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Abstract:  

Proteasomal cleavage is a key component in protein turnover, as well as antigen presentation and 
subsequent immune response. Herein we present pepsickle, an open-source tool for proteasomal 
cleavage prediction with better in vivo prediction performance (AUC) and computational speed than 
current models available in the field, and with the ability to predict sites based on both constitutive and 
immunoproteasome profiles. Post-hoc filtering of predicted patient neoepitopes using pepsickle 
significantly enriches for immune-responsive epitopes and may represent a significant opportunity to 
improve current epitope prediction and vaccine development pipelines.   

  

Introduction:  

The constitutive proteasome is a multimeric protein complex that is best known for its role in the 
cleavage and recycling of cellular proteins marked for degradation 1. The proteasome also generates 
cleaved peptide fragments (epitopes) for immune surveillance via the major histocompatibility complex 
(MHC) class I antigen presentation pathway 2.This immune presentation functionality is critical for antiviral 
and other antimicrobial responses, and has particular relevance both in the setting of vaccine 
development and in a cancer context with the advent of immune checkpoint inhibitors 3–7. 

Structurally, the proteasome consists of multiple subunits, a 20S barrel core housing the catalytic 
domains of the proteasome, and two 19S caps which aid in the unfolding of ubiquitin-tagged proteins 1. 
The barrel shape of the 20S core is derived from the fusion of four heptameric rings, the inner two of 
which contain a β1, β2, and β5 catalytic domain responsible for the cleavage of peptide bonds 8. Although 
all tissues express the constitutive proteasome, hematopoietic-lineage cells can also express the 
alternative catalytic domains β1i, β2i, and β5i in response to IFN-γ, which replace their analogues in the 
constitutive heptameric ring to form the immunoproteasome (Figure 1) 9. Previous studies support the 
presence of preferred cleavage motifs and differences in cleavage preferences between the immuno- and 
constitutive proteasomes; however, our understanding of how these preferences manifest is still not 
welldefined.10,11  

While existing tools to predict proteasomal cleavage sites are now widely adopted, each has 
significant limitations affecting the accuracy and/or scope of its predictions, with the potential for real 
world consequences (figure 2). NetChop 3.1, the most cited proteasomal cleavage tool, does not 
differentiate between constitutive and immuno-proteasomal cleavage when generating predictions 10. 
Further, tools such as the proteasomal cleavage prediction server (PCPS)  provide options for predicting 
cleavage by the immunoproteasome but show poor model performance compared to NetChop when 
benchmarked 10. Finally, many available tools are either proprietary or otherwise unavailable to the public, 
complicating their use in both academic and industry analysis pipelines.   

By leveraging a comprehensive set of proteasomal cleavage data and an ensemble based deep 
learning approach capable of representing complex motif preferences, we developed a set of models that 
consistently produce more accurate cleavage predictions than existing tools regardless of proteasomal 
context. We have deployed these models as an open-source command-line tool (pepsickle) for broad 
reuse and application.  
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Methods:  

Collection and processing of in vitro digestion map data for training and testing    

We performed a literature search for all studies containing publicly available primary data from in 
vitro digestion experiments using 20S proteasomes. As the proteasome is highly conserved among 
mammalian species, digestion product results from non-human mammalian proteasomes were also 
included along with human-specific datasets 11,12. Search terms were “proteasome”, “proteasomal”, 
“cleavage”, “digestion”, “immunoproteasome”, “20S”, “i20S”, both alone and in various combinations. 
Ultimately, we identified 36 studies with relevant data (Table 1), from which we manually extracted 
individual cleavage sites, along with the parent peptide sequences from which they were derived13,14,23–

32,15,33–42,16,43–47,17–22. Proteasome types present in the observed system (constitutive, immunoproteasome, 
or mixed) were also annotated for each cleavage experiment. Data from six 20S studies with unique source 
proteins were held out for downstream validation, while the remaining data (from 30 studies) were 
aggregated for model training and testing (Table 1). For in vitro digestion peptide fragments, both the N-
terminal and C-terminal cleavage sites were used as cleavage examples. For each cleavage example, a 
context window was generated with the cleavage residue (C-terminus of the peptide fragment) as the 
“central” amino acid plus an equal number of upstream and downstream amino acids (Figure 8). 
Independent datasets with window sizes of 7 amino acids (3 upstream and 3 downstream from the central 
cleavage residue) and 21 amino acids (10 upstream and 10 downstream) were generated to allow for 
model optimization based on window size. Only unique cleavage windows were retained, yielding a total 
of 1,758 windows that are 7 amino acids in length and 1,819 windows that are 21 amino acids in length.  

 

To generate companion non-cleavage examples for modeling, internal sites from each reported 
peptide fragment were considered as candidates. As above, 7 amino acid and 21 amino acid windows 
were generated for each non-cleavage example, and subsequently filtered to remove any duplicate 
sequences or overlaps with the set of non-cleavage examples. Before these candidates were included as 
null examples in the dataset, they were further filtered against all positive windows generated across all 
other studies, controlling for proteasome type, so that positive and negative cleavage examples were 
mutually exclusive.  
  
