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 17 

Sleep is generally considered to be a state of large-scale synchrony across thalamus and 18 

neocortex; however, recent work has challenged this idea by reporting isolated sleep 19 

rhythms such as slow-oscillations and spindles. What is the spatial scale of sleep 20 

rhythms? To answer this question, we adapted deep learning algorithms initially 21 

developed for detecting earthquakes and gravitational waves in high-noise settings for 22 

analysis of neural recordings in sleep. We then studied sleep spindles in non-human 23 

primate ECoG, human EEG, and clinical intracranial recordings (iEEG) in the human. We 24 

find a widespread extent of spindles, which has direct implications for the spatiotemporal 25 

dynamics we have previously studied in spindle oscillations (Muller et al., 2016) and the 26 

distribution of memory engrams in the primate. 27 

 28 

Consolidation of long-term memories requires precise coordination of pre- and post-synaptic 29 

spikes across neocortex. New memories are transferred from hippocampus to neocortex for long-30 

term storage (McClelland et al., 1995; Rasch and Born, 2007), where interconnections within a 31 

sparse, distributed neuron group are strengthened until their activity becomes hippocampus-32 

independent (Frankland and Bontempi, 2005). Computational studies have identified neural 33 

oscillations as a potential mechanism to regulate synaptic plasticity (Masquelier et al., 2009; Song 34 
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et al., 2000) and create precise spike timing (Cassenaer and Laurent, 2007; Muller et al., 2011). 35 

Further, experiments have shown that the stage 2 sleep “spindle” oscillation influences spiking 36 

activity (Contreras and Steriade, 1995; Kandel and Buzsáki, 1997; Peyrache et al., 2011) and 37 

causally contributes to sleep-dependent consolidation of long-term memory (Mednick et al., 38 

2013). It remains unclear, however, precisely how this rhythm can coordinate activity across areas 39 

in neocortex for synaptic plasticity and long-term storage to occur. 40 

 41 

While early recordings in anesthetized animals (Andersen et al., 1967; Contreras et al., 1996) and 42 

human EEG (Achermann and Borbély, 1998) indicated that sleep spindles generally occur across 43 

a wide area in cortex, creating a state of large-scale synchrony (Sejnowski and Destexhe, 2000; 44 

Steriade, 2003), recent work in intracranial recordings from human clinical patients has 45 

challenged this idea by reporting isolated, “local” sleep spindles (Andrillon et al., 2011; Nir et al., 46 

2011; Piantoni et al., 2016; Sarasso et al., 2014, but see Frauscher et al., 2015). Because spindles 47 

are intrinsically related to sleep-dependent consolidation of long-term memory (Clemens et al., 48 

2005; Gais et al., 2002; Mednick et al., 2013), this difference in reported spatial extent of the 49 

spindle raises an important question for the organization of engrams established through sleep-50 

dependent memory consolidation. Recent evidence using cFos mapping in animal models 51 

suggests these engrams are distributed widely across brain areas (Kitamura et al., 2017; Roy et 52 

al., n.d.), which is consistent with previous imaging evidence in the human (Brodt and Gais, 2020; 53 

Wheeler et al., 2000). Taking these points together, we reasoned that widespread, multi-area 54 

spindles may occur more often than previously reported in primate and human cortex. If this were 55 

the case, these widespread spindles could provide the mechanism needed to link populations 56 

distributed widely across the cortex for sleep-dependent memory consolidation. 57 

 58 

Plasticity of long-range excitatory connections linking distant neuron groups occurs through spike-59 

time dependent plasticity (STDP) (Bi and Poo, 1998; Markram et al., 1997), for which presynaptic 60 

vesicle release and postsynaptic spiking must occur with a precision of a few milliseconds (Magee 61 

and Johnston, 1997). Long-range synaptic connections in cortex result primarily from excitatory 62 

pyramidal neurons (Schüz and Braitenberg, 2002; Sholl, 1956), and these connections could 63 

provide a link among local networks representing pieces of a memory in different brain regions. 64 

