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Abstract 

Single-nucleotide variations in RNA (hereafter referred to simply as SNVs), arising from 

co- and post-transcriptional phenomena including transcription errors and RNA editing, 

are well studied in organisms ranging from bacteria to humans. In the malaria parasite 

Plasmodium falciparum, stage-specific and non-specific gene-expression variations are 

known to accompany the parasite’s array of developmental and morphological phenotypes 

over the course of its complex life cycle. However, the extent, rate and effect of sequence-

level variation in the parasite’s transcriptome are unknown. Here, we report the presence 

of pervasive, non-specific SNVs in the transcriptome of the P. falciparum. We show that 

these SNVs cover most of the parasite’s transcriptome. SNV rates for the P. falciparum 

lines we assayed, as well as for publicly available P. vivax and P. falciparum clinical isolate 

datasets were of the order of 10-3 per base, about tenfold higher than rates we calculated for 

bacterial datasets. These SNVs may reflect an intrinsic transcriptional error rate in the 

parasite, and RNA editing may be responsible for a subset of them. This seemingly 

characteristic property of the parasite may have implications for clinical outcomes and the 

basic biology and evolution of P. falciparum and parasite biology more broadly, and we 

anticipate that our study will prompt further investigations into the exact sources, 

consequences and possible adaptive roles of these SNVs.  
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Introduction 

Fidelity in the transcription of DNA into RNA and the correct translation of mRNAs into 

proteins is crucial. Accurately made proteins produce “correct” phenotypes and ensure that the 

cell survives. DNA mutations represent a significant source of variation in the flow of genetic 

information, and many affect phenotypes and become established as single-nucleotide 

polymorphisms (SNPs) in a given population of cells. For unicellular parasites, these SNPs are a 

conceivably essential way to adapt to life in their respective hosts over many generations. 

Proteins are largely immutable forms of genetic information, but the transcriptional landscape 

provides much scope for diversification.  

 

A previous body of work has shown an inherent heterogeneity in the gene-expression levels as 

well as copy-number variation[5] in P. falciparum, a parasite that still affects over 200 million 

people worldwide[10]. These observations have been reported across multiple conditions and 

levels -- in untreated parasite cultures[6] and as a response to physiological-like stressors[7]; at the 

population[8] and the single-cell[9] level, and between clinical isolates and lab-adapted cultures[5]. 

Antigenic variation in P. falciparum is well-documented[11], and the parasite exhibits alternative 

splicing[12,13,14,15]; such transcriptional variation in essentially clonal populations represents 

another potential layer of complexity that is likely to affect clinical outcomes[16,17], and studies 

have shown that heterogeneity through gene expression variation serves as a population-level 

survival strategy in unicellular organisms[18, 19] 

 

Sequence-level variation -- single-nucleotide variations (SNVs) and insertion-deletion events 

(indels) -- is another potential source of population-level transcriptomic diversity. In the form of 

transcriptional error rates and RNA editing, it has been extensively described in systems 

including bacteria[1,2], yeast[20], C. elegans[21], cephalopods[22], rodents[23,24], and humans[3,4]. 

However, studies on such heterogeneity in the P. falciparum transcriptome are largely missing 

and such variations have the potential to impact downstream sources of transcriptional 

heterogeneity, which may facilitate stress adaptation and drug-resistance generation.  To 

investigate the extent and rate of SNVs in P. falciparum, we analysed transcriptomic data from a 

lab-adapted parasite culture (strain 3D7), to obtain three datasets - an untreated control, a 

temperature-stressed culture and a drug-stressed culture. We also analysed RNAseq data from 
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three drug-resistant P. falciparum lines sourced from the MR4 repository, namely MRA_1236, 

MRA_1240 and MRA_1241. We also performed whole-genome sequencing corresponding to 

each of the six resulting datasets, which allowed us to accurately discard transcriptomic sequence 

variations arising from genomic SNPs, without the need to use predictive or consensus-based 

methods. We then used REDItools 2.0[25] to perform empirical variant-calling against the P. 

falciparum reference genome (v.41), and we found SNV rates on the order of 10-3 per base, a 

metric that was consistent across all six P. falciparum samples. In this work, we describe the 

spectrum of base substitutions and their predicted functional effects. 