Collection and processing of epitope data for training and testing  

To study in vivo cleavage sites, we extracted endogenously processed T-cell epitopes from three 
independent public databases (The Immune Epitope Database (IEDB) 48, AntiJen 49, and SYFPEITHI 50) as 
well as two primary literature sources: Bassani-Sternberg et al. (2016) and Rozanov et al. (2018). Data 
from Bassani-Sternberg et al. was maintained separately and used for downstream validation, while all 
other sources were aggregated for training and testing purposes. We restricted attention to mammalian 
naturally processed and presented peptide ligands of the MHC class I pathway. Epitopes were filtered to 
retain only those with an unambiguous substring position among known source protein sequence(s). 
Centered windows were generated around each C-terminal cleavage example as above, but using the full 
series of balanced window sizes from 7 amino acids to 21 amino acids, given the larger scale of the data 
and its accompanying power to detect significant differences in model performance. Only unique cleavage 
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window sequences were retained, resulting in a total of 357,253 unique epitopes with C-terminal cleavage 
events. Note that epitope N-termini were not processed as cleavage examples due to the uncertainty 
resulting from N-terminal trimming by endoplasmic reticulum aminopeptidases (ERAP) 53.  
  

To perform non-cleavage site inference, we first sampled internal amino acids for each epitope 
(Figure 9). Because the overwhelming majority of proteasomal digestion products have a length of at least 
two amino acids 54–56 and because peptides may be threaded into the proteasome in either the N- or 
Cterminal directions 14, we excluded 1 N-terminal and 1 C-terminal amino acid residue of each epitope 
from consideration in the potential non-cleavage data. As above, windows were generated for each 
remaining amino acid position for each potential window size. These potential non-cleavage windows 
were then filtered to remove any identical sequence matches within the set of positive cleavage examples 
from above. To additionally account for uncertainty in N-terminal cleavage position(s) due to ERAP 53, we 
removed any sequence matches with the set of windows generated by positions from the N-terminus of 
an epitope up to 16 amino acids upstream of each epitope’s C-terminus. Only unique non-cleavage 
window sequences were retained.  
 
Feature encoding  

A vector of the following features was generated for each amino acid across windows in the 
cleavage and non-cleavage example sets (Supplementary Table S8). Amino acid identity was one-hot 
encoded as a bit vector of size 20, with each bit representing one of the standard amino acids. The null 
character (*) was used for padding, with all values as zero, while ambiguous amino acids were encoded as 
relevant combinations of non-zero values corresponding to their ambiguous components (e.g. B 
represents either aspartic acid or asparagine). Physical properties of amino acids were encoded as follows: 
side chain polarity was recorded as its isoelectric point (pI) 57, the molecular volume of each side chain 
was recorded as its partial molar volume at 37°C 58, the hydrophobicity of each side chain was 
characterized by its simulated contact angle with nanodroplets of water 59, and conformational entropy 
was derived from peptide bond angular observations among protein sequences without observed 
secondary structure (e.g. alpha helix) 60. Proteasomal context was also included where relevant (i.e., in 
vitro digestion data) as a single categorical feature with “C” representing the constitutive proteasome, “I” 
representing the immuno-proteasome, and “M” representing mixed systems with both proteasome types 
expressed.  
  
Gradient boosted decision tree structure and training  

All gradient boosted classification models were implemented using the Scikit-learn package 
(v0.22.1) 61 for Python version 3.7. The aggregated positive and negative cleavage examples were 
randomly split to retain 80% of the examples for training and the remaining 20% for model testing. For 
each model, inversely balanced class weights were used, and the ‘RandomizedSearchCV’ class was used 
to determine the best option for the ‘max_features’ parameter (chosen from ‘auto’, ‘sqrt’, or ‘log2’) and 
the ‘n_estimators’ parameter (chosen from values of 100-1000, by 100) of the ‘GradientBoostingClassifier’ 
class. Randomized 10-fold cross validation was run for all combinations of parameters, and the best model 
(as determined by the ‘best_estimator_’ attribute) was retained. Model performance was evaluated based 
on AUC, using the pROC library (v1.16.2) 62 in R version 4.0.2.  
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Two distinct classification models were trained. One was based on the one hot encoded amino 
acid sequence identities, and another on the physical/chemical property encodings as previously 
described, normalized using the ‘fit_transform’ method of Scikit-learn’s ‘MinMaxScaler’ class. For epitope 
data, models were trained on amino acid window sizes 7 through 21 in length and compared to identify 
the model with optimal performance. For in vitro data, only the minimum (7) and maximum (21) length 
window libraries were assessed, accounting for constitutive v. immuno- proteasomal context.   