The key missing piece is to understand how spindles can guide specific long-range excitatory 65 

connections to strengthen during sleep-dependent memory consolidation. We thus hypothesized 66 

that widespread, multi-area spindles might provide this mechanism. 67 

 68 
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Reliably detecting individual spindles in noisy sleep recordings, however, is challenging. Spindle 69 

oscillation amplitudes differ across regions in cortex (Frauscher et al., 2015). Furthermore, 70 

oscillation amplitudes may differ significantly across recording sites simply due to variation in 71 

electrode properties (Kappenman and Luck, 2010; Nelson and Pouget, 2010). For these reasons, 72 

we reasoned that fixed amplitude thresholds, which are a technique common across methods for 73 

spindle detection, may only detect the largest amplitude events, potentially leading to an 74 

underestimation of spatial extent. To address this question, we adapted deep learning algorithms 75 

initially developed for detecting earthquakes (Perol et al., 2018) and gravitational waves (George 76 

and Huerta, 2018) in high-noise settings to analysis of neural recordings in sleep. We studied 77 

sleep spindles in macaque non-human primate (NHP) electrocorticogram (ECoG), human 78 

electroencephalogram (EEG), and, finally, clinical intracranial electroencephalogram (iEEG) 79 

recordings, which provide a window into the circuits of the human brain at one of the highest 80 

spatial resolutions possible (Lachaux et al., 2012; Mukamel and Fried, 2012). Our approach, 81 

which detects a range of clearly formed large- and small-amplitude spindles during sleep, reveals 82 

that the spatial extent of spindles, defined here in terms of co-occurrence across electrode sites, 83 

is widely distributed over a broad range of cortex. In particular, multi-area spindles are much more 84 

frequent than previously estimated by amplitude-thresholding approaches, which tend to select 85 

only the highest-amplitude spindles and could miss events that transiently fall below threshold. 86 

Importantly, these results were additionally verified using a signal-to-noise ratio (SNR) approach 87 

(Muller et al., 2016), which is a conservative but approximately amplitude-invariant technique 88 

closely related to the constant false alarm rate (CFAR) method used in radar (Richards, 2005). 89 

Lastly, in human sleep EEG after low- and high-load visual working memory tasks, our method 90 

detects an increase in regional and multi-area spindles uniquely following a high-load visual 91 

memory task. Taken together, these results provide substantial evidence of a specific role for 92 

spindles in linking neuron groups distributed widely across cortex during memory consolidation. 93 

 94 

Sleep recordings from both human and NHP were obtained from electrodes ranging from the 95 

traditional scalp EEG to invasive intracranial EEG electrodes (Figure 1a). To verify the quality of 96 

spindles detected by our convolutional neural network (CNN) model (Figure 1c), we first compute 97 

average power spectral densities (PSDs) over spindle and non-spindle windows. The average 98 

PSD of detected spindle events shows an increase in the 11-15 Hz spindle frequency range (red 99 

lines, Figure 1b), while non-spindle events do not show a corresponding increase (black lines, 100 

Figure 1b). Spindles detected by the CNN are well-formed, consistent with standard morphology 101 

(Loomis et al., 1935; Newton Harvey et al., 1937; Silber et al., 2007) (Figure 1d), and in 102 
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agreement with previously observed durations (0.69 ± 0.004 seconds, NHP ECoG; 0.87 ± 0.006 103 

seconds, EEG; 0.74 ± 0.003 seconds, iEEG) (Fernandez and Lüthi, 2020; Takeuchi et al., 2016; 104 

Warby et al., 2014). To further validate spindles detected by the CNN, we designed a time-shifted 105 

averaging approach for application to recordings with only a 1 Hz highpass filter applied (thus 106 

excluding any potential effects from lowpass filtering). To do this, we collected signals from 107 

detected spindles, filtered at a 1 Hz highpass, time-aligned the events to the largest positive 108 

value within the detected window (corresponding to a positive oscillation peak), and then 109 

computed the average across aligned events. With this approach, the average over detected 110 

spindles exhibited clear 11-15 Hz oscillatory structure (black line, Supplementary Figure 1), while 111 

no oscillatory structure is observed when averaging over time-matched randomly selected non-112 

spindle activity (dashed red line, Supplementary Figure 1). This result demonstrates that spindles 113 

detected by the CNN exhibit the correct structure even in a mostly raw, unprocessed signal with 114 

no lowpass filtering applied. Finally, we compared the amplitude distribution of spindles detected 115 

by the CNN and amplitude-thresholding (AT) approach. In the intracranial recordings (ECoG and 116 

iEEG), AT detects a subset of spindles that are significantly higher-amplitude than those 117 

detected by the CNN (p < 0.02, NHP ECoG recordings; p < 1 x 10-14; iEEG recordings, one-sided 118 

Wilcoxon signed-rank test; n.s. in EEG), consistent with the expectation that AT will select the 119 

largest amplitude events. The CNN, however, can find well-formed spindles that are both large 120 

and small in amplitude (Supplementary Figure 2). This improved resolution allows us to study 121 

the spatial extent of spindles in an approximately amplitude-invariant manner. 122 

