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Abstract

The power spectrum of proteins at high frequencies is remarkably
well described by the flat Wilson statistics. Wilson statistics there-
fore plays a significant role in X-ray crystallography and more recently
in electron cryomicroscopy (cryo-EM). Specifically, modern compu-
tational methods for three-dimensional map sharpening and atomic
modelling of macromolecules by single particle cryo-EM are based on
Wilson statistics. Here we provide the first rigorous mathematical
derivation of Wilson statistics. The derivation pinpoints the regime of
validity of Wilson statistics in terms of the size of the macromolecule.
Moreover, the analysis naturally leads to generalizations of the statis-
tics to covariance and higher order spectra. These in turn provide theo-
retical foundation for assumptions underlying the widespread Bayesian
inference framework for three-dimensional refinement and for explain-
ing the limitations of autocorrelation based methods in cryo-EM.

1 Introduction

The power spectrum of proteins is often modelled by the Guinier law at low
frequencies and the Wilson statistics at high frequencies. At low frequen-
cies, there is a quadratic decay of the power spectrum characterized by the
moment of inertia of the molecule (e.g., its radius of gyration). At high fre-
quencies, the power spectrum is approximately flat. In structural biology, it
is customary to plot the logarithm of the spherically-averaged power spec-
trum of a three-dimensional structure as a function of the squared spatial
frequency. This Guinier plot typically depicts the two different frequency
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regimes. It is not surprising that these laws are of critical importance in
structural biology, with applications in X-ray crystallography [1] and cryo-
EM [2]. However, while Guinier law has a very simple mathematical deriva-
tion based on a Taylor expansion, in the literature we could only find heuris-
tic arguments in support of Wilson statistics, such as the original argument
provided by Wilson in his seminal 1-page Nature paper [3]. Here we pro-
vide a rigorous mathematical derivation of Wilson statistics in the form of
Theorem 3 and derive other forms of statistics with potential application to
cryo-EM. The main ingredients to our analysis are a scaling argument, basic
probability theory, and modern results in Fourier analysis that have found
various applications within mathematics (such as the distribution of lattice
points in domains), but their application to structural biology appears to
be new.

1.1 Random bag of atoms

The model underlying Wilson statistics is a random “bag of atoms”, where
the random “protein” consists of N atoms whose locations X1, X2, . . . , XN

are independent and identically distributed (i.i.d). For example, each Xi

could be uniformly distributed inside a container Ω ⊂ R3 such as a cube or
a ball, though other shapes and non-uniform distributions are also possible.
The electron scattering potential φ : R3 → R of the protein is modelled as

φ(x) =

N∑
i=1

f(x−Xi) (1)

where f is a bump function such as a Gaussian, or a delta function in the
limit of an ideal point mass. For simplicity of exposition, we assume that
the atoms are identical. Otherwise, one can use different f ’s to describe the
scattering from each atom type. The Fourier transform of (1) is given by

φ̂(ξ) =
N∑
i=1

f̂(ξ)e−2πı〈ξ,Xi〉 = f̂(ξ)
N∑
i=1

e−2πı〈ξ,Xi〉. (2)
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1.2 Wilson statistics

Wilson’s original argument [3] uses (2) to evaluate the power spectrum as
follows

|φ̂(ξ)|2 = |f̂(ξ)|2
∣∣∣∣∣
N∑
i=1

e−2πı〈ξ,Xi〉

∣∣∣∣∣
2

= |f̂(ξ)|2
 N∑
i,j=1

e−2πı〈ξ,(Xi−Xj)〉


= |f̂(ξ)|2

N +
∑
i6=j

e−2πı〈ξ,(Xi−Xj)〉

 (3)

≈ N |f̂(ξ)|2. (4)

Wilson argued that the sum of the complex exponentials in (3) is negligible
compared to N , as those terms wildly oscillate and cancel each other, espe-
cially for high frequency ξ. We shall make this hand wavy argument more
rigorous and the term “high frequency” mathematically precise. Note that
for an ideal point mass f̂(ξ) = 1, and (4) implies that the power spectrum
is flat, i.e., |φ̂(ξ)|2 ≈ N .