  

Neural network structure and training  
All neural network models were implemented using the PyTorch package (version 1.3.1) 63 for 

Python version 3.7. The aggregated positive and negative cleavage examples were randomly split to retain 
80% of the examples for training and the remaining 20% for model testing. We next trained two distinct 
cleavage classification models based on the proteasome type and either 1) amino acid identity encodings, 
or 2) amino acid physical property encodings as described previously. Each model consisted of an input 
layer, two hidden layers, and an output layer (Supplementary Figure S1). For all non-output layers, we 
applied batch normalization and a 20% dropout layer during each successive forward pass to improve 
model training and reduce overfitting. ReLU activation functions were employed at each step except for 
the output layer, where a softmax function was applied prior to final output. For the physical property-
based model an additional convolutional layer (1D convolution with a 3 amino acid window and 1 amino 
acid step size) was applied to each physical property independently prior to passing values to the rest of 
the model. Cross entropy loss was used for backpropagation during training, with inverse class weights to 
account for class imbalance in the training set. Both models were trained for 36 epochs before training 
was halted, with AUC assessed on a new subset of the test data after each epoch and compared to the 
performance at the previous epoch, with the best performing model saved for downstream analysis.   

For the two best-performing models (one identity-based and one based on physical properties), 
final testing performance was then assessed using a consensus approach, where the predicted probability 
of a test window representing a cleavage site was taken as the average probability across both models. 
For epitope data, models were trained on window sizes of 7 through 21 amino acids and subsequently 
compared to identify the window size with optimal performance. Due to the relatively small size of the in 
vitro dataset, only the minimum (7) and maximum (21) length window libraries were assessed, with 
additional information on constitutive vs. immuno-proteasomal context included as in the same manner 
used for the gradient boosted approach.  
  

Analysis of sampled feature space  

To qualitatively assess how well our training data represented the broader space of possible 
peptides, we identified all unique 21 amino acid windows within the human proteome 
(https://www.uniprot.org/proteomes/UP000005640). Using these windows as background, we compared 
the shared UMAP space calculated with the first 10 principal components across the human proteome, as 
well as both in vitro and in vivo training sets using the four chemical properties at each amino acid position 
within the window, described previously, as the input feature set (Figure 6). Furthermore, we compared 
the sampling density for both datasets compared to the human background across the first 4 principal 
components to demonstrate the distribution of sampling in our training sets (Supplementary Figure S2).  
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 In addition to plots comparing the sampling space based on chemical properties, we also generated logo 
plots based on the amino acid frequencies for positive and negative examples in each training set 
(Supplementary Figure S5; Supplementary Figure S6). These plots were generated using the ultimate 
window sizes retained in modeling, 7 amino acids for in vitro data and 17 amino acids for in vivo data.   

  

Collection and processing of in vitro digestion map data for validation  
Data from six 20S studies was held out from previous steps to be used in validation. In order to 

accommodate the analysis of performance for models using multiple different window sizes, window 
lengths of 21 amino acids were generated for each validation set cleavage example using reported peptide 
fragments and their source protein contexts. Companion non-cleavage windows were generated in the 
same way as before, with the exception that only one internal site was sampled at random during non-
cleavage window generation to create an initially balanced set of positives and negatives. For validation 
windows, the additional step of filtering all validation windows with a non-unique interior window of 7 
amino acids (smallest centered window size for the models to be assessed) was also taken to ensure no 
redundant windows were present in the validation set for any training window sizes from 7 to 21 amino 
acids. These windows were then screened against all training and testing examples to only retain unique, 
never before seen, entries in their respective sets. Ultimately, this generated 171 constitutive 20S cleavage 
windows and 54 immuno-proteasome 20S cleavage windows.   
  
Collection and processing of epitope data for validation  

Data from Bassani-Sternberg et al. 51 was held out from previous steps to be used in validation. As 
described above, 21 amino acid windows were generated using reported epitopes and their source protein 
contexts.  These windows were then screened to only retain unique entries in their respective sets and 
companion non-cleavage examples were generated as described previously, with the exception that only 
one internal site was sampled at random during non-cleavage window generation to create an initially 
balanced set of positives and negatives as with the in-vitro validation set. For validation windows, the 
additional step of filtering all validations windows with a non-unique interior window of 7 amino acids 
(smallest centered window size for the models to be assessed) was also taken to ensure no redundant 
windows were present in the validation set for any training window sizes from 7 to 21 amino acids. Finally, 
each window was also screened against those used in the training or testing sets to ensure none had been 
previously seen by the trained models. Ultimately, this generated 7,951 cleavage windows for validation.  
  

Model implementation and availability  

Our in vivo and in vitro cleavage models were implemented in Python version 3.7. All deep learning 
models were generated using PyTorch version 1.3.1 63, while all machine learning models were generated 
using Scikit-learn version 0.22.1 61. The full instructions and code for replication of the analyses contained 
herein can be found at [https://github.com/pdxgx/pepsickle-paper], while the fully deployed command 
line version of `pepsickle`, along with relevant installation instructions can be found at 
[https://github.com/pdxgx/pepsickle]; pepsickle is open source and available under the MIT user 
license.   
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Comparison of cleavage prediction tools  