 123 

What is the spatial extent of spindle oscillations across cortex? To answer this question, we 124 

studied the distribution of simultaneously detected spindles across recording sites. We defined 125 

three classes of spindles based on co-occurrence across recording sites: local (1-2 sites), regional 126 

(3-10 sites), and multi-area (more than 10 sites). We noted our CNN approach detected many 127 

spindles with electrode sites distributed widely across the cortex (Figure 2a). By taking the unique 128 

cortical regions covered by the electrodes into account, we verified these were multi-area spindle 129 

events (Figure 2b). We then compared spindles detected by the CNN and AT approaches. To do 130 

this, we computed the ratio of spindles detected by the CNN and AT for all classes. This 131 

comparison revealed multi-area spindles were systematically detected approximately 1.5 (ECoG) 132 

to 10 (iEEG) times more often with the CNN than with the AT (Figure 2c and Supplementary 133 

Figure 3). Across all recordings, the increase in the multi-area spindles detected by the CNN was 134 

significantly greater than in the local spindles (p < 1 x 10-3, NHP ECoG recordings; p < 1 x 10-6, 135 

EEG recordings; p < 0.02, iEEG recordings, one-sided Wilcoxon signed-rank test; similar results 136 
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for the local-regional comparison, p < 0.01, EEG recordings; p < 0.02, iEEG recordings, one-sided 137 

Wilcoxon signed-rank test, n.s. in NHP ECoG). Taken together, these results demonstrate that 138 

spindles appear much more widespread across cortex when detected using our approximately 139 

amplitude-invariant deep learning approach. 140 

 141 

The organization of spindles across the cortex is thus neither fully local nor fully global: the co-142 

occurrence patterns of this sleep rhythm contain a mixture of local and widespread events. If this 143 

is the case, what is the impact of the distribution on sleep-dependent memory consolidation? To 144 

answer this question, we further studied the human EEG dataset, which had the unique feature 145 

of testing sleep after tasks with varying memory loads. Briefly, before nap EEG recordings, 146 

subjects completed a task in which five novel outdoor scenes (high visual working memory, H-147 

WM) or two novel outdoor scenes (low visual working memory, L-WM) were required to be held 148 

in working memory for six seconds (Figure 3a). After the delay period, subjects were then 149 

presented with a subsequent visual scene and asked whether it belonged to the previously 150 

presented set. In each case (H-WM and L-WM), trials were balanced so that the same total 151 

number of visual scenes was presented before sleep. An increase in spindle density after memory 152 

tasks and its relationship with memory consolidation is well established (Clemens et al., 2005; 153 

Dang-Vu et al., 2008; Gais et al., 2002; Schabus et al., 2007, 2004); however, the effect of 154 

memory tasks on co-occurrence remains unknown. Considering the potential circuit mechanism 155 

for spindles to link activity in neuron groups distributed across multiple areas in cortex through 156 

long-range excitatory connections (Muller et al., 2016), we then hypothesized sleep following 157 

high-load visual memory tasks would exhibit more multi-area spindles and a larger spatial extent. 158 

To test this hypothesis, we first confirmed that amplitudes of detected spindles did not differ across 159 

L-WM and H-WM conditions (p > 0.77, Wilcoxon signed-rank test). We then computed the rate of 160 

multi-area spindles after L-WM and H-WM tasks. Both regional and multi-area spindles appeared 161 

more often after H-WM than L-WM (p < 0.032, regional spindles; p < 0.006, multi-area spindles; 162 

one-sided paired-sample t-test) as detected by the CNN model, consistent with our hypothesis 163 

(Figure 3b). Similarly, the largest increases following H-WM versus L-WM were observed in the 164 

subset of regional and multi-area spindles detected by the more-conservative SNR approach 165 

(Supplementary Figure 4a); however, no increase in multi-area spindles was observed with the 166 

AT algorithm (Supplementary Figure 4b). 167 

 168 

In this work, we have studied sleep spindles from human and NHP sleep recordings. To analyze 169 

these recordings, we adapted newly developed deep learning approaches for detecting rhythmic 170 
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events in high-noise data (George and Huerta, 2018; Perol et al., 2018). We validated this 171 

approach through a series of control analyses and comparison to the subset of spindles detected 172 

by a similarly amplitude-invariant but more-conservative SNR algorithm. We found that large, 173 

multi-area spindles, where more than 10 electrode sites exhibit this rhythm simultaneously, are 174 

much more prevalent than previously estimated by amplitude-thresholding approaches (Andrillon 175 

et al., 2011; Nir et al., 2011; Piantoni et al., 2016; Sarasso et al., 2014), which tend to select only 176 

the highest-amplitude events.  177 

 178 

While it has become increasingly clear that sleep spindles play an active and causal role in sleep-179 

dependent memory consolidation (Aton et al., 2014; Clemens et al., 2005; Eschenko et al., 2006; 180 

Gais et al., 2002; Mednick et al., 2013; Rasch and Born, 2013), it remains unclear how these 181 

oscillations coordinate activity across areas to drive formation of strong neocortical assemblies 182 

distributed over long distances (Klinzing et al., 2019). Episodic memories often contain a detailed 183 

multisensory scene (Horner and Burgess, 2013; Tulving, 1983), and the activity patterns 184 

associated with these memories recruit distributed representations from association to primary 185 

sensory areas (Horner et al., 2015; Wheeler et al., 2000). In recent work, we found that sleep 186 

spindles can be organized into large-scale waves rotating across neocortex (Muller et al., 2016), 187 

and we hypothesized that these waves could provide a mechanism by which long-range excitatory 188 

connections between distant populations in cortex could be strengthened during memory 189 

consolidation in sleep. This potential mechanism for memory consolidation is interesting in light 190 

of recent research showing wide distribution of memory engrams (Kitamura et al., 2017; Roy et 191 

al., n.d.) and experience-dependent myelination formation in memory consolidation (Pan et al., 192 

2020; Wang et al., 2020), both of which are consistent with the development of distributed 193 

assemblies across neocortex by these waves. In this work, by adapting deep learning algorithms 194 

for waveform detection in high-noise recordings (George and Huerta, 2018; Perol et al., 2018), 195 

we have found that large-scale, multi-area spindles occur much more often than previously 196 

reported. Following these observations, we then hypothesized that large, multi-area spindles 197 

exhibit an increase following high-load memory tasks. Consistent with this hypothesis, both the 198 

CNN and SNR methods detect an increase in multi-area spindles uniquely following high-load 199 

memory tasks. These results thus provide a specific neural mechanism by which memories can 200 

be stored in distributed neocortical networks during sleep. 201 
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Figure 1. (a) Electrode placement of multichannel ECoG recordings of two macaques (top), high-203 

density scalp EEG used for recordings after high and low visual memory tasks (middle), and 204 

example iEEG contacts in a human clinical patient (bottom). (b) Average power spectral density 205 

estimate for spindle windows detected by the CNN model (red) and matched non-spindle windows 206 

(black), illustrating the nearly 10 dB increase within the 11–15 Hz spindle band in NHP ECoG 207 

recordings (top), human EEG recordings (middle), and human iEEG recordings (bottom). Power 208 

at line noise frequency omitted for clarity. (c) The architecture of the CNN model developed for 209 

spindle detection. (d) Examples of detected spindles by the CNN model (red) in NHP ECoG 210 

recordings (top), human EEG recordings (middle), and human iEEG recordings (bottom).  211 

  212 
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 213 
Figure 2. Distribution of the extent of spindles detected by CNN and AT approaches. (a) An 214 

example of a widespread, multi-area spindle with electrode sites distributed widely across the 215 

cortex. Filled gray circles indicate electrode contacts in gray matter. (b) Plotted is the percentage 216 

of unique recorded cortical regions with spindles detected by the CNN in the local versus multi-217 

area case across all subjects in the iEEG recordings (average ± SEM). (c) Plotted are the ratios 218 

of spindles detected by the CNN and AT in NHP ECoG recordings (left), human EEG recordings 219 

(middle), and iEEG recordings (right) in local (1-2 sites), regional (3-10 sites) and multi-area 220 

(more than 10 sites) spindle classes (average ± SEM in all cases). Across recordings, the increase 221 

in regional and multi-area spindles detected by the CNN is significantly larger than for the local 222 

spindles (except local vs. regional in the NHP ECoG). 223 
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 224 
Figure 3. Impact of visual memory load on sleep spindle occurrence. (a) Schematic 225 

representation of low and high visual working memory tasks. (b) Average number of spindles 226 

detected per minute in high versus low visual working memory condition. Spindles are grouped 227 

into local (left), regional (middle) and multi-area (right) classes detected by the CNN model. A 228 

significant increase in the number of spindles among subjects can be observed in multi-area and 229 

regional spindles as opposed to local spindles (p > 0.34, local spindles; p < 0.032, regional 230 

spindles; p < 0.006, multi-area spindles; one-sided Wilcoxon signed-rank test). 231 

 232 

 233 

 234 

  235 
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Methods 236 

 237 

Recordings. We study performance of the CNN model across three sleep datasets obtained from 238 

electrodes ranging from traditional scalp EEG to invasive intracranial depth electrodes. These 239 

datasets represent recordings from very different electrode types, which vary widely in resolution 240 

and signal-to-noise ratio. Training the CNN model in the same way over these very different 241 

recordings demonstrates the generality of the framework developed here; further, these results 242 

also represent a cross-species comparison of sleep-rhythm dynamics in NHP and human 243 

neocortex. 244 

 245 

The first dataset contains electrocorticographic (ECoG) recording from most of the lateral cortex 246 

in two macaques during natural sleeping conditions (Yanagawa et al., 2013). Recordings were 247 

obtained from 128 electrodes in both monkeys and sampled at 1 kHz by a Cerebus data 248 

acquisition system (Blackrock Microsystems, Salt Lake City, UT, USA). The quality of sleep was 249 

studied by the degree of spatial synchronization in slow wave oscillations and significant increase 250 

in delta power was reported in sleep condition versus waking activity. This dataset was recorded 251 

and distributed by Laboratory for Adaptive Intelligence, BSI, RIKEN and was made freely available 252 

at http://neurotycho.org/sleep-task. 253 

 254 

The second dataset contains high-density scalp electroencephalography (EEG) recording from 255 

20 healthy participants (Mei et al., 2018). Each participant participated in two separate sessions 256 

and completed a high- and low-load visual working memory task. The recordings were obtained 257 

during naps following the working memory tasks from a 64-electrode EEG skull cap and sampled 258 

at 1 kHz. The recordings were reviewed and stage 2 sleep was manually annotated by an expert 259 

to verify quality of sleep recordings. Ultimately, sleep recordings that did not reach stage 2 sleep 260 

or were too noisy were excluded from the study. Under these criteria, four subjects were excluded 261 

(subject 12, 20, 26 and 27). In addition, the recordings were common average referenced (CAR) 262 

to remove large artifacts with potentially non-neural origin. These recordings were made freely 263 

available at the Open Science Framework through the link https://osf.io/chav7. 264 

 265 

The last dataset contains intracranial electroencephalography (iEEG) recordings from 5 epileptic 266 

patients in the Epilepsy Monitoring Unit (EMU) at London Health Sciences Centre (LHSC). 267 

Patients were implanted using depth electrodes for the sole purpose of surgical evaluation. 268 

Informed consent was collected from the patients in accordance with local Research Ethics Board 269 
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(REB) guidelines. Each patient was implanted with 9 to 14 iEEG electrodes located across the 270 

cortex with up to 10 contacts in gray or white matter (Supplementary Table 1). The iEEG signals 271 

were recorded continuously for a duration of 7 to 14 days for the purpose of seizure localization. 272 

We use clinically annotated sleep onsets and study half an hour recording starting from the 273 

beginning of the sleep/nap cycles in electrode contacts located within gray matter.  274 

 275 

Signal-to-noise ratio (SNR) measure for sleep spindle detection. To specify a subset of 276 

spindles required to train our convolutional neural network (CNN) model, we implemented a 277 

modified version of signal-to-noise ratio (SNR) algorithm (Muller et al., 2016). This algorithm, 278 

which is inspired by the adaptive, constant-false-alarm-rate (CFAR) technique in radar, was used 279 

to detect narrow-band rhythmic activities. We measure the ratio of power within the frequency 280 

band of interest (here, 9-18 Hz) to power in the rest of the spectrum (1-100 Hz bandpass, with 281 

band-stop at 9-18 Hz) at each electrode. The SNR measure is computed over a sliding window 282 

of time (500 ms) and produces an estimate of how power in the frequency band of interest 283 

compares to total power in the recording, taking into account the noise on individual electrodes. 284 

We then used the SNR algorithm to produce high-quality training samples for the CNN model. To 285 

do this, we reduced the probability of false positives by setting the threshold to the 99th percentile 286 

of the SNR distribution, thus detecting only the activity patterns that have the highest unique 287 

power concentration in the spindle frequency range. We additionally required the SNR algorithm 288 

to only include activities with a duration between 0.5 to 3 seconds, consistent with the duration of 289 

sleep spindles. The detected windows are then used for training the CNN model.  290 

 291 

To additionally verify performance of the SNR algorithm, we implement this approach over one 292 

second recordings of a 90 by 90 array of LFPs generated by a spiking network model of cortical 293 

activity in the awake state, which does not contain the thalamic reticular loops and thalamocortical 294 

projections needed to generate sleep spindles. SNR values calculated from these data were 295 

uniformly below 0 dB, confirming the robustness of our approach in uniquely detecting spindle-296 

frequency activity through a known ground truth dataset.  297 

 298 

Convolutional neural network (CNN) for sleep spindle detection. We developed a 299 

convolutional neural network (CNN) to detect spindles activities during sleep. The model is 300 

motivated by the successful implementation of deep learning for detecting earthquakes and 301 

gravitational waves in high-noise settings (George and Huerta, 2018; Perol et al., 2018). If trained 302 

properly, it has the ability to detect hidden spindles that are being unnoticed and provides a great 303 
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opportunity to study the spatial and temporal analysis of spindle activities across the cortex. We 304 

first tested CNN models with different architectures and selected one of the best architectures 305 

across the sleep recording datasets (Figure 1c). Our CNN model is a one dimensional model with 306 

5 convolutional layers (with 32, 64, 128, 192 and 256 filters) and 4 fully connected layers (with 307 

sizes 128, 64, 32 and 2). Each convolutional layer is followed by a maxpool and rectified linear 308 

unit layers and the output of the fifth convolutional layer is gradually flattened into 2D vectors 309 

using the fully connected layers followed by rectified linear unit layers. Our classifier has an 310 

additional softmax layer at the end which returns the probability of spindle in addition to the 311 

predicted label. The CNN model takes a window of sleep recording (500 ms which is bandpass 312 

filtered at 1-100 Hz after removal of line noise and harmonics) as an input and predicts its label 313 

(spindle or non-spindle). The hyperparameters of the CNN model are optimized to minimize the 314 

difference in the predicted and actual labels determined by the SNR algorithm. 315 

 316 

Power-spectral density estimate. To verify performance of the CNN, SNR and AT approaches, 317 

we compared power spectral density (PSD) estimates of spindle and non-spindle activities 318 

(Welch’s method; Figure 1b and Supplementary Figure 5). In both cases, we first remove line 319 

noise artifacts. We then compute PSD over windows of 0.5 s with no overlap and average spectra 320 

over detected events. Matched non-spindle PSDs were estimated over a large number of 321 

randomly selected non-spindle windows. The increase in the power during the natural frequency 322 

range of sleep (~9-18 Hz) in spindle vs non-spindles activities demonstrates the ability of both the 323 

CNN model and SNR algorithm to correctly identify spindle activities. 324 

 325 

Time-shifted averaging control. As an additional control analysis, we computed average signals 326 

over detected spindles, with activity shifted to align the largest oscillation peak in the detected 327 

time window. To compute this average, we first needed to correct for the time offset between 328 

different spindles. To do this, we shifted detected spindles to the largest positive value within the 329 

detected window, corresponding to the positive potential of an individual spindle oscillation cycle, 330 

and then took the average over all time-shifted windows. The average of time-shifted signals is 331 

computed over spindle windows detected by the CNN approach, as well as matched randomly 332 

selected non-spindle windows. Importantly, while the time-shifted average clearly exhibits 11-15 333 

Hz oscillatory structure when computed over spindle events detected by the CNN, this need not 334 

be the case, as demonstrated by application of the same approach to matched non-spindle events 335 

(Supplementary Figure 1). 336 

 337 
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We also systematically studied the sensitivity of the CNN model as a function of the SNR threshold 338 

used for building the training set. To do this, we computed the time-shifted average over spindle 339 

events detected by the CNN model at different levels of the SNR threshold (Supplementary Figure 340 

6). Clear, well-formed 11-15 Hz oscillatory structure is observed in the time-shifted averages 341 

above 0 dB threshold, verifying the quality of detected spindles by the corresponding CNN 342 

models. However, the 11-15 Hz oscillatory structure starts to disappear below 0 dB because an 343 

SNR threshold below 0 dB introduces errors into the training sets by mislabeling noise signals as 344 

spindles. On the other hand, similar oscillatory shapes of time-shifted average above 0 dB 345 

confirms the ability of the CNN model to perform robustly while trained over different sets of 346 

clearly-formed spindles. 347 

 348 

Comparison with amplitude-threshold approach. The amplitude threshold (AT) approach has 349 

been used extensively in the literature to automatically detect spindles during sleep(Gais et al., 350 

2002; Nir et al., 2011). In this approach, a spindle is detected when the amplitude of the bandpass 351 

signal stays above a threshold for a limited period of time (e.g. at least 500 ms; cf. Supplementary 352 

Figure 5 in Nir et al., 2011). To implement this approach, we first bandpass filter the signal at the 353 

frequency of 11-15 Hz and then compute the root mean square (RMS) of its amplitude over a 354 

sliding window of 0.5 seconds. A spindle is detected whenever the RMS amplitude stays above 355 

the predetermined threshold for 0.5 to 3 s. To determine the most appropriate threshold for 356 

comparison to the CNN and SNR approaches, we first computed the distribution of electrode-357 

level RMS amplitude that results in approximately 2 spindles per minute and then set the overall 358 

threshold to its average across all electrodes. The quality and extent of detected spindles by the 359 