Results 

A Global View of Transcriptional Sequence-Variation 

We applied REDItools 2.0 (a tool originally designed to detect RNA-editing) to both the RNAseq 

data and the WGS data for each sample. We removed SNVs arising from genomic single 

nucleotide polymorphisms (SNPs) as well as discarded positions where RNAseq data showed no 

variation. Additionally, we ascertained optimum cutoffs for WGS coverage (Supplementary 

Figure S1, Supplementary Table S3), RNAseq coverage (Supplementary Figure S2, 

Supplementary Table S4) and frequency of variation (the number of reads supporting a variant 

nucleotide divided by the total number of reads covering that position) (Supplementary Figure 

S3, Supplementary Table S5). SNVs not supported by at least 10 WGS reads and 5 RNAseq 

reads were removed. Finally, we retained only those SNVs whose frequency of variation was 

greater than or equal to 0.1. In our estimation, this combination of cutoffs ensures that 

sequencing errors and other technical errors are largely filtered out, and mitigates any technical 

variability. We noted that the rates of occurence of SNVs -- which were spread out all over the 

genome (Figure 1A) -- were not dependent on sequencing and alignment statistics of the sample, 

indicating that they are consequences of biological characteristics of the parasite, rather than 

technical properties of the sequencing runs and alignment methods (Supplementary Table S1).  
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Figure 1: A Global View of Single-nucleotide Variations in Plasmodium falciparum (data

shown for a representative sample, MRA_1236 replicate 1). Plot showing the pervasive nature of

SNVs. From outward: Track 1: SNV positions represented as vertical lines; Track 2: Ideogram

of chromosomes, proportional to chromosome lengths; Track 3: Histogram of RNAseq coverage

at recorded positions; Track 4: Area plot of frequency of variation at recorded positions.

Histogram showing distribution of SNVs on an averaged gene body. 

 

Following filtering, each sample showed ~3x104 variant positions (Supplementary Table S1).

Annotating SNVs with the genes in which they occurred showed that they were located all across
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the transcriptome, affecting ~3800 of 5700 genes (Supplementary Table S2) in all samples. To 

check whether the SNVs were biased toward either end of the transcript, we constructed an 

average histogram of SNV frequency, dividing each affected gene into bins of equal width, and 

then assigning bins to each SNV. We observed that SNVs occupied the whole averaged gene 

length and did not show a specific positional bias along the gene body (Figure 1B). Notably, 

replicate datasets for a given strain showed only a small amount of overlap, further indicating the 

pervasive, non-specific nature of the SNVs (Supplementary Figure S4). We also noted that the 

relative frequency of occurrence of SNVs for a given gene (defined as the number of SNVs 

found in that gene divided by the length of that gene) showed only a very small negative 

correlation or no correlation to the expression levels (in transcripts per million) of that gene, the 

outlier being one replicate dataset for MRA_1240. (Supplementary Figure S5). 

The Spectrum of SNV Types and Effects 

In order to understand the variations in greater detail, we characterised the range of nucleotide 

substitutions and their probable functional effects. We observed that A-to-G changes and T-to-C 

changes predominated, each representing 23-27% of the total number of SNVs found (Figure 

2A). A-T and vice versa substitutions (~14% each, of the total number of SNVs) were the second 

most abundant on average. G-to-C and vice versa substitutions were the least abundant SNV type 

(Figure 2A, Supplementary Table S6). These proportions were relatively well-conserved 

between the drug-resistant MRA lines as well as the drug-sensitive 3D7 culture. To check 

whether these base-change characteristics depended on environmental stresses, we subjected the 

3D7 P. falciparum 3D7 line to temperature stress (at 40�) and separately, to mild drug stress 