 A literature search and browser query were performed to identify currently available tools for 
proteasomal cleavage prediction (search terms included “cleavage prediction”, “proteasomal prediction”, 
“cleavage prediction tool”, and “proteasomal cleavage prediction”). Through this search, six tools were 
identified including: NetChop 3.1 10, the Proteasomal Cleavage Prediction Server (PCPS) 64, PCleavage 65, 
MAPPP 66, PAProC 67, and the random forest-based model described in Li et al. (2012). NetChop version 
3.1 was downloaded (http://www.cbs.dtu.dk/services/NetChop/) and installed as a command line tool on 
a Linux server running CentOS 7.7.1908. Cleavage windows were given in FASTA format with predictions 
saved and assessed only for the point of potential cleavage in each window. PCPS was run via its web 
server implementation (http://imed.med.ucm.es/Tools/pcps/) with both constitutive proteasome and 
immunoproteasome options selected. For each in vitro data type, the model corresponding to the 
proteasome type was used, with only the midpoint of each window reported and recorded as described 
above. For in vivo epitope windows, both models were assessed in the same fashion, with results reported 
for the model achieving the best AUC. PCleavage was also run via its web server implementation 
(http://crdd.osdd.net/raghava/pcleavage/), however validation assessment was only performed for in 
vivo epitope windows using the default threshold of 0.3. For both constitutive proteasome and 
immunoproteasome data; PCleavage did not accept windows that spanned the C- or N- termini of a given 
source protein, which reduced the validation set size substantially and prevented paired comparisons with 
the other models available. However, three cleavage prediction tools were ultimately not functional in our 
hands: the MAPPP server is no longer available and we were unable to locate a publicly downloadable 
version of the tool; we were unable to obtain a working copy of PAProC II despite repeated requests; and 
we were unable to locate any web server or public tool implementing the model from Li et al..  

Computational performance was assessed for all tools not reliant on a web server (i.e., NetChop 
3.1, pepsickle). Using a dedicated node (Intel Xeon E5-2697 v2 2.70GHz, single thread mode) on a 
Linux server running CentOS 7.7.1908, both in vitro and epitope-based models for NetChop 3.1 and 
pepsickle were applied to a performance test set consisting of all proteins in the human proteome 
(https://www.uniprot.org/proteomes/UP000005640). Total CPU times were calculated as the user ‘time’ 
+ ‘sys’ time for each prediction model (Supplementary Table S7).  

  

Model cross-comparison assessments  

The cross performance of both constitutive-based and immuno-based in vitro models were 
assessed using the same in vivo validation set used for our epitope trained model (Supplementary Table 
S9). Cleavage predictions were generated using the internal 7 amino acid window centered within each 
larger 21 amino acid validation window. Predictions were reported at the same central amino acid with 
the default prediction probability threshold of 0.5 used for determining cleavage vs. non-cleavage 
predictions. Reasoning that positive epitope cleavage examples should be predicted with good accuracy, 
while negative examples would not due to the complex selectivity of the downstream antigen processing 
and presentation pathway (e.g., MHC binding), only the percentage of correctly captured positive cleavage 
examples was assessed (sensitivity). This removes the possibility of misreporting true cleavage events that 
are filtered during post-cleavage processing as model misclassifications.   
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Collection of patient-derived immune response data and model application  

Three primary literature articles including patient specific predicted tumor neoepitopes and 
epitope-specific immune responses were identified for model application, including: 1) the Ott et al. 
patient-specific melanoma vaccine study 69, 2) the MuPeXI neoepitope prediction study 70, and 3) a large 
scale neoepitope prediction comparison from the Tumor Neoantigen Selection Alliance (TESLA) 71. From 
sources 1 and 2 where gene/protein sources for each predicted epitope were provided, each mutated 
candidate was mapped back to its original proteomic position to retrieve upstream (10 amino acids) and 
downstream (10 amino acids) contexts. For predicted neoepitopes within 10 amino acids from the start 
or end of the protein, positions were buffered using “*” prior to model input. For predicted neoepitopes 
reported in the TESLA study, original source proteins were not provided; instead, candidate neoepitope 
sequences were queried against the human reference proteome using the BLAST 72 command line tool 
with the following parameters: -matrix BLOSUM62, -evalue 200000, -comp_based_stats F. Only ungapped 
alignments were retained, allowing for a singular mismatch at the mutated position with exact matches 
at all other positions. Protein contexts around each candidate neoepitope were generated as described 
for the other two studies, however all candidate neoepitopes resulting in more than one unique context 
window were filtered out to remove any candidate neoepitopes with an ambiguous source in the 
proteome. All predicted neoepitopes across the three studies were also annotated as “responsive” or 
“non-responsive” based on the reported patient specific immune response. This resulted in 762 candidate 
neoepitopes, of which 45 (5.9%) were reported as inducing a patient-specific immune response.  

After all context windows were collected, the in vivo pepsickle model was applied to the 
Cterminal position of each proposed neoepitope candidate returning the predicted C-terminal cleavage 
probability. Median cleavage probabilities for predicted neoepitopes that elicited a patient specific 
immune response were compared to those that were predicted but for which an immune response was 
not verified using a Wilcoxon ranked sum test. Additionally, the use of cleavage probability as a 
classification threshold was assessed using the 25th percentile of predicted cleavage probabilities across 
all candidate neoepitopes as a cutoff. The proportion of responsive vs. non-responsive neoepitopes that 
were properly identified using this thresholding approach was assessed using a Chi-square(df) test for 
independence.  

  
Results: 

In vitro digestion-based cleavage prediction  

We identified 36 publicly available in vitro digestion datasets, constituting both 20S constitutive 
and 20S immuno-proteasomal cleavage experiments (Table 1). From these, six studies were reserved for 
external validation (validation set), while the rest were aggregated to generate a training and testing 
dataset containing cleavage information from 1,984 peptide fragments generated across constitutive, 
immuno-, and mixed proteasomal contexts. We then trained a gradient boosted classifier based on 
windows of 7 amino acids in length centering on each cleaved site. Residues within the window were 
encoded as the physical properties (polarity, molecular volume, hydrophobicity, and conformational 
entropy) of each amino acid at each given position in the window. Using annotated proteasome types, the 
model was trained to differentiate between sites cleaved by the immuno-proteasome and those cleaved 
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by the constitutive proteasome, returning the probability of cleavage at the center of each window. This 
model achieved a test set AUC of 0.759 (Supplementary Table S1). We explored whether additional 
peptide context around each cleavage site (21 amino acid windows) improved model performance; 
however, a comparison of models trained with both window sizes showed no increase in AUC when 
applied to testing the data (DeLong’s T-test, p = 0.558). Similarly, we assessed whether a more complex 
deep learning model could improve cleavage predictions. This also did not appear to increase performance 
significantly (p = 0.558). We therefore report and discuss the results from our 7 amino acid gradient 
boosted classifier (pepsickle) hereafter.  
 

We next assessed in vitro pepsickle performance on an independent validation set, consisting 
of 171 constitutive proteasome and 54 immunoproteasome examples, respectively. Our model achieved 
an AUC of 0.821 on the constitutive proteasome validation set and 0.789 on the immuno-proteasome 
validation set, respectively. Using the same validation sets, we assessed the corresponding performance 
of existing tools including NetChop 3.1 and the Proteasomal Cleavage Prediction Server (PCPS) (figure 3). 
Note that PCleavage was omitted from these in vitro based comparisons due to its inability to process 
cleavage sites whose context windows span a peptide fragment’s N- or C- termini (54.4% of the 
constitutive and 81.5% of the immuno validation data respectively). We found that pepsickle has 
significantly higher predictive performance on constitutive proteasomal data compared to PCPS, but 
similar performance compared to NetChop 3.1 (Figure 3). When applied to immuno-proteasomal data, 
our model compared similarly to both PCPS and NetChop 3.1, acknowledging limited statistical power to 
detect a difference given the small sample size (Figure 4; Supplementary Table S2).  
 

Epitope-based cleavage prediction  

To better interrogate in vivo proteasomal cleavage, we identified 357,253 naturally processed 
human and mammalian class I epitopes from publicly available data (Table 2). Using a deep learning 
framework, we trained a consensus based neural network on amino acid sequence and physical properties 
to predict epitope C-terminal cleavage events, independent of proteasome type (Supplementary Figure 
S1). Performance of our deep learning model was compared across all odd window sizes ranging from 7 
amino acids to 21 amino acids, with windows centered on the cleavage site as described above 
(Supplementary Table S4). When applied to testing data, the model trained on 17 amino acid windows 
performed significantly better than the model trained on 7 amino acid windows; however increasing 
window size beyond 17 amino acids did not improve performance further. We additionally studied the 
influence of model complexity, finding that the consensus-based deep learning approach performed 
better than a more simplistic random forest model trained using the same window size (DeLong’s T-test, 
p = 0.021).  We therefore report and discuss results from the consensus-based model (pepsickle) using 
17 amino acid windows hereafter.  

We assessed performance of the pepsickle epitope model on an independent validation set. 
This dataset consisted of 7,951 examples not replicated in either the training or testing datasets used 
previously. When applied to this validation data, our deep learning-based ensemble net achieved an AUC 
of 0.878, representing a significant improvement in AUC over the corresponding performances of existing 
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tools including NetChop 3.1, PCPS, and PCleavage collectively (Figure 5). In addition, pepsickle showed 
better recall and F-1 score than the other models compared (Supplementary Table S5).  

 

Computational performance of pepsickle   

 In addition to predictive ability, we also assessed the computational speed of pepsickle, for both in 
vitro and epitope-based cleavage predictions. Using a list of all protein sequences in the human proteome 
as a benchmark dataset (n=113,576, including all isoforms and computationally predicted sequences), 
pepsickle was able to achieve a total processing time of 154m 46s for in vitro predictions (approximately 
124 milliseconds per 1,000 predictions) and 158m 21s for epitope predictions (approximately 127 
milliseconds per 1,000 predictions) (Supplementary Table S7). These times were compared to NetChop 
3.1, run in an identical, controlled computing environment. We found that pepsickle is 68.5% faster 
for in vitro cleavage predictions (154m 46s v. 260m 50s) and 242% faster for epitope-based predictions 
(158m 21s v. 542m 40s) compared to NetChop 3.1.   

  

In vitro digestion and in vivo epitope-based models differ in prediction performance, but with similar 
feature importance   

Given the substantial differences between sources of training data for both in vitro digestion and 
in vivo epitope-based models, we next sought to evaluate commonalities in the learned feature sets by 
evaluating cross-performance of our in vitro model on epitope validation data. Acknowledging that 
epitope-based data is implicitly subject to multiple components of the antigen processing pathway 
following proteasomal cleavage73, we evaluated the accuracy of the in vitro model exclusively on positive 
cleavage examples from the in vivo epitope validation set (i.e., all positive examples must have necessarily 
undergone proteasomal cleavage). Based on this metric, our in vitro constitutive model was able to 
correctly identify 69.9% of the cleavage events observed in the epitope validation set, while our 
immunoproteasome model was able to correctly identify 54.5%. Performance by both in vitro models on 
this data is substantially lower than the performance of the original epitope-based model, which was able 
to capture 82.8% of true cleavage events.   

Because cross-data assessments for both in vitro models represent a substantial performance 
decrease compared to assessment on like-kind data, we sought to further qualify the distinct 
commonalities and differences between in vitro digestion and in vivo epitope-based datasets. Using 21 
amino acid windows, we compared both training sets to a set of all possible 21 amino acid windows from 
the human proteome. By overlapping UMAP projections of the windows sampled in the in vivo epitope 
set with those generated by the human proteome, we were able to visually demonstrate that the majority 
of the sample space constituted by the human proteome was sampled; however substantial portions were 
not sufficiently sampled in the in vitro dataset (FIGURE 6). Similarly, the underlying density distribution for 
samples in the in vitro dataset differed substantially from that seen in both the in vivo dataset and human 
proteome background (Supplementary Figure S2).   

To further investigate whether differences in the training set representations altered the learned 
features for each prediction model, we plotted the feature importance for both our in vivo and in vitro 
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models (Supplementary Figure S3; Supplementary Figure S4). Acknowledging that model weights are not 
directly comparable, we found that similar patterns of amino acid physical properties identified cleavage 
sites across both models: in particular, molecular volume and hydrophobicity at the C-terminal amino acid, 
as well as the relatively higher importance of conformational entropy at the ‘1 position and polarity at the 
‘2 position compared to other features at the same locations.   

  

Proteasomal cleavage predicts epitope-specific immune responses -   

 We next assessed the potential additive contribution of our model to predicting epitope-specific immune 
responses in real-world patient data. We identified 762 candidate epitopes from three studies with 
extensive immunoprofiling data: 1) the Ott et al. patient-specific melanoma vaccine study 69, 2) the MuPeXI 
neoepitope prediction study 70, and 3) a large scale neoepitope prediction benchmarking effort from the 
Tumor Neoantigen Selection Alliance (TESLA) 71. From these studies, we identified 45 epitopes that elicited 
an immune response, as well as 717 non-responsive epitopes.  

Using the pepsickle epitope-based cleavage model, we predicted C-terminal cleavage 
probability for all predicted epitopes regardless of corresponding immune response status (FIGURE 7). We 
demonstrated that the median terminal cleavage probability is significantly higher for immune responsive 
epitopes compared to those that were predicted but did not elicit an immune response (Wilcoxon ranked 
sum test, p = 0.036). Despite the heavy pre-selection of these epitopes using a collection of predictive 
methodologies, we find that pepsickle based cleavage prediction (≥ 25th percentile threshold) 
significantly enriched the proportion of immune responsive epitope candidates with 40% of responsive vs. 
24.4% of non-responsive candidates falling in the top quartile (𝜒1

2= 4.86, p = 0.027). This represents a 
59.6% increase in the positive predictive value after cleavage-based filtering. Notably, we find that 
cleavage predictions for two studies follow the trend seen in the aggregate data 69,71, but the third study 
does not 70. While this heterogeneity warrants further investigations, these findings suggest that even 
when used as a post-hoc filter, pepsickle based cleavage predictions may help improve the 
identification of patient-specific, immune-responsive neoepitopes.  

 

Discussion:  

 To the best of our knowledge, the data aggregated for this study represents the largest compilation of in 
vitro and in vivo cleavage events to date. Applying machine and deep learning techniques to this data, we 
have improved upon the current state of the field by developing an in vivo model of proteasomal cleavage 
prediction with improved performance (AUC) over currently available tools. In addition, we have created 
an in vitro model with performance comparable to the current best-in-class model, NetChop 3.1, but with 
significantly decreased computational costs and the ability to differentiate between immunoproteasome 
and standard proteasome cleavage profiles. Although further investigation is needed, application of our 
in vivo model to patient-derived neoepitope data suggests that including cleavage information in epitope 
prediction may improve novel target identification and may be a key component missing from the majority 
of current prediction tools. This is consistent with recent evidence demonstrating the value of 
incorporating proteasomal cleavage predictions into epitope prediction pipelines 74.  
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Despite pepsickle’s promising performance using both in vivo and in vitro models, we note 
several limitations to our work. The primary challenge given the structure of the in vivo data, is that non-
cleavage events must be determined heuristically. Although we use stringent filtering criteria throughout 
our pipeline, accurate negative examples are reliant on sufficient sampling of true cleavage events and 
may be biased by lack of reporting for less studied portions of the proteome. While we did not see 
evidence that our models learned features unrelated to cleavage, such as MHC binding 75, it remains 
possible that these and other latent biological features may have been partially learned by our models in 
addition to true cleavage-specific features (Supplementary Figure S3; Supplementary Figure S4). 
Additionally, our in vitro models are based on relatively small datasets with heterogeneous experimental 
methodologies, and only a small subset cleanly evaluate the respective roles of the constitutive and 
immunoproteasomes on the same source proteins. For both in vivo and in vitro data, poor sampling from 
some regions of the proteome is also of concern, due at least in part to a scientific focus on proteins 
relevant for cancer and autoimmunity, as well as the experimental limitations of mass spectrometry 76. 
Finally, while the data suggests our model should perform well on previously unseen data, the 
discrepancies seen in model application to per-study immune response data raise questions of broader 
generalizability in certain applied contexts.  

 Pepsickle provides a promising, open-source, tool for proteasomal cleavage prediction, which may be 
implemented on its own or otherwise integrated into existing epitope prediction pipelines. Given the 
recent successes and increasing emphasis on developing and deploying mRNA-based vaccines for 
individual patients 77 and whole populations 3,78, any concrete improvements in the accuracy of these 
epitope prediction pipelines could carry transformative clinical value. We also note that an improved 
capacity to predict proteasomal cleavage could contribute to our understanding of protein turnover and 
recycling in healthy and diseased contexts 79,80 and lead to improvements in rational protein design 81.  

 The performance and potential of pepsickle described in this text are encouraging, however 
many questions remain unanswered. The heterogeneity of C-terminal cleavage profiles seen in our study 
specific pepsickle application raises the question of whether cleavage prediction is universally helpful 
in target identification, or if specific study or design contexts are required to see benefit from cleavage 
predictions. In addition, whether or not there is an impact of using proteasomal prediction ad-hoc (via 
integration with existing neoepitope prediction pipelines 82,83) vs. post-hoc remains to be seen. Application 
of pepsickle to more patient derived data in the future will help us better understand the broader 
potential of applying cleavage prediction in this space, with the potential for broad implications in the 
research and clinical communities.   

 

 

Data Access: 

Source code is available at https://github.com/pdxgx/pepsickle-paper under the Massachusetts Institute 
of Technology (MIT) license, including data extracted from primary literature  
(https://github.com/pdxgx/pepsickle-paper/tree/master/data/raw)  and scripts for parsing public 
databases mentioned herein (https://github.com/pdxgx/pepsickle-
paper/tree/master/scripts/database_pulls).   
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Figure 1. Protein degradation by the constitutive and immunoproteasome. Proteins trafficked to the 
proteasome complex are fed into the main 20S barrel, with the assistance of 19S caps (blue) that aid with 
unfolding and linearization. The catalytic domains of the standard  𝜷-rings (pink) constituting the 20S 
barrel cleave the protein sequence and generate the resulting digested peptide fragments. In select 
tissues, exposure to interferon gamma (IFN-𝛾) results in replacement of the standard catalytic domains by 
alternative “immuno” catalytic domains (green). This transition in catalytic domain usage constitutes the 
construction of the immunoproteasome and may alter cleavage site preference. The differential digestion 
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pattern of a single protein sequence (multi-colored) is depicted below the corresponding proteasome 
complex.  
 

  
  