AT approach was then compared with the CNN and SNR (Figure 2c, Supplementary Figure 2, 3, 360 

4, 5 and 7). The CNN model has a relatively amplitude-invariant nature in comparison with the 361 

amplitude-thresholding (AT) approach, which is highly sensitive to a predefined cutoff amplitude 362 

threshold. The AT approaches may only select spindles with the largest-amplitude events, or 363 

could miss ones that temporarily dip below the threshold while our approach has the ability to find 364 

well-formed spindles that are both large- and small-amplitude (Supplementary Figure 2).  365 

 366 

Electrode Localization. For the purpose of electrode localization in the iEEG recordings, we 367 

developed an image processing pipeline which involves electrode contact localization, brain 368 

tissue segmentation and atlas fitting. Semi-automatic contact localization was performed in 369 

3D Slicer using the SEEG Assistant module (Narizzano et al., 2017). The entry and target 370 

points of each electrode were manually defined on the post-operative CT image. The 371 
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entry/target labels were provided to the SEEGA algorithm, which automatically segmented 372 

the electrode contacts. To obtain brain location information for each contact, brain tissue 373 

segmentation and atlas fitting was carried out. To enable the use of anatomical priors during 374 

tissue segmentation, the pre-operative T1w MRI was non-linearly registered to the MNI152 375 

2009c Nonlinear Symmetric template 376 

(https://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009) using NiftyReg (Modat et 377 

al., 2010). An anatomical mask was generated by applying the inverse transform to the T1w 378 

image using the antsApplyTransforms algorithm from Advanced Normalization Tools 2.2.0 379 

(ANTS; http://stnava.github.io/ANTs). Segmentation of gray matter, white matter, and 380 

cerebrospinal fluid was performed using the Atropos algorithm from ANTS(Avants et al., 381 

2011b), which implements k-means classification (k=3). The resulting posteriors were merged 382 

into a 4D volume using the fslmerge algorithm from FMRIB Software Library v6.0 (FSL; 383 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). The CerebrA atlas (Manera et al., 2020) was used to 384 

obtain anatomical labels for each electrode contact. Normalization to template space 385 

(MNI152NLin2009cAsym) was performed using the non-linear SyN (Avants et al., 2011a) 386 

symmetric diffeomorphic image registration algorithm from ANTS, using both the brain masks 387 

of the pre-operative T1w and template space. Using the inverse of the non-linear transform, 388 

the CerebraA atlas labels were warped to the pre-operative T1w MRI space. The atlas labels 389 

were then dilated using the fslmaths algorithm from FSL. The final T1w brain tissue/atlas 390 

segmentation was mapped to the contacts to provide location information for each contact 391 

(tissue probability and brain anatomical region). This custom processing pipeline has been 392 

made available on GitHub (https://github.com/akhanf/clinical-atlasreg). 393 

 394 

Code availability. Our custom MATLAB (MathWorks) implementations of all computational 395 

analyses, along with the analysis scripts used for this study will be made available as an open-396 

access release on GitHub (http://mullerlab.github.io).  397 
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Supplementary Figures398 

 399 
Supplementary Figure 1. Average time-shifted spindles detected by the CNN model. 400 

Examples of average signals computed over spindle windows detected by the CNN models (solid 401 

black lines) vs a subset of randomly matched non-spindle windows (dashed red lines) in NHP 402 

ECoG recordings (left), human EEG recordings (middle), and iEEG recordings (right). The 403 

average over detected spindle windows exhibits clear 11-15 Hz oscillatory structure, while no 404 

oscillatory structure is present in the average over matched non-spindle windows. The heatmaps 405 

in the background are the individual time-shifted spindle events, which demonstrate the presence 406 

of this structure in individual instances. 407 

 408 

 409 

  410 
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 411 
Supplementary Figure 2. Performance of CNN model versus AT Algorithm. (a) An example 412 

of co-occurring spindles detected by the CNN model in 11 sites. The red line is the root mean 413 

square amplitude of the signal, the green line is the amplitude threshold, and the blue line 414 

represents windows of time in which spindles were detected by the CNN model. The AT algorithm, 415 

which only detects spindle activities with amplitude above a predefined amplitude threshold for at 416 

least a duration of 0.5 sec (Nir et al., 2011) (yellow line), was not successful in detecting the 417 

majority of spindles in this example. Specifically, the AT algorithm fails to detect well-shaped 418 

spindles (detected by the CNN model) whose amplitudes temporarily drop below threshold (b) or 419 

have low amplitude (c).  420 

 421 

 422 
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 423 
Supplementary Figure 3. Distribution of the extent of spindles detected by CNN and AT 424 

approaches. Plotted is the scatter diagram of the ratio of average number of detected spindles 425 

by the CNN and AT in NHP ECoG recordings (left), human EEG recordings (middle), and iEEG 426 

recordings (right) grouped into local (1-2 sites), regional (3-10 sites), and multi-area (more than 427 

10 sites) spindle classes. Each blue dot represents the ratio of the number of spindles per minute 428 

in one sleep recording.  429 
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 430 
Supplementary Figure 4. Low and high visual memory task and its impact on sleep spindle 431 

occurrence - SNR and AT. (a) Average number of spindles detected per minute in high vs low 432 

visual working memory condition by the SNR. The SNR algorithm detected a significant increase 433 

in the number of spindles across subjects (p < 0.04, local spindles; p < 0.02, regional spindles; p 434 

< 0.007, multi-area spindles; one-sided paired-sample t-test), with the largest increases for 435 

regional and multi-area spindles. (b) Average number of spindles detected per minute in high vs 436 

low visual working memory condition by the AT. In contrast to the CNN, AT was not able to detect 437 

any significant increase in the number of distributed spindles among subjects across all spindles 438 

classes (p > 0.56, local spindles; p > 0.34, regional spindles; p > 0.30, multi-area spindles; one-439 

sided paired-sample t-test). 440 

 441 

  442 
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 443 
Supplementary Figure 5. Power spectral density (PSD) comparison. Examples of average 444 

power spectral density estimate over spindle windows detected by the CNN model (blue), the 445 

SNR approach (red), the AT algorithm (yellow) and matched non-spindle windows (purple) in 446 

iEEG recordings. The CNN and SNR PSDs exhibit a nearly 10 dB increase within the 11–15 Hz 447 

spindle band compared to matched non-spindle windows, while the AT PSD exhibits higher power 448 

outside of the frequency of interest in addition to spindle band. Power at line noise frequency 449 

omitted for clarity. 450 

  451 
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 452 
Supplementary Figure 6. Impact of SNR threshold on the CNN model. Plotted is the change 453 

in the average time-shifted spindle detected by CNN models trained over a wide range of SNR 454 

thresholds (5 to -10 dB, dark to light gray) in the NHP ECoG recordings. Clearly detected spindle 455 

activity decreases with the SNR threshold, demonstrating that the CNN result breaks down when 456 

the model is trained on lower quality examples. The red line represents the average computed at 457 

0 dB threshold (which represents parity between power in the spindle passband and the rest of 458 

the signal spectrum), below which the average detected spindle activities starts to drift away from 459 

the expected 11-15 Hz oscillatory structure.  460 
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461 
Supplementary Figure 7. Non-spindle activities detected by the AT algorithm. Sleep 462 

recordings are subjected to artifacts, such as line noise, electrical noise, and movement artifacts 463 

that introduce signal distortion. These artifacts can result in false spindle activity detection in the 464 

AT approach. For example, the sharp artifact when filtered at 11–15 Hz in the AT approach 465 

appears as an oscillation which does not exist in the original recording (top row), or the AT 466 

approach might detect non-spindle activities resulting from broken channels (bottom left) or not 467 

clearly formed spindles (bottom right). 468 

 469 

 470 

 471 

 472 

 473 

 474 
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Supplementary Table 1: Distribution of gray matter contacts in the cortical regions of all 476 

subjects in the iEEG recordings.  477 

 478 

Brain Region Subject A Subject B Subject C Subject D Subject E 

Amygdala 0 5 4 4 0 

Caudal Middle Frontal 0 0 0 0 3 

Entorhinal 0 1 0 0 0 

Fusiform 0 1 0 3 0 

Hippocampus 8 12 8 6 0 

Inferior Lateral Ventricle 0 0 2 0 0 

Insula 1 27 17 1 9 

Lateral Orbitofrontal 0 3 2 0 6 

Lateral Ventricle 1 1 0 0 0 

Medial Orbitofrontal 1 1 1 0 2 

Middle Temporal 3 4 8 9 0 

Pars Opercularis 0 0 1 0 0 

Pars Orbitalis 0 1 0 0 0 

Pars Triangularis 1 1 2 0 4 

Rostral Anterior Cingulate 1 2 1 0 4 

Rostral Middle Frontal 7 2 6 0 9 

Superior Frontal 1 0 4 0 17 

Superior Temporal 4 0 0 2 0 

Transverse Temporal 0 0 0 1 0 

             479 
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