were illustrated with coloured boxes. Peaks in fold-change were observed surrounding ORAOV1, CCND1 & FGF4 and surrounding TENM4. 
(D-F) Overview of chr12 junctions, breakpoint positions and hotspot associated differential gene expression in glioma. (D) Intrachromosomal junctions 
not marked as putative circRNA are indicated with lines. (E) Breakpoint positions from intronic and exonic, inter- and intrachromosomal junction not 
marked as putative circRNA are included. The breakpoint enriched region chr12:40,000,000-75,000,000 is indicated with a grey square. (F) 
Chromosomal differential expression plot for locus chr12:40,000,000-75,000,000 with a q-value threshold of 0.01. Peaks in fold change from up-
regulated genes are found near CDK4 and MDM2.
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Table 1

Tissue type Data type Samples Dataset Read depth (M) Stranded Reference data Reference papers (PMID)

Prostate Cancer Ribo-minus RNA-Seq 41 NGS ProToCol 70 yes EGAS00001002816 30735634

Normal Adjacent Prostate Ribo-minus RNA-Seq 51 NGS ProToCol 70 yes EGAS00001002816 30735634

Colon Cancer Ribo-minus RNA-Seq 30 NGS ProToCol 70 yes EGAS00001002854 31411736; 30735634; 29968252

Colon Adenoma Ribo-minus RNA-Seq 30 NGS ProToCol 70 yes EGAS00001002854 31411736; 30735634; 29968252

Normal Adjacent Colon Ribo-minus RNA-Seq 18 NGS ProToCol 70 yes EGAS00001002854 31411736; 30735634; 29968252

Breast Cancer Ribo-minus RNA-Seq 289 (207 DNA match) BASIS 150 yes EGAS00001001178

Prostate Cancer Ribo-minus RNA-Seq 6* PCa-LINES 356 (dup) : 37 (dedup) yes EGAD00001006366

Prostate Cancer Poly-A+ RNA-Seq 7 PCa-LINES 50 no EGAS00001001476 28232859

Prostate Cancer (FFPE) Ribo-minus RNA-Seq 529 PCMM-FFPE 40 yes -

Glioma (various subtypes) Ribo-minus RNA-Seq 274 CGGA 30 no GSE48865 25135958

Breast Cancer WG DNA-Seq 560 (207 RNA match) BASIS 40 EGAS00001001178 27135926

Prostate Cancer WG DNA-Seq (CG) 7 PCa-LINES 100 EGAS00001001476 23615946

Prostate Cancer DNA-Seq TMPRSS2-ERG 

breakpoints

29 Weier 23447416

*matching G-110 is NGS ProToCol 7046-004-052
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