Figure 2. Comparison matrix of available proteasomal cleavage tools and their features. Eight 
proteasomal cleavage tools are shown (columns) along with their corresponding features (rows). Specific 
tools are as follows: pepsickle (presented here), NetChop 3.1 10, the Proteasomal Cleavage Prediction 
Server (PCPS) 64, PCleavage 65, MAPPP 66, PAProC 67, and the random forest-based model described in Li et 
al. 68 Check marks (green) represent available features for each tool while X’s (red) represent unavailable 
features. Warning signs (yellow) represent missing information, or features that are mentioned but not 
currently available. For MAPPP, the referenced web server is no longer available and therefore we were 
unable to confirm tool features. For PaPRoC, we were unable to obtain the model despite repeated 
requests. For the random forest model proposed by Li et al., model weights for the proposed model are 
given, but source code is not available and the type of cleavage sites used (in vivo vs. in vitro) are 
undefined.  
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Table 1. Summary of in vitro data. All data used for training, testing, and validating in vitro models is 
summarized above. Fragments represent the number of cleavage by-products reported in each primary 
literature source, with the number in parentheses representing the number of whole proteins or pre-
digestion protein fragments used in each study. Proteasome type(s) denotes what proteasome was 
queried during experimentation with “constitutive” and/or “immuno” denoting isolated contexts, while 
“mixed” denotes testing in a non-isolated/heterogenous proteasomal context.   
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Figure 3. Performance comparison of cleavage prediction models on constitutive proteasome data. 
Receiver operating characteristic (ROC) curves are shown for each of three cleavage prediction models, as 
denoted in legend, with corresponding area under the curve (AUC) values reported in parentheses. 
Sensitivity (y-axis) and specificity (x-axis) were both evaluated using a validation set (n = 171) consisting of 
80 cleavage and 91 non-cleavage in vitro examples not seen during the training or testing of our models 
(see Methods). For pepsickle (our model) and PCPS, the constitutive proteasome models with default 
settings were used. For NetChop 3.1, the in vitro model was used with default settings (no specification is 
available for proteasome type). PCleavage was omitted from this comparison due to restrictions on 
window sizes and the inability to process the full set of validation examples. Statistical pairwise 
comparisons of ROC curves (Delong’s tests) are shown in corresponding table values (Z-score), with 
significance reported as p-values after Benjamini-Hochberg correction for multiple comparisons.  
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Figure 4. Performance comparison of cleavage prediction models on immunoproteasome data. Receiver 
operating characteristic (ROC) curves are shown for each of three cleavage prediction models, as denoted 
in legend, with corresponding area under the curve (AUC) values reported in parentheses. Sensitivity 
(yaxis) and specificity (x-axis) were both evaluated using a validation set (n = 54) consisting of 36 cleavage 
and 18 non-cleavage in-vitro examples not seen during the training or testing of our models (see 
Methods). For pepsickle (our model) and PCPS, the immunoproteasome models with default settings 
were used. For NetChop 3.1, the in vitro model was used with default settings (no specification is available 
for proteasome type). PCleavage was omitted from this comparison due to restrictions on window sizes 
and the inability to process the full set of validation examples. Statistical pairwise comparisons of ROC 
curves (Delong’s tests) are shown in corresponding table values (Z-score), with significance reported as 
pvalues after Benjamini-Hochberg correction for multiple comparisons.  
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Table 2. Summary of Epitope Data Sources.  Sources of epitope data used for training, testing, and 
validation. 
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Figure 5. Performance comparison of cleavage prediction models on epitope data. Receiver operating 
characteristic (ROC) curves are shown for each of four cleavage prediction models, as denoted in legend, 
with corresponding area under the curve (AUC) values reported in parentheses. Sensitivity (y-axis) and 
specificity (x-axis) were both evaluated using a validation set (n = 7,951) consisting of 3,566 cleavage and 
4,385 non-cleavage epitope examples not seen during the training or testing of our models (see Methods).  
Default epitope-based models were used for pepsickle (our model), Netchop 3.1, and PCleavage 
predictions, while constitutive model predictions from the default model 1 were used for PCPS (PCPS 
immuno-proteasome predictions were inferior and therefore omitted). Statistical pairwise comparisons 
of ROC curves (Delong’s tests) are shown in corresponding table values (Z-score), with significance 
reported as p-values after Benjamini-Hochberg correction for multiple comparisons.  
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Figure 6. Training set projections in UMAP space. Amino acid windows (21 residues long) were generated 
for the whole human proteome (gray), all epitope training examples (blue), and all 20S training examples 
(green). Principle components were generated from the physical properties of each amino acid at each 
window position. UMAP projections were generated from the first 10 principal components.  
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Figure 7. C-terminal cleavage predictions on patient neoepitopes. Predicted neoepitopes from three 
studies were accumulated. Cleavage predictions at the C-terminus of each epitope were generated using 
pepsickle and plotted, with predicted epitopes divided based on whether or not they elicited an 
immune response. Box plot results are shown in aggregate (left) as well as on a per-study basis (right) with 
values indicating median (horizontal black lines), 25-75%ile (box), and range (“whiskers”), and with colors 
corresponding to the study origin (green = MuPeXI, orange = Ott et al., magenta = TESLA).    
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Figure 8. Generation of the in vitro dataset. Each identified cleaved peptide fragment (red) was mapped 
back to its source sequence (gray). Using the C-terminus of the fragment, as well as the amino acid prior 
to the N-terminus of the fragment as cleavage sites (green, with each of their respective downstream 
bonds cleaved by the proteasome), cleavage windows (blue) were generated using 3 amino acids 
upstream and downstream of the cleavage sites identified. Candidate non-cleavage windows (yellow) 
were generated using the same windowed approach on internal amino acids within the epitope. Before 
candidate negatives were included in the dataset, they were screened against all positive identified 
cleavage sites from both N- and C- termini of reported fragments. Note that * indicates the lack of an 
amino acid (i.e. amino acid position is beyond the peptide terminus).  
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Figure 9. Generation of the epitope dataset. Each identified epitope (red) was mapped back to its source 
sequence. Using the C-terminus of the epitope as the cleavage site (green), with the downstream bond as 
the one cleaved by the proteasome), cleavage windows (blue) were generated using 8 amino acids up and 
downstream from the site identified. Candidate non-cleavage windows (yellow) were generated using the 
same windowed approach on internal amino acids within the epitope, with the exclusion of the first two 
and last two amino acids which served as a buffer region to account for minimum proteasomal fragment 
size. Before candidate negatives were included in the dataset, they were screened against all positive 
identified cleavage sites as well as against a set of potential upstream cleavage sites (gray); generated by 
using the same windowed approach on the upstream window that could encapsulate the N-terminal 
cleavage site prior to ERAP trimming.   
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