(dihydroartemisinin at 30 nM), each for six hours at the early trophozoite stage. However, these 

stresses had a minimal effect on the base-change profile, and the proportions of nucleotide 

substitutions were remarkably similar between the control P. falciparum 3D7 culture and the two 

stressed cultures (Figure 2A). With the assumption that all base substitutions are equally 

probable, we performed a chi-squared test and found that the frequency distribution of base 

substitutions we observed differed significantly from the expected uniform distribution (p = 

3.0147x10-200 �2 = 1434.7, df = 167).  Interestingly, while the base-change pattern showed that 

most of the nucleotides that changed changed (i.e. reference/focal nucleotides) were As and Ts, 

the probabilities of any reference nucleotide changing to a G or a C were only slightly greater 
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than those of a focal nucleotide changing to an A or a T (Figure 2B, Supplementary Table S7).

The former observation is an expected outcome of the AT-richness of the Plasmodium genome.

However, the fact that any given reference nucleotide changed to A, T, G or C in very similar

proportions suggests that, if the SNVs we observe arise from RNA Polymerase II (RNA Pol II)

errors, then the enzyme has no specific tendency toward mis-incorporating a given nucleotide.

Given the bias of the spectrum of base-substitutions toward the A-to-G and T-to-C substitution

types, we speculated that RNA editing may be responsible for a subset of SNVs. We tested this

hypothesis by searching for sequence-motifs centered on or around SNVs as well as performing

a BLAST-based search for potential RNA-editing enzymes in the proteome of the parasite. We

used human and Trypanosoma brucei enzymes known to be RNA-editors as query sequences for

the latter analysis, but we did not find any high-confidence candidate RNA-editors in P.

falciparum, nor any conserved motifs (Supplementary Table S8). 
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Figure 2: SNV Types and Effects (A) Base changes (Percentage of Total) (B) Base shift 

patterns (%X> denotes the proportion of SNVs where base X changed to another base; %>X 

denotes the proportion of SNVs where the reference base was X). The distribution of predicted 

functional effects: (D) Representative heatmap of the spectrum of amino acid changes. (E) 

Representative heatmap of the abundance of the most common dinucleotide patterns flanking 

each focal (original/reference) base. (A), (B), (C): Error bars represent 95% confidence 

intervals; number of replicates = 2 (3D7_CTRL, 3D7_ART, 3D7_TEMP, MRA_1241), 3 

(MRA_1236, MRA_1240) (D) and (E) show data from sample MRA_1236 replicate 1. 

 

Further, we annotated effects to the SNVs using snpEff[26] to investigate the range of predicted 

functional consequences, and filtered the snpEff outputs using snpSift[27] to analyse amino acid 

change patterns. A small percentage were found in intronic regions, possibly reflecting 

alternative splicing in some transcripts (Figure 2C, Supplementary Table S9). The majority of 

SNVs in the coding region were missense (47-60%), with about 20% of them being synonymous, 

and about 4% being nonsense changes (Figure 2C). These proportions were also well conserved 

between all three MRA lines, the 3D7 control and two 3D7 stressed cultures. Asparagine was 

consistently the most changed amino acid, with lysine, isoleucine, aspartate, glutamate, leucine, 

phenylalanine, serine and tyrosine rounding out the most changed residues, although a proportion 

of said amino-acid shifts were like to like, that is, synonymous codon changes (Figure 2D, 

Supplementary Figure S6). We also tested whether focal nucleotides had characteristic flanking 

sequences that might increase their propensity to be changed. To this end, we extracted a 

pentanucleotide sequence for each variant position, taking two nucleotides on either side of each 

focal nucleotide, and quantified the most abundant flanking sequences (Figure 2E, 

Supplementary Figure S7). We found that an “AA_AA” or a “TT_TT” pattern accounted for 

most of the SNVs we observed, likely another reflection of the parasite’s AT-enriched genome. 

This pattern was most abundant around all focal nucleotides, but patterns other than these were 

very rare when the focal base was a C or a G. We further observed that an A or a T seemed a 

necessary part of both 5’- and 3’-flanking dinucleotides in all of the most abundant flanking 

sequences. For focal As and Ts, “AT_TA” (for focal As) and “TA_AT” (for focal Ts), i.e. 

patterns forming pentanucleotide sequences of alternating As and Ts, were also well represented.  
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Transcriptional Sequence-Variation in Plasmodium falciparum 

To investigate the extent of the SNVs in each P. falciparum line, we calculated a per-kilobase

(/kb) rate of change by dividing the total number of SNVs found by the length of the P.

falciparum genome. We obtained an average rate of ~1.6 variations/kb, i.e. ~1.6x10-3 variations

per base. This unexpectedly high variation rate was also well-conserved between various P.

falciparum lines, with strain- and stress-specific rates ranging from 1.47 to 1.9 variations/kb

(Figure 3).  

 

Figure 3: SNV rates in MRA and in-house (IH) Plasmodium falciparum lines. * denotes

significance at p < 0.001 as calculated using a Dunett’s test with PF3D7_Ctrl as the control

group. Error bars represent 95% confidence intervals; number of replicates = 2 (3D7_CTRL,

3D7_ART, 3D7_TEMP, MRA_1241), 3 (MRA_1236, MRA_1240). 

 

Transcriptional Sequence-Variation is Higher in Plasmodium Than Bacteria 

Transcriptional sequence-level variation is often attributable to error rates associated with

transcription. These rates are noted to range from ~10-5-10-6 per base in yeast[18], similar rates in
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C. elegans[19], and comparable or higher rates in bacteria ranging from 10-4 [2] to 10-5-10-6 [1]

errors per base. To investigate the relative differences between the SNV rate in Plasmodium

falciparum and other organisms, we retrieved transcriptomic data describing E. coli, B. subtilis

[PRJNA592142], P. vivax (liver stages [PRJNA422240] and blood stages [PRJNA515743]), and

P. falciparum patient isolates [PRJNA498885] from SRA and performed identical calculations to

arrive at SNV rates per nucleotide and per kb using REDItools. We used filtering parameters

similar to the ones described above, except for the WGS-coverage filter. We observed an average

SNV rate per base of 7.23x10-4 for E. coli, 3.49x10-4 for B. subtilis, 4.35x10-3 for P. vivax

schizonts+hypnozoite mixed sample, 1.80x10-3 for P. vivax hypnozoites, ~10-3 for P. vivax blood

stages cultured in vivo in simians, and 7.42x10-3 in P. falciparum patient isolates (Figure 4).  

 

Figure 4: SNV rates of MR4 and in-house Plasmodium falciparum lines as compared with those

for other samples and species. Error bars represent 95% confidence intervals; number of

replicates = 2 (3D7_CTRL, 3D7_ART, 3D7_TEMP, MRA_1241, P. vivax Mixed Culture, P.

vivax Hypnozoites), 3 (MRA_1236, MRA_1240, PF_Mali Isolate, E. coli, B. subtilis), 4 (P. vivax

Blood Stages). 
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Since these values came from transcriptome-only analyses and SNP exclusion was not possible 

(this was reflected in the much higher rates we observed for the Plasmodium spp. samples from 

SRA), we also calculated the SNV rates of in-house samples without SNP exclusion (~2x10-3 

across all sample replicates) (Figure 4). Interestingly, we observed that the SNV rates in 

Plasmodium species were consistently an order of magnitude higher than in bacteria, for which 

the reported error rates had been the highest to date (to the best of our knowledge).  

Discussion 

In this work, we show that SNVs arising from base substitutions occur pervasively and non-

specifically at a rate of the order of one every kilobase in the transcriptomes P. falciparum across 

treatment conditions and strains. We also show that a majority of these SNVs are predicted to 

have a functional impact. Given their non-specific occurrence, we speculate that these SNVs are 

likely reflections of  RNA Pol II errors. 