The challenge is to show that there is so much cancellation that adding
O(N2) oscillating terms of size O(1) in (3) is negligible compared to N .
For a random walk, the sum of O(N2) i.i.d zero-mean random variables of
variance O(1) is O(N) (the square-root of the number of terms). In order to
show that the sum is negligible compared to N , additional cancellation must
be happening. The role that ξ plays also needs to be carefully analyzed, as
for ξ = 0, clearly |φ̂(0)|2 = N2. What is the mechanism by which |φ̂(ξ)|2
decays from N2 to N as ξ increases?

2 Derivation of Wilson Statistics

2.1 N1/3 scaling

Since X1, . . . , XN are i.i.d, one might be tempted to apply the Central Limit
Theorem (CLT) to (2) and conclude that φ̂(ξ) is approximately a Gaussian,
for which the mean and variance can be readily calculated as done in [4].
However, one should proceed with caution, because if the container Ω is
fixed, then in the limit N →∞, the density of the atoms also grows indefi-
nitely, whereas the density of atoms in a protein is clearly bounded. If the
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density of the atoms is to be kept fixed, the container Ω has to grow with
N . To make this dependency explicit, we denote the container by ΩN . The
volume of the container ΩN must be proportional to N . The length-scale is
therefore proportional to N1/3, that is, ΩN = N1/3Ω1, or Xi = N1/3Yi with
Yi ∼ U(Ω1) in the uniform case, and i.i.d in general. The Fourier transform
(2) is rewritten as

φ̂(ξ) = f̂(ξ)
N∑
i=1

e−2πı〈ξ,N1/3Yi〉, (5)

but now the CLT can no longer be applied in a straightforward manner,
because the summands in (5) are random variables that depend on N .

2.2 Shape of container and decay rate of the Fourier trans-
form

The representation (5) facilitates the calculation of any moment of φ̂(ξ).
The expectation (first moment) of φ̂(ξ) is given by

E[φ̂(ξ)] = Nf̂(ξ)E[e−2πı〈ξ,N1/3Y1〉]

= Nf̂(ξ)

∫
R3

e−2πı〈ξ,N1/3y〉g(y) dy

= Nf̂(ξ)ĝ(N1/3ξ), (6)

where g(y) is the probability density function of Y1, and ĝ is its Fourier
transform. The dependency on ĝ(N1/3ξ) and N being a large parameter
together suggest that the decay rate of ĝ at high frequencies is critical for
analyzing Wilson statistics.

Different container shapes and choices of g can lead to different behavior
of its Fourier transform ĝ. Before stating known theoretical results, it is
instructive to consider a couple of examples.

� A uniform distribution in a ball. Here Ω1 is a ball of radius 1, denoted
B, and the uniform density is gB(x) = 1

4π/3χB(x), where χB is the
characteristic function of the ball. It is a radial function, a property
that can readily be used to calculate its Fourier transform as

ĝB(ξ) = −3 cos(2π|ξ|)
4π2|ξ|2

+
3 sin(2π|ξ|)

8π3|ξ|3
. (7)

In particular, (7) implies that |ĝB(ξ)| ≤ C
|ξ|2 for some constant C.
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� A uniform distribution in a cube. Here Ω1 = [−1
2 ,

1
2 ]3 is the unit

cube, and gC is a product of three rectangular window functions whose
Fourier transform is the sinc function. As a result,

ĝC(ξ) =
3∏
i=1

sinc(ξi) =
3∏
i=1

sin(πξi)

πξi
. (8)

Taking ξ along one of the axes, e.g., ξ = (|ξ|, 0, 0) gives ĝC(|ξ|, 0, 0) =
sin(π|ξ|)
π|ξ| . In this case, |ĝC(ξ)| ≤ C

|ξ| for some C > 0. Notice that the
decay of ĝC in directions not normal to its faces is faster. For example,

for ξ = 1√
3
(|ξ|, |ξ|, |ξ|) we have |ĝC( 1√

3
(|ξ|, |ξ|, |ξ|))| =

| sin3( 1√
3
π|ξ|)|

( 1√
3
π|ξ|)3 ≤

C
|ξ|3 .

We are now ready to state existing theoretical results about the decay rate
of the Fourier transform for containers of general shape.

Theorem 1. (see [5, p. 336])

1. Suppose Ω ⊂ Rd is a bounded region whose boundary M = ∂Ω has
non-vanishing Gauss curvature at each point, then

|χ̂Ω(ξ)| = O(|ξ|−
d+1
2 ), as |ξ| → ∞. (9)

2. If M has m non-vanishing principal curvatures at each point, then

|χ̂Ω(ξ)| = O(|ξ|−(m+2)/2), as |ξ| → ∞. (10)

The decay rates previously observed for the three-dimensional ball (d = 3
or m = 2) and the cube (m = 0) are particular cases of Theorem 1.

Although the decay rate in different directions could be different (as the
example of the cube illustrates), for a large family of containers (convex
sets and open sets with sufficiently smooth boundary surface), the following
Theorem asserts that the spherical average of the power spectrum has the
same decay rate as that of the ball.

Theorem 2. (see [6]) Suppose Ω ⊂ Rd is a convex body or an open bounded
set whose boundary ∂Ω is C3/2. Then,∫

Sd−1

|χ̂Ω(kω)|2 dω = O(k−(d+1)), as k →∞. (11)

Here k = |ξ| is the radial frequency and Sd−1 is the unit sphere in Rd.
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2.3 Validity regime of Wilson statistics

We are now in position to state and prove our main result that fully char-
acterizes the regime of validity of Wilson statistics.

Theorem 3. 1. For the random bag of atoms model, the expected power
spectrum is given by

E
[
|φ̂(ξ)|2

]
= |f̂(ξ)|2

(
N +N(N − 1)

∣∣∣ĝ(N1/3ξ)
∣∣∣2) . (12)

2. If the container is a convex body or an open set with a C3/2 boundary
surface, and the atom locations are uniformly distributed in the con-
tainer, then the expected spherically-averaged power spectrum satisfies

E
[

1

4π

∫
S2

|φ̂(kω)|2 dω
]

= |f̂(k)|2 (N + o(N)) , (13)

for k � N−1/12.

3. If the Fourier transform of the density g satisfies |ĝ(ξ)| ≤ C|ξ|−α, then

E
[
|φ̂(ξ)|2

]
= |f̂(ξ)|2 (N + o(N)) , for |ξ| � N−β, (14)

where β =
2α− 3

6α
.

Proof. Starting with Wilson’s original approach, from (5) it follows that the
power spectrum of φ is given by

|φ̂(ξ)|2 = |f̂(ξ)|2
N∑

i,j=1

e−2πı〈ξ,N1/3(Yi−Yj)〉

= |f̂(ξ)|2
N +

∑
i6=j

e−2πı〈ξ,N1/3(Yi−Yj)〉

 .
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Since the Yi’s are i.i.d, the expected power spectrum satisfies

E
[
|φ̂(ξ)|2

]
= |f̂(ξ)|2

N +
∑
i6=j

E
[
e−2πı〈ξ,N1/3(Yi−Yj)〉

]
= |f̂(ξ)|2

N +
∑
i6=j

E
[
e−2πı〈ξ,N1/3Yi〉

]
E
[
e2πı〈ξ,N1/3Yj〉

]
= |f̂(ξ)|2

(
N +N(N − 1)

∣∣∣E [e−2πı〈ξ,N1/3Y 〉
]∣∣∣2)

= |f̂(ξ)|2
(
N +N(N − 1)

∣∣∣ĝ(N1/3ξ)
∣∣∣2) , (15)

establishing (12). Assuming f (hence also f̂) are radial functions, the ex-
pectation of the spherically-averaged power spectrum satisfies

E
[

1

4π

∫
S2

|φ̂(kω)|2 dω
]

(16)

= |f̂(k)|2
(
N +N(N − 1)

1

4π

∫
S2

∣∣∣ĝ(N1/3kω)
∣∣∣2 dω) .

Theorem 2 with d = 3 implies

N(N − 1)
1

4π

∫
S2

∣∣∣ĝ(N1/3kω)
∣∣∣2 dω = O(N2/3k−4). (17)

This term is negligible compared to N in (16) for k � N−1/12, proving (13).

Finally, if |ĝ(ξ)| ≤ C|ξ|−α, then N(N − 1)
∣∣ĝ(N1/3ξ)

∣∣2 = O(N2− 2α
3 |ξ|−2α),

which is o(N) for |ξ| � N−
2α
3 −1

2α .

Theorem 3 (specifically, (13)) implies that the transition in Guinier plot
occurs around k0 = N−1/12, and for higher radial frequencies the spherically-
averaged power spectrum is approximately flat. Suppose a protein of radius
100Å with N = 104 atoms. In dimensionless units, where each unit cell
occupies a single atom on average, Wilson statistics holds for frequencies
above k0 = (104)−1/12 = 10−1/3. The radius R0 of the unit cell satisfies

104R3
0 = 1003Å

3
. Therefore, R0 = 10−4/3100Å. The cutoff frequency is

therefore k0/R0 = 10−1/3104/30.01Å
−1

= 0.1Å
−1

, corresponding to resolu-
tion of 10Å. For a protein of the same radius but with 10 times more atoms
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N = 105, the cutoff frequency is 0.178Å
−1

, corresponding to 5.6Å resolu-
tion. These resolutions are in agreement with empirical evidence about the
validity regime of Wilson statistics [2].

Moreover, (16) and (17) suggest that the spherically-averaged power
spectrum decays to its high frequency limit as k−4. This decay rate at
high frequencies is reminiscent of Porod’s law in SAXS [7, 8]. At first, the
1/12 exponent of the cutoff frequency k0 = N−1/12 might seem mysterious.
In hindsight, it is simply the product of the dimension d = 3 that resulted
in the scaling of N1/3 and the decay rate exponent of k−4.

Note that in our derivation of Wilson statistics, we first took expectation
with respect to the atom positions followed by spherically-averaging the
power spectrum. On the other hand, spherically-averaging (3) first gives

1

4π

∫
S2

|φ̂(kω)|2 dω = |f̂(k)|2
N +

∑
i6=j

sin(2πk|Xi −Xj |)
2πk|Xi −Xj |

 (18)

as in Debye’s scattering equation [9], due to the identity

1

4π

∫
S2

e−2πı〈kω,x〉 dω =
sin(2πk|x|)

2πk|x|
. (19)

Although the 1/k decay of the sinc function in (18) sheds some light on the
mechanism by which the sum over atom pairs decreases with k, it does not
seem to provide a good starting point for a rigorous derivation of Wilson
statistics, nor does it provide a clear path for the generalizations considered
later in this paper.

While Theorem 3 characterizes the expected power spectrum, one may
wonder whether the statistical fluctuations of the power spectrum could
overwhelm its mean. This turns out not to be the case. Similar to the
derivation of Wilson statistics, one can show that if |ĝ(ξ)| ≤ C|ξ|−2 then

E
[
|φ̂(ξ)|4

]
= N2|f̂(ξ)|4 + o(N2), for |ξ| � N−1/12. (20)

Since E
[
|φ̂(ξ)|2

]
= N |f̂(ξ)|2 + o(N) for |ξ| � N−1/12, it follows that for

|ξ| � N−1/12

Var(|φ̂(ξ)|2) = E
[
|φ̂(ξ)|4

]
− E

[
|φ̂(ξ)|2

]2
= o(N2). (21)

In other words, the standard deviation of the power spectrum is o(N), so
the fluctuation is smaller than the mean value.
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3 Generalizations and applications to cryo-EM

3.1 Existing applications to cryo-EM

A common practice in single particle cryo-EM is to apply a filter to the recon-
structed map. The filter boosts medium and high frequencies such that the
power spectrum of the sharpened map is approximately flat and consistent
with Wilson statistics [2, 10]. The filter is an exponentially growing filter
whose parameter is estimated using the Guinier plot. The boost of medium
and high frequency components increases the contrast of many structural
features of the map and helps to model the atomic structure. This is the
so-called B-factor correction, B-factor flattening, or B-factor sharpening. It
is a tremendously effective method to increase the interpretability of the re-
constructed map. In fact, most map depositions in the Electron Microscopy
Data Base (EMDB) only contain sharpened maps [11]. Map sharpening is
still an active area of research and method development, see, e.g. [12, 13]
and references therein. Wilson statistics is also used to reason about and
extrapolate the number of particles required to high resolution [2].

3.2 Generalization of Wilson statistics to covariance with ap-
plication to 3-D iterative refinement

We now highlight a certain generalization of Wilson statistics with poten-
tial application to 3-D iterative refinement, arguably the main component
of the computational pipeline for single particle analysis [14]. Specifically,
the Bayesian inference framework underlying the popular software toolbox
RELION [15] requires the covariance matrix of φ̂ and approximates it with a
diagonal matrix [16]. For tractable computation, the variance (the diagonal
of the covariance matrix) is further assumed to be a radial function.

The random bag of atoms model underlying Wilson statistics provides
the covariance matrix

Cov[φ̂](ξ1, ξ2) = E[φ̂(ξ1)φ̂(ξ2)]− E[φ̂(ξ1)]E[φ̂(ξ2)] (22)

in closed form as

Cov[φ̂](ξ1, ξ2) (23)

= Nf̂(ξ1)f̂(ξ2)
[
ĝ(N1/3(ξ1 − ξ2))− ĝ(N1/3ξ1)ĝ(N1/3ξ2)

]
.

Before proving this result, note that it implies a vast reduction in the num-
ber of parameters needed to describe the covariance matrix. In general,
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for a 3-D map represented as an array of L3 voxels, the covariance ma-
trix is of size L3 × L3 which requires O(L6) entries, which is prohibitively
large. However, (23) suggests that the covariance depends on only O(L3)
parameters. Furthermore, approximating ĝ(ξ) by a radial function implies
that the covariance depends on just O(L) parameters, the same number of
parameters in the existing Bayesian inference method for 3-D iterative re-
finement. Moreover, comparing the two terms in (23), the decay of ĝ implies

that |ĝ(N1/3(ξ1− ξ2))| � |ĝ(N1/3ξ1)ĝ(N1/3ξ2)| whenever |ξ1|, |ξ2| � N−1/3.
Therefore, for |ξ1|, |ξ2| � N−1/3

Cov[φ̂](ξ1, ξ2) = Nf̂(ξ1)f̂(ξ2)ĝ(N1/3(ξ1 − ξ2))(1 + o(1)). (24)

Since ĝ(N1/3(ξ1 − ξ2)) is largest for ξ1 = ξ2 and decays with increasing dis-
tance |ξ1 − ξ2|, it follows from (24) that the covariance matrix restricted to
frequencies above N−1/3 is approximately a band matrix with bandwidth
O(N−1/3), such that the diagonal is dominant and matrix entries decay
when moving away from the diagonal. Note that N−1/3 is a very low fre-
quency corresponding to resolution of the size of the protein (as implied by
the N1/3 scaling). Therefore, the covariance is well approximated by a band
matrix with a very small number of diagonals. This serves as a theoretical
justification for the diagonal approximation in the Bayesian inference frame-
work [16], as correlations of Fourier coefficients with |ξ1 − ξ2| � N−1/3 are
negligible. On the flip side, correlations for which |ξ1 − ξ2| � N−1/3 should
not be ignored and correctly accounting for them could potentially lead to
further improvement of [16].

To prove (23), we evaluate the two terms in the right hand side of (22)
separately. The second term is directly obtained from (6) as

E[φ̂(ξ1)]E[φ̂(ξ2)] = N2f̂(ξ1)f̂(ξ2)ĝ(N1/3ξ1)ĝ(N1/3ξ2). (25)

To evaluate the first term, we substitute φ̂(ξ1) and φ̂(ξ2) by (5), separate
the summation into diagonal terms (i = j) and off-diagonal terms (i 6= j)
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as in Wilson’s original argument, and use that Yi’s are i.i.d, resulting

E[φ̂(ξ1)φ̂(ξ2)]

= f̂(ξ1)f̂(ξ2)E

 N∑
i=1

e−2πı〈N1/3ξ1,Yi〉
N∑
j=1

e2πı〈N1/3ξ2,Yj〉


= f̂(ξ1)f̂(ξ2)E

[
N∑
i=1

e−2πı〈N1/3(ξ1−ξ2),Yi〉

+
∑
i6=j

e−2πı〈N1/3ξ1,Yi〉e2πı〈N1/3ξ2,Yj〉


= f̂(ξ1)f̂(ξ2)

[
Nĝ(N1/3(ξ1 − ξ2))

+N(N − 1)ĝ(N1/3ξ1)ĝ(N1/3ξ2)
]
. (26)

Subtracting (25) from (26) proves (23). This is a generalization of Wilson
statistics, as setting ξ1 = ξ2 reduces (26) to (12).

Note that the diagonal of the covariance matrix satisfies

Var(φ̂(ξ)) = Cov[φ̂](ξ, ξ) = N |f̂(ξ)|2
[
1− |ĝ(N1/3ξ)|2

]
. (27)

The variance vanishes for ξ = 0 because φ̂(0) = N regardless of the atoms
positions. The small variance at very low frequencies shares the same origins
of Guinier law.

In existing Bayesian inference approaches [16], the mean of each fre-
quency voxel is assumed to be zero. However, comparing (6) and (27) for
the mean E[φ̂(ξ)] and the variance Var(φ̂(ξ)), we see that the variance domi-
nates the squared mean only for |ξ| � N−1/12, which is the validity regime of
Wilson statistics. It follows that it is justified to assume a zero-mean signal
only for high frequencies, but not at low frequencies. Including an explicit
(approximately radial) non-zero mean in the Bayesian inference framework
may therefore bring further improvement.

3.3 Generalization of Wilson statistics to higher order spec-
tra with application to autocorrelation analysis

Autocorrelation analysis, originally proposed by Kam [17, 18], has recently
found revived interest in X-ray free electron laser (XFEL) [19, 20, 21] and
cryo-EM [22, 23, 24]. In autocorrelation analysis, the three-dimensional

11

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.14.444177doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.14.444177
http://creativecommons.org/licenses/by-nc/4.0/


molecular structure is determined from the correlation statistics of the noisy
images. Typically, the second or third order correlation functions are suffi-
cient in principle to uniquely determine the structure [25, 22]. It is therefore
of interest to derive a third order statistics analogue of (12). Specifically,

E
[
φ̂(ξ1)φ̂(ξ2)φ̂(ξ3)

]
is given by

E
[
φ̂(ξ1)φ̂(ξ2)φ̂(ξ3)

]
= f̂(ξ1)f̂(ξ2)f̂(ξ3)

E

 N∑
i,j,k=1

e−2πı〈ξ1,N1/3Yi〉e−2πı〈ξ2,N1/3Yj〉e−2πı〈ξ3,N1/3Yk〉


= f̂(ξ1)f̂(ξ2)f̂(ξ3)

[
Nĝ

(
N1/3(ξ1 + ξ2 + ξ3)

)
(28)

+N(N − 1)ĝ
(
N1/3(ξ1 + ξ2)

)
ĝ
(
N1/3ξ3

)
+N(N − 1)ĝ

(
N1/3(ξ1 + ξ3)

)
ĝ
(
N1/3ξ2

)
+N(N − 1)ĝ

(
N1/3(ξ2 + ξ3)

)
ĝ
(
N1/3ξ1

)
+ N(N − 1)(N − 2)ĝ

(
N1/3ξ1

)
ĝ
(
N1/3ξ2

)
ĝ
(
N1/3ξ3

)]
.

This result is obtained by separating the sum over all triplets i, j, k into five
groups: i = j = k, i = j 6= k, i = k 6= j, j = k 6= i, and i 6= j 6= k 6= i.

Similar to the power spectrum |φ̂(ξ)|2 which is the Fourier transform of
the autocorrelation function, the bispectrum φ̂(ξ1)φ̂(ξ2)φ̂(−(ξ1 + ξ2)) is the
Fourier transform of the triple-correlation function. The bispectrum, like the
power spectrum, is also shift-invariant. As such, it plays an important role
in various autocorrelation analysis techniques. The expected bispectrum
under the random bag of atoms model is obtained by setting ξ1 +ξ2 +ξ3 = 0
in (29)

E
[
φ̂(ξ1)φ̂(ξ2)φ̂(ξ3)

]
= f̂(ξ1)f̂(ξ2)f̂(ξ3)[

N +N(N − 1)
∣∣∣ĝ (N1/3ξ1

)∣∣∣2 (29)

+N(N − 1)
∣∣∣ĝ (N1/3ξ2

)∣∣∣2 +N(N − 1)
∣∣∣ĝ (N1/3ξ3

)∣∣∣2
+ N(N − 1)(N − 2)ĝ

(
N1/3ξ1

)
ĝ
(
N1/3ξ2

)
ĝ
(
N1/3ξ3

)]
,

for ξ1 + