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A central challenge for systems neuroscience and artificial intelligence is to understand how cognitive behaviors arise from large,
highly interconnected networks of neurons. Digital simulation is linking cognitive behavior to neural activity to bridge this gap
in our understanding at great expense in time and electricity. A hybrid analog-digital approach, whereby slow analog circuits,
operating in parallel, emulate graded integration of synaptic currents by dendrites while a fast digital bus, operating serially,
emulates all-or-none transmission of action potentials by axons, may improve simulation efficacy. Due to the latter’s serial
operation, this approach has not scaled beyond millions of synaptic connections (per bus). This limit was broken by following
design principles the neocortex uses to minimize its wiring. The resulting hybrid analog-digital platform, Neurogrid, scales to
billions of synaptic connections, between up to a million neurons, and simulates cortical models in real-time using a few watts
of electricity. Here, we demonstrate that Neurogrid simulates cortical models spanning five levels of experimental investigation:
biophysical, dendritic, neuronal, columnar, and area. Bridging these five levels with Neurogrid revealed a novel way active
dendrites could mediate top-down attention.

1 MULTISCALE NEURAL SIMULATIONS
A central challenge for systems neuroscience and artificial in-

telligence is to understand how cognitive behaviors arise from
large, highly interconnected networks of neurons1. Bridging this
gap in our understanding calls for large-scale yet biophysically re-
alistic neural simulations to span levels of experimental investiga-
tion (biophysical, dendritic, neuronal, columnar, and area)2. Dig-
ital simulation bridges these levels, but the expense in time and
electricity is great3.

A Titan RTX GPU card consumes electricity at a rate of 250W
to simulate a cortex model with 4 million neurons connected by
24 billion synapses at a speed 510-fold slower than real-time (i.e.
each biological second takes 510 sec)4. These simulations are chal-
lenging because each neuron distributes its output to thousands of
neurons and, in turn, aggregates inputs from thousands of neurons.

In the digital paradigm, replicating signals for distribution as
well as summing signals for aggregation occurs entirely within
computing cores (facilitated by programming constructs such as
MapReduce). The communication network interconnecting these
cores simply routes messages by relaying them across links that
connect a core to its immediate neighbors. Sharing these core-
to-core wires instead routing dedicated point-to-point wires, as
the cortex does, ameliorates the difficulty of mapping a three-
dimensional brain onto a two-dimensional chip5.

With shared wires communicating addresses that signal arrival
of an action potential, or spike, at particular synapse, traffic scales
as the total number of synaptic connections times the presynaptic
population’s average spike-rate6. This address-event bus has been
successfully used to build networks with thousands of neurons with
a few hundred synaptic connections each7. It has not scaled beyond
millions of synaptic connections, the point at which traffic saturates
the bus’ signaling rate.

To break this communication bottleneck, Neurogrid adopts a
hybrid analog-digital approach that follows design principles the
neocortex uses to minimize its wiring8. Neurogrid uses fast dig-
ital routers, operating serially, to replicate signals for distribution

and uses slow analog circuits, operating in parallel, to sum signals
for aggregation. It follows the neocortex’s design principles by
performing both distribution and aggregation hierarchically. This
neuromorphic architecture scales to billions of synaptic connec-
tions, between up to a million neurons.

Here, we demonstrate that Neurogrid simulates cortical mod-
els spanning five levels of experimental investigation: biophysical,
dendritic, neuronal, columnar, and area (Sec. 4 thru 6). Bridging
these five levels with Neurogrid revealed a novel way active den-
drites could mediate top-down attention. We begin with a brief
review of Neurogrid’s neuromorphic architecture (Sec. 2) and sim-
ulation environment (Sec. 3); detailed descriptions are available
elsewhere8.

2 HIERARCHICAL DISTRIBUTION & AGGREGATION
A neuron’s axonal arbor distributes signals by hierarchically

replicating them at branch points. Placing an axon’s branch points
as close as possible to its terminals replaces multiple axon seg-
ments with a single segment9 (Fig. 1a, top). This principle mini-
mizes the axonal arbor’s wiring.

Moreover, extending several dendritic branches to meet a termi-
nal branch of an axon allows that branch to make multiple synapses
(bouton cluster)10 (Fig. 1b, top). Synaptic signals from many axons
sum in a dendritic branch and these branches’ signals aggregate hi-
erarchically. This principle minimizes the dendritic tree’s wiring9.

Hierarchical distribution is emulated by interconnecting
silicon-neuron arrays with a tree-like (rather than a mesh-like) net-
work11,12. That allows address-events to be replicated close to their
destination and reduces traffic on the array-to-array links (Fig. 1a,
bottom). Emulating an axon terminal’s bouton cluster allows a sin-
gle delivered address-event to evoke postsynaptic potentials in sev-
eral silicon neurons (Fig. 1b, bottom). This reduces traffic further.

Hierarchical aggregation is emulated efficiently by modeling
multiple overlapping dendritic trees with a single two-dimensional
resistive grid. This shared analog circuit replicates the exponential
spatial decay that transforms postsynaptic potentials into current
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Figure 1 | Modeling the cortex on Neurogrid. a, Hierarchical distri-
bution and b, hierarchical aggregation in neural (top) and neuromorphic
(bottom) networks: The traffic on a digital bus that emulates spike dis-
tribution by an axonal arbor is reduced by mimicking axonal and den-
dritic branching patterns. c, Mapping cortical columns: Cell layers (red,
green and blue), intercolumn projections (purple), and intracolumn col-
laterals (yellow) are mapped onto a different Neurocores, off-chip RAM
(on a daughterboard), and on-chip RAM (in each Neurocore), respec-
tively. d, Simulating 1M neurons with 8G synaptic connections in real-
time. User-interface (top, left panel to right panel): Displays model pa-
rameters, activity in all layers, and spike trains from a selected layer (the
first one). Layer connectivity and spike histograms (bottom, left & right):
Each layer inhibits itself and its three immediate neighbors on either side
(only the eighth layer’s connectivity is shown). These local interactions
synchronize activity globally. e, Hardware (left to right). Silicon neuron
schematic and layout: Distinct soma and dendrite compartments express
spike-generating, ligand-gated, and voltage-gated conductances. The last
two occupy the most area (four types each). Neurocore chip: Has 65,536
silicon neurons, tiled in a 256×256 array, and routing circuitry for inter-
chip communication. Neurogrid board: Has 16 Neurocores, connected in
a binary-tree network (as in c).

delivered to a dendritic tree’s trunk13.

3 NEUROGRID
Emulating axonal arbors and dendritic trees enables Neurogrid

to simulate cortical models scalably and efficiently. A cortical area
is modeled by a group of Neurocores (Fig. 1c); Neurogrid has six-
teen of these chips. Each cell layer (or cell type) is mapped onto
a different Neurocore’s two-dimensional silicon neuron array. Cir-
cular pools of neurons centered at the same (x, y) location on these
Neurocores model a cortical column15.

Intercolumn axonal projections are routed by using the presy-
naptic neuron’s address to retrieve the target columns’ centers
(x, y) from an off-chip random-access memory (first distribution
level). This memory is programmed to replicate the neocortex’s
function-specific intercolumn connectivity16,17.

Intracolumn axon collaterals are routed by copying the address-
event to all of a cortical area’s Neurocores using the interchip tree
network; unneeded copies are filtered using an on-chip memory
(second distribution level). This memory is programmed to repli-
cate the neocortex’s stereotyped intracolumn connectivity18.

Intralayer dendritic trees—arborizing over a circular disc cen-
tered on the cell body—are realized using the resistive grid men-
tioned earlier. Its space constant is adjusted electronically to match
the arbor’s radius; a transistor-based implementation makes this
possible19.

With intercolumn projections, intracolumn collaterals, and in-
tralayer dendrites, five thousand synaptic connections may be made
by: (1) Routing an address-event to ten columns; (2) copying it to
six layers in each column; and (3) evoking postsynaptic potentials
in a hundred neighboring neurons in all but one layer (a 5.6-neuron
arbor radius).

To demonstrate these routing mechanisms’ functionality and
scalability, we used Neurogrid to simulate a recurrent network of
a million interneurons with billions of inhibitory synaptic con-
nections (Fig. 1d). The interneurons were organized in sixteen
256×256-neuron arrays that formed a torus; the first and last lay-
ers were neighbors. Intracolumn collaterals routed an interneuron’s
spike to the three nearest layers on each side as well as back to its
own layer. The inhibition evoked decreased exponentially with dis-
tance, due to spatial decay in the intralayer dendritic trees. Half of
the inhibition a soma received came from 8,000 neurons in a cylin-
der centered on it, 7 layers in height and 19 neurons in radius.

These local inhibitory interactions synchronized activity glob-
ally. Spiking activity waxed and waned periodically, with a fre-
quency of 3.7 Hz. Even though individual interneurons skipped
several cycles (0.42 spikes/s mean), their spikes were entrained to
this rhythm across all 16 layers, demonstrates the functionality and
scalability of Neurogrid’s routing mechanisms.

Software infrastructure facilitates performing large-scale neu-
ral simulations on Neurogrid. Firmware and drivers initialize and
configure the hardware. Calibration procedures establish corre-
spondence between parameters of neuronal models and their sil-
icon analogs20,21. A mapping tool translates multiscale model de-
scriptions (written in Python) into hardware configurations (pro-
grammed in memory). A user interface interacts with simulations
in real-time. And visualization widgets render activity or plot
spikes of up to a million neurons in real-time. For the details of
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Figure 2 | Different types of neocortical neurons and their Neurogrid simulations. Each quadrant shows membrane potentials recorded in vitro
(upper traces) and in silico (lower traces) with two current injection levels (increasing from left to right). a, FS neuron. b, RS neuron. c, IB neuron.
d, CH neuron. Over the ranges of input currents used (see Methods), the model’s spike-times closely match the biological neuron’s, even though the
former are always reset to the same potential (not programmable). In vitro data adapted from Izhikevich14.

this software infrastructure, see Methods.

4 NEOCORTICAL CELL-TYPES
Neurogrid’s neuron model has separate soma and dendrite com-

partments (Fig. 1e). The soma compartment expresses conduc-
tances that generate spikes and adapt their rate. The dendrite com-
partment expresses ligand and voltage-gated conductances (up to
four types each). The programmed maximum synaptic or mem-
brane conductance is scaled by a “gating variable”22. A pair of
gating variables may be used to model a population of ion-channels
that are activated and inactivated by voltage (e.g., T-type Ca chan-
nels), activated by ligand and voltage (e.g., NMDA receptors), or
modulated by a second ligand (e.g., dopamine). For these compo-
nents’ equations and parameters, see Methods.

To demonstrate the expressiveness of this neuron model,
we simulated four prominent neocortical cell-types classified by
Nowak et. al.23, namely fast spiking (FS), regular spiking (RS),
intrinsic bursting (IB) and chattering (CH). FS neurons, normally
associated with inhibitory interneurons, respond to a depolarizing
current input with a high-frequency spike-train, showing little or
no adaptation. RS neurons, generally associated with excitatory
stellate cells, respond to a depolarizing current input with a low-
frequency spike-train, showing adaptation. For both types of neu-
rons, increasing the injected current increases the spike rate.

We modeled FS and RS neurons with the soma compartment
alone, including adaptation for the latter (Fig. 2a,b). These models
matched the FS neuron’s high spike-rate and relatively constant
inter-spike intervals; the RS neuron’s low spike-rate and increasing
inter-spike intervals; and both cell types’ overall spike-rate increase
in with injected current.

IB and CH neurons display more complex responses. IB neu-
rons, generally associated with pyramidal cells, respond to a suf-
ficient large increase in injected current with a burst followed by
single spikes, as observed in guinea-pig cingulate neocortex24. CH

neurons exhibit fast rhythmic bursting, as observed in cat striate
cortex25. Their burst frequency does not increase much with in-
creasing the injected current.

We modeled IB and CH neurons with the soma and dendrite
compartments. Slow calcium channels that are deinactivated near
the resting potential contribute to bursting26. Hence, we equipped
the dendrite compartment with an activating as well as an inacti-
vating gating variable (Fig. 2c). This model matched the onset of
bursting in an IB neuron and the increase in tonic spike-rate with
increasing injected current.

Rhythmic bursting could arise from bidirectional interactions
between the soma and the dendrite27. Neurogrid’s neuron model
supports this by allowing spikes to back-propagate from the soma
compartment to the dendrite compartment, which was purely pas-
sive in this case. This model matched the high spike-rate within a
burst, the number of spikes per burst and the moderate decrease in
inter-burst interval with increasing injected current (Fig. 2d).

5 ACTIVE DENDRITES
Several lines of experimental evidence point to a critical role

of active dendritic properties in sensorimotor processing. NMDA
spikes in basal dendrites28 have been shown to sharpen sensory
tuning of neocortical neurons29. Such spikes double an EPSP’s
amplitude when they occur in basal dendrites of neocortical layer
5 pyramidal neurons. Coincidence of EPSPs (pre-spikes) and back-
propagating action potentials (post-spikes) in apical dendrites30 has
been shown to amplify correlated sensory and motor signals dur-
ing active sensation31. Thus, active dendrites enhance sensorimotor
processing.

To demonstrate that Neurogrid’s neuron model could express
active dendritic behavior, we replicated the NMDA spike’s all-or-
none behavior and the backpropagating spike’s amplifying action.
To replicate an NMDA spike, we expressed a NMDA synaptic con-
ductance in a dendrite compartment as well as an AMPA conduc-
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Figure 3 |Active dendritic behaviors and their Neurogrid simulations.
Each column compares in vitro (top) and in silico (bottom) membrane po-
tential traces; insets plot traces’ peak values versus stimulus conditions. a,
NMDA spikes in basal dendrites: The synaptic conductance was varied by
stimulating afferent axons electrically in vitro or increasing the maximum
synaptic conductance in silico (gsat). b, Coincidence detection in apical
dendrites: The relative timing between the backpropagating spike (tpre)
and the EPSP (tpost) was varied. In vitro data in a and b adapted from
Schiller et al.28 and Stuart and Hausser30, respectively.

tance. When the AMPA conductance drove the dendrite’s potential
above the NMDA conductance’s voltage-activation threshold, the
postsynaptic potential doubled in amplitude, replcating the all-or-
none behavior of an NMDA spike (Fig. 3a).

To replicate the amplifying action of a backpropagating spike,
we expressed sodium channels that activate and inactivate in a den-
drite compartment as well as a synaptic conductance with time-
constant between NMDA and AMPA conductances’ to mimic a
mix. When a backpropagating spike coincided with a postsynap-
tic potential, the sodium conductance activated and increased the
dendrite’s voltage further. The pre-spike’s timing relative to the
post-spikes’ when voltage peaked as well as the voltage’s asym-
metric increase and decrease matched experimental observations
in rat layer 5 pyramidal neurons30 (Fig. 3b). Replicating these in-
vitro results did not require NMDA synapses’ voltage-dependence,
consistent with previous models30.

6 TOP-DOWN ATTENTION
To demonstrate that Neurogrid can help relate cognitive phe-

nomena to biophysical mechanisms, an important goal of neuro-
science, we replicated the effects of spatially selective top-down
attention on the responses of visual cortical neurons recorded in
awake, behaving macaques32. Amplification of postsynaptic poten-
tials by NMDA or sodium conductances in apical dendrites of pyra-
midal cells could contribute to this multiplicative interaction. The
former may underlie spike-rate changes associated with feedback-
driven figure-ground modulations in Macaque primary visual cor-
tex33. This evidence led us to hypothesize that NMDA receptors

Figure 4 |Modeling attention-related modulation of visual cortical re-
sponses. a, FEF-V4 model: Cued activity in FEF (right, white pixels
within top 19 × 19 red rectangle) drives NMDA receptors in a patch of
excitatory neurons at the corresponding location in V4 (right, white pixels
within bottom red rectangle); neurons there and elsewhere (right, bottom
brown rectangle) receive identical external visual drive. b, Heterogeneous
responses in model V4: Dendritic potentials with and without FEF drive
(red and brown, respectively) for five sample neurons (rows) sorted ac-
cording to the visual drive required to cross NMDA synapse’s activation
threshold. c, Population activity in model V4: The average spike-rate
scales multiplicatively with NMDA-mediated FEF feedback (calculated
for 361 neurons), matching the behavior of V4 neurons recorded from
awake, behaving Macaques (adapted from McAdams and Maunsell32).

could also account for the multiplicative changes in spike rate ob-
served in visual cortical neurons during spatially selective atten-
tion32.

Unlike most computational models, Neurogrid models are sub-
jected to heterogeneity. Once calibrated, the median parameter
value across a Neurocore’s population of silicon neurons matches
the specified model parameter value. Whereas its variance is deter-
mined by the fabrication process, resulting in a spike-rate distribu-
tion that spans a decade. For comparison, firing rates vary by over
three decades across a population of cortical neurons34. Hence,
showing that a proposed mechanism is robust to heterogeneity in-
creases its biological plausibility.

We tested robustness of NMDA-mediated multiplicative gain
to heterogeneity by simulating top-down and bottom-up interac-
tions between a visual cortical area (V4) and a frontal cortical area
(the Frontal Eye Field, FEF) on Neurogrid (Fig. 4a). V4 was mod-
eled with an excitatory neuronal population (128×128) while FEF
was modeled with an excitatory and an inhibitory population (both
128×128). Besides V4’s excitatory population, which had dendrite
compartments, all others had just soma compartments.

FEF activity, temporally sustained by local recurrent excitation
and spatially constrained by local recurrent inhibition, represented
the locus of attention in a 2D map of visual space, inspired by
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Ardid et al.’s (1D) attention model35. To explore NMDA recep-
tors’ role in attentional modulation, unlike in the previous model,
columnar feedback projections from FEF to V4 modulated activity
of V4 neurons exclusively through NMDA synapses.

We discovered that heterogeneity in AMPA conductances real-
izes gradual gain modulation from abrupt NMDA threshold cross-
ings. This heterogeneity (CV of 26%) caused dendrite compart-
ments to cross NMDA’s voltage-activation threshold at different vi-
sual drives (Fig. 4b). This distributed threshold-crossing increased
the V4 population’s spike-rate gradually with visual drive; it would
otherwise have increased abruptly. This increase was steeper with
FEF feedback, matching multiplicative changes with attention in
macaque V432 (Fig. 4c).

7 CONCLUSIONS
Conductance-based synapses, active conductances, multiple

compartments, spike back-propagation, and cortical cell types have
been emulated in neuromorphic chips36–44. Our focus here was on
the next step: Deploying these in silico neuronal components in
multiscale modeling. We simulated cortical models with up to 1M
neurons and 8G synaptic connections using 1800-fold less energy
per synaptic activation than a GPU4,8 (120pJ versus 210nJ)i.

A hybrid analog-digital architecture made this possible. It im-
plements hierarchical distribution and aggregation and maps corti-
cal circuitry columnarly, following principles the neocortex uses to
minimize its wiring. By greatly reduced traffic between cores, this
neuromorphic approach enabled Neurogrid to simulate multiscale
neural models that integrate findings across five levels of experi-
mental investigation time- and energy-efficiently.

Importantly, Neurogrid achieves scale and efficiency without
sacrificing biophysical detail, and thus truly supports multiscale
modeling. Its neuronal model is sufficiently detailed to simulate
various cortical cell types as well as active dendritic behavior and
neuromodulatory effects. This combination of scale and detail en-
abled us to discover a novel mechanism for attentional modulation.
This advance in simulation capacity could not only lead to a better
understanding of neurological disorders such as ADHD, it could
also help reverse-engineer the brain’s hybrid analog-digital com-
putational paradigm, which could lead to artificial intelligence sys-
tems with billions of units and trillions of parameters that consume
watts instead of kilowatts.
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METHODS
Dimensionless neuron models
Neurogrid’s models of soma, dendrite, gating variables and
synapses are dimensionless. A leaky integrate-and-fire model of
a neuron1 is described by

Cs
dVm

dt
= Gleak (Eleak − Vm) + Isin + INa (1)

where Vm is the soma membrane potential, Cs is the soma mem-
brane capacitance, Gleak is the soma leak conductance and Eleak

its reversal potential, Isin is the injected current and INa is the
voltage-dependent sodium current that generates spikes. Rewrit-
ing the above equation with Eleak as the reference voltage:

Cs
dVs

dt
= −GleakVs + Isin + INa (2)

where Vs = Vm − Eleak. We modeled INa (Vs) as

INa (Vs) =
1

2

V 2
s

Vth
Gleak (3)

where Vth is the threshold voltage. By definition, it is the volt-
age at which the sodium conductance (dINa/dVs) is equal to the
leak conductance. At this voltage, the membrane potential stops
decelerating and starts accelerating (inflection point), the onset of
spiking. Substituting equation (3) into equation (2) and dividing
by GleakVth gives the dimensionless model for a Quadratic Leaky
Integrate-and-Fire (QLIF) neuron2,3:

τsv̇s = −vs + isin +
v2s
2

(4)

where τs = Cs/gleak (membrane time constant), vs = Vs/Vth and
isin = Isin/ (gleakVth). Thus, models of the form equation (1) can
be expressed as dimensionless models of the form equation (4) by
changing the reference voltage to Eleak and normalizing all volt-
ages, conductances and currents by Vth, Gleak and GleakVth, re-
spectively.

The soma compartment’s dimensionless model is

τsv̇s =− vs + isin +
v2s
2
− gKvs − gresvspres(t) + vd

+
∑

gsyni

(
esyni − vs

) (5)

where vs is the membrane potential, τs the membrane time con-
stant, isin the input current, and gsyni and esyni the conductance
and reversal potential, respectively, of synapse i. gres is activated
by pres(t), a unit amplitude pulse that is active for a duration tres af-
ter a spike (declared when vs ≥ 10), to model the neuron’s refrac-
tory period. gK models a high-threshold potassium conductance
and is only activated when a spike occurs, decaying afterwards.
We modeled its dynamics as

τKġK = −gK + pres(t)gK∞ (6)

where τK is the decay time constant.
The dendrite compartment’s dimensionless model is

τdv̇d =− vd + idin + ibppres(t)

+
∑

ζigsyni

(
esyni − vd

)
+
∑

gchi (echi − vd)

(7)

where vd is the membrane potential, τd the membrane time con-
stant, idin the input current, gsyni , esyni and ζi the conductance,
reversal potential and decay factor, respectively, of synapse i, and
gchi

and echi
the conductance and reversal potential, respectively,

of ion-channel population i. A current ibp is injected for a duration
tres (same as in equation (5)) to model a backpropagating spike.

The decay factor, which models the spatial decay in dendritic
trees, is given by4

ζ(n) =
1

4
√
π

(
1 +

(
1

1− γ2

) 1
4

)2
γn√
n

(8)

where γ is the silicon dendritic tree’s decay constant and n the
distance traveled in number of neurons.

The synaptic population’s dimensionless model5 is

τsynġsyn = −gsyn + prise(t)gsat (9)

where gsyn is the instantaneous synaptic conductance, τsyn the
synaptic time constant and gsat the maximum conductance. The
unit amplitude pulse prise(t)’s width trise models the duration for
which neurotransmitter is available in the cleft following a pre-
synaptic spike.

The gating variable’s model is:

τchċ = −c+ css (10)

where css is its steady-state activation (or inactivation) and τch its
time constant. css is given by

css =
α

α+ β
or

β

α+ β
(11)

where α and β model a channel’s opening and closing rates and are
descibed by

α =
vd − vth

2
+

√
(vd − vth)2 +

1
4s2

2

β = −vd − vth

2
+

√
(vd − vth)2 +

1
4s2

2

(12)

Here, vth is the membrane potential at which cs = 1/2 and s is the
slope at this point. α and β satisfy a difference relation, α − β =
vd − vth, and a reciprocal relation, αβ = 1/

(
16s2

)
, resulting in

a sigmoidal dependence of css on vd. The gating variable’s time
constant is given by

τch =
τmax − τmin

τmax
τ̃ch + τmin

τ̃ch =
1

2s (α+ β)
τmax

(13)

τch is bell-shaped with a maximum value of τmax when vd = vth
and a minimum value of τmin when |vd − vth| � 1/(2s), to avoid
unphysiologically short time constants.

One or two gating variables may be used to model a channel
population. When using one gating variable, its associated maxi-
mum conductance gmax may be set by a synapse population’s gsyn to
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model an ion channel population that is voltage- as well as ligand-
gated (e.g., NMDA receptors). When using a pair of gating vari-
ables, the effective conductance is given by:

gch =
gmax0c0gmax1c1
gmax0c0 + gmax1c1

(14)

where gmax0 and gmax1 are the maximum conductances associated
with gating variables c0 and c1, respectively. In this case, gmax0
and gmax1 may be set by two synapse populations’ gsyn to model
neuromodulation; the gating variables’ thresholds are set low to
eliminate voltage-dependence. Alternatively, gmax0 and gmax1 may
be programmed to the same value, gmax, to model a channel that
activates and inactivates. In this case, the above expression simpli-
fies to gch = gmax

c0c1
c0+c1

. The pair of gating variables always share
a programmable reversal potential ech.

The parameter values used to obtain the simulation results pre-
sented in Figs 2 to 4 are listed in Tables 1 to 4. Reversal poten-
tials and gating-variable thresholds were converted to dimension-
less form by assuming that the leak’s reversal potential is −80 mV
and the spike threshold is−50 mV (i.e., all voltages are normalized
by Vth = 30 mV).

Programming Neurogrid
Neuronal and synaptic model parameters and connectivity are

described in Python, similar to PyNN8, and a C++ back-end uses
this description to program Neurogrid’s electronic circuit parame-
ters and lookup tables. Examples of Python descriptions of soma,
dendrite, synapse and gating variables are listed in Table 5. A cal-
ibration procedure is used to obtain a set of conversion factors to
map the neuronal and synaptic model parameters to the circuit pa-

rameters9. In a population of silicon neurons, these parameters
are lognormally distributed with a coefficient of variation (CV) of
about 10% (e.g., 1/τs has a CV of 7.2%). Lookup tables for in-
tracolumn connections are stored in the Neuorocores’ 256 × 16-
bit RAM and for intercolumn connections in the daughterboard’s
8M× 32-bit RAM.
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Channel
Soma Dendrite Conductance Activation Inactivation

τs τK gK∞ tres isin τd ibp idin gmax ech τmax vth s τmax vth s
FS 3 200 0.005 0.8 3.7-9.8 - - - - - - - - - -
RS 15 200 50 0.1 0.08-1.42 - - - - - - - - - - -
IB 18 200 50 1 0 54 0 1.09-2.5 1 7.5 1 0.5 1.25 50 0.2 −0.5
CH 13 50 250 2 30-39 12 100 0 - - - - - - - -

Table 1 | Parameter values for models of cortical neuron types. Current injection for FS, RS and CH neuron types was modeled with isin and for IB
neuron type with idin. Parameter values were chosen to produce the best fit to the in vitro data. All time values are in ms.

Soma Dendrite NMDA AMPA
τs τK gK∞ tres isin τd idin ibp τsyn trise gsat esyn vth s τsyn trise gsat esyn
20 - - 1 0 30 0 0 150 4 500 2.7 2.3 1 7.25 0.6 25-240 2.7

Table 2 | Parameter values used to model NMDA spikes in basal dendrites. NMDA and AMPA reversal potentials as well as NMDA threshold
were chosen to match physiological values6. Other parameter values were chosen to produce the best fit to the in vitro data. All time values are in ms.

Sodium channel
Dendrite Synapse Conductance Activation Inactivation

τd idin ibp τsyn trise gsat esyn gmax ech τmax vth s τmax vth s
3 0 100 8 4 80 2.7 10 5 0.4 0.9 1.2 35 0.5 -2

Table 3 | Parameter values used to model coincidence detection in apical dendrites. Soma compartment was modeled with RS neuron parameter
values (see Table 1). Sodium channel parameters are similar to Mainen et. al.7, adjusted together with other parameter values to produce the best fit to
the in vitro data. All time values are in ms.

FEF Excitatory
Soma AMPA GABA

τs τK gK∞ tres isin τsyn trise gsat esyn γ τsyn trise gsat esyn γ
15 200 50.0 0.1 0 7.25 0.6 8 2.7 0.65 15 1 0.01 0.1 0.97

FEF Inhibitory
Soma AMPA

τs τK gK∞ tres isin τsyn trise gsat esyn γ
3 200 0.005 0.8 0.15 7.25 0.6 10 2.7 0.6

V4 Excitatory
Soma Dendrite AMPA NMDA

τs τK gK∞ tres isin τd idin τsyn trise gsat esyn γ τsyn trise gsat esyn vth s
15 200 50 0.1 0 30 0.001 7.25 0.6 2.0 2.7 0.65 150 4 50 2.7 2.3 1

Table 4 | Parameter values for attentional modulation simulation. Excitatory and inhibitory neurons’ soma compartments were modeled with RS
and FS neuron parameter values, respectively (see Table 1). NMDA, AMPA and dendrite were modeled with the parameter values for NMDA spikes in
basal dendrites (see Table 2). All time values are in ms.

soma Soma(“quadratic adaptive”, “tau s”: 0.015, “i sin”: 0.6, “t res”: 0.0005, “g kinf”: 200)
dendrite Dendrite(“generic”, “tau d”: 0.02, “i din”:0, “i bp”: 100)
synapse Synapse(“generic”, “tau syn”: 0.025, “g sat”: 5, “e syn”: 5, “t rise”: 0.001)

channel IonType(“generic”, “e ch”: 5)
IonChannel(“first order”, “tau max”: 0.02, “g max”: 10, “v th”: 0.7, “s”: 7)

Table 5 | Python constructs to program Neurogrid. The table lists example Python function calls for modeling a soma, dendrite, synapse and channel.
All time values are in seconds.
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