 

It is also possible that P. falciparum has mechanisms facilitating RNA editing, another potential 

source of a subset of the SNVs we report. While our search did not yield any distinct sequence 

motifs, nor any high-confidence RNA-editing enzymes candidates (Supplementary Table S8), 

RNA editing may still be occurring in P. falciparum -- the phenomenon in the parasite might be 

more akin to what is termed promiscuous editing[28] in humans, wherein repetitive elements in 

the human transcriptome, such as Alu elements, are widely edited. Given that the P. falciparum 

genome and transcriptome are AT(/AU)-rich, it is conceivable that such a form of RNA editing 

may be occurring in relatively low-complexity regions of the parasite transcriptome. However, 

the fact that replicate datasets of any given sample showed an overlap in SNVs of no greater than 

~10% indicates that RNA-editing is unlikely to be (solely) responsible for this pervasive 

variation. 

 

This aforementioned AT-richness is also a characteristic of the Plasmodium genus, and 

specifically P. falciparum that research is still unable to fully explain. Our data shows that while 

A and T are the most likely to change (as would be expected from an AT-rich starting point), the 

probability of a focal base transitioning to any of the four bases is nearly equivalent [Figure 2C]. 

As a result, it seems that the net effect of the SNVs in P. falciparum is of a compensating nature, 
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in the context of nucleotide bias. We also observe such a pattern when comparing %GC values 

for WGS data and the corresponding RNAseq datasets, with the %GC rising a little in the 

transcriptome (Supplementary Table S10). Previous work[22] suggests that a large number of 

SNVs (as highly specific, recoding RNA editing events) in cephalopods represents a paradigm of 

low levels of genetic mutation, and correspondingly high levels of transcriptomic mutations, the 

latter providing the requisite protein diversity. In Plasmodium, if the numerous SNVs we report 

actually do lead to a nucleotide-bias compensation, then an analogous paradigm may be in play, 

and this may, in part, explain why the Plasmodium genome itself retains its AT-richness.  

 

In the same way that the clonal P. falciparum cultures exhibit an inherent variation in gene 

expression levels[5,6,7,8,9], our results suggest that heterogeneity at the sequence level could add a 

layer of complexity to the overall diversity of the parasite’s eventual phenotype. We speculate 

that it could be another source of variation characteristic of the parasite, conceivably arising from 

transcription errors, allowing a population of genetically identical cells to be phenotypically 

plastic to stresses or challenges. Recent work showed that the transcriptional and translational 

machinery of P. falciparum could handle the AT-richness of its genome effectively[29]. This fact, 

taken together with our data would seem to indicate that most of the SNVs we observed, while 

they might be reflections of an inherent transcriptional (i.e. RNA Pol II mediated) error rate, are 

likely not entirely explicable by simply the relatively lower complexity of the parasite’s 

transcriptome. Therefore, we anticipate that our observations, which may be generalisable for 

other pathogenic parasite, will lead to further investigations into the exact source(s) and 

consequences of the pervasive SNVs that seem characteristic of P. falciparum, with regard to its 

basic biology, possible clinical implications of such variation, and its potential interplay with the 

previously reported phenomena of gene-expression level variation as well as structural variations 

in the Plasmodium transcriptome. 

Materials and Methods 

Parasite Cultures 

P. falciparum strain 3D7 was cultured as previously described[30]. Briefly, parasites were 

cultured in RPMI1640 medium supplemented with 25 mM HEPES, 0.5 % AlbuMAX I, 1.77 mM 
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sodium bicarbonate, 100 μM hypoxanthine and 12.5 μg ml−1 gentamicin sulfate at 37 °C. 

Parasites were sub-cultured after every two days. Subculturing was done by splitting the flask 

into multiple flasks in order to maintain parasitemia around 5%. Hematocrit was maintained to 1 

-1.5% by adding freshly washed O+ve human RBC isolated from healthy human donors. 

Synchronization was done with the help of 5% sorbitol in the ring stage. Late-stage 

synchronization was performed using the Percoll density gradient method (63%). Parasitemia 

was monitored using Giemsa staining of thin blood smear.  

Stress induction 

Parasites were subjected to heat and therapeutic (artemisinin treatment) stresses for 6 hours from 

late ring (~17 hrs) to early trophozoite (~23 hrs) stage as described earlier[31]. Briefly, double 

synchronization was carried out to achieve tight synchronization of parasite stages. Parasites 

were exposed to heat stress (400C for 6 hours) and artemisinin stress (30 nM for 6 hours). 

RNA sequencing  

Parasites were harvested for RNA isolation after 6 hours of stress induction. Total RNA was 

isolated using TRIzol reagent according to the protocol. DNAse treated RNA was used for 

cDNA synthesis. Quality of the RNA was verified using Agilent Bioanalyzer 2100. The cDNA 

libraries were prepared for samples using Illumina TruSeq RNA library preparation kit. 

Transcriptome sequencing was performed using Illumina NextSeq 550 system in house at IISER 

Pune with a standard flow cell.  

Whole genome sequencing  

Plasmodium genome DNA was isolated using the genome DNA isolation kit. DNA 

concentrations were measured on the Qubit double-stranded DNA (dsDNA) HS assay kit 

(Invitrogen). Libraries for paired-end sequencing were constructed from DNA extracts ranging 

from < 50 ng/ml to 0.2 ng/µl, using the Illumina NexteraXT kit (FC-131-1024, Illumina, 

California, USA). The Pooled NexteraXT libraries were loaded onto an Illumina NextSeq 550 

system in house at IISER, Pune with a standard flow cell. 
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Data Analysis, SNV Calling and Downstream Analysis 

Quality Control and Alignment 

We first checked the sequencing quality for each RNAseq and WGS sample by running each 

fastq file through FastQC[32], and we trimmed the dataset to exclude positions that had a phred 

score of less than 25 using TrimGalore[33] v0.6.6 (with cutadapt[34] v3.2). We then aligned the 

trimmed RNAseq fastq files to the Plasmodium falciparum 3D7 genome (v. 41 from Ensembl) 

using STAR[35] v.2.7.6a in 2-pass mode, and then indexed the resulting BAM files using 

samtools[36, 37] v1.10. To align the WGS data, we used BWA (bwa mem)[38] v0.7.17-r1198, 

following which we converted the resulting SAM file to a BAM file, which we sorted by 

coordinates and indexed using samtools. The command lines used here are provided in the 

Supplementary Information.   

SNV Calling and Filtering 

In order to use REDItools 2.0 with python 3.6, we modified the python scripts we used to update 

the syntax to python 3 wherever appropriate. We then ran REDItools 2.0 using minimal 

command line options (Supplementary information) on the aligned RNAseq data and WGS 

data, using the RNA-table obtained from the former run as an input to the latter to specify the 

positions to be assayed in the WGS. The output generated by REDItools is a tab-delimited table 

containing data about each position read by the program in the NGS data, including the 

chromosome, position, reference nucleotide, coverage at that position, average read quality at 

that position, alternate nucleotides found at that position (if any) for the transcriptomic data (the 

first nine columns) and similar information for WGS data (the remaining columns). In order to 

annotate the RNA-table with the DNA-table, we used Annotate_with_DNA.py, which is 

provided as part of the REDItools suite of scripts. This script writes the WGS data for each locus 

in the RNA-table filling in columns 10 and further. We filtered this combined output table using 

awk command-line to exclude those positions where: (i) the WGS data showed an SNP, (ii) the 

frequency of base changes in RNAseq data was less than 0.1, (iii) the RNAseq data was 

invariant, (iv) the RNAseq coverage was less than 5 reads and (v) the WGS coverage was less 

than 10 reads. We then used samtools to remove duplicate reads in the aligned RNAseq data as 

described in Supplementary Information.  Then, we reapplied REDItools to this deduplicated 
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RNAseq file, using the previously generated, DNA-annotated and filtered RNA-table as a region 

file along with the previously noted REDItools options. We used the output tables from this 

REDItools run for further analysis. 

Downstream analysis 

We used another script called AnnotateTable.py (also provided with REDItools 2.0) to annotate 

each SNV in the final REDItools table with gene IDs, using a sorted and trimmed gtf file 

(Plasmodium falciparum v41, from Ensembl) using the command lines (Supplementary 

information). Using custom python scripts, we calculated the number of SNVs occurring in each 

gene and the relative frequency of SNV occurrence in each gene and extracted the nucleotide 

sequences on either side of each changed position in order to analyse patterns in the flanking 

nucleotides. We also arrayed each SNV on the gene in which it occurred, dividing each gene into 

100 equal-width bins, and constructed a histogram based on binning each SNV in order to 

analyse any positional bias of SNV occurrence on the gene body 

 

We converted the gene-annotated RNA_DNA_deduplicated file into a format resembling variant 

call format to use as input for snpEff, which we used according to the documentation to perform 

functional annotation of the SNVs in our output file. We processed the output VCF files 

generated by snpEff using snpSift to filter the file and retain data related to predicted amino-acid 

changes. We analysed this filtered VCF file using a custom script to visualise the spectrum of 

amino-acid changes in each sample. We did not retain any annotations of the types “upstream 

variant” and “downstream variant”, since snpEff defines upstream and downstream regions as 5 

kilobases in length, which is too large for the relatively compact genome of P. falciparum. SNV 

rates per base were calculated as the number of SNVs in the filtered output divided by the 

genome length in nucleotides. We used Salmon[39] to obtain gene abundance estimates in 

transcripts per million. 

Analysis of Samples Sourced from SRA 

NGS (RNAseq) datasets for Plasmodium falciparum patient-isolates from Mali, Plasmodium 

vivax liver-stages (mixed cultures and hypnozoites), Plasmodium vivax blood-stages, 

Escherichia coli, and Bacillus subtilis were downloaded using SRA toolkit[40] as fastq files. We 
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used genome versions PvP01 for P. vivax, ASM584v2 for E. coli, and ASM608879v1 for B. 

subtilis. The bacteria datasets were aligned using BWA, while the Plasmodium spp. datasets 

were aligned using STAR. We analysed each dataset with REDItools 2.0, filtering the output 

files to remove positions where; (i) the frequency of base changes in RNAseq data was less than 

0.1, (ii) the RNAseq data was invariant, (iii) the RNAseq coverage was less than 5 reads and (iv) 

The average phred-score was less than 25. SNV rates per base were calculated as the number of 

SNVs in the filtered output divided by the genome length in nucleotides. 

Circos plot generation 

We used the R package RCircos[41] to generate circos representations for the SNV distribution on 

the whole-genome scale. 

Statistics and Error Bars 

A Pearson’s Chi-squared test was performed to assess whether the distribution of frequency of 

SNV types (by base-substitution, as % of total) was significantly different from a uniform 

distribution (with the assumption that all base-substitutions are equally likely to occur). The test 

was performed in R using the chisq.test() function A Dunnett's test was used to calculate 

statistical significance for the differences in average SNV rates between the 3D7 parasite 

cultures and the three MRA parasite lines. This test was performed in R using the DunnettTest() 

function from the R library DescTools, using PF3D7_Ctrl as the control set. For Figures 2, 3 and 

4, error bars indicate 95% confidence interval for replicates and the number of replicates for each 

sample is as follows: 

● P. falciparum MRA_1236: 3 replicates 

● P. falciparum MRA_1240: 3 replicates 

● P. falciparum MRA_1241: 2 replicates 

● P. falciparum 3D7 Control: 2 replicates 

● P. falciparum 3D7 Drug-stressed: 2 replicates 

● P. falciparum 3D7 Temperature-stressed: 2 replicates 

● P. falciparum Mali Isolates [PRJNA498885]: 3 replicates 

● P. vivax [PRJNA422240] (mixed culture): 2 replicates 

● P. vivax [PRJNA422240] (hypnozoites only): 2 replicates 
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● P. vivax [PRJNA515743]: 4 replicates 

● E. coli [PRJNA592142]: 3 replicates 

● B. subtilis [PRJNA592142]: 3 replicates 

Code and Data Availability 

All custom code written for the analysis described here will be made available on request via 

GitHub.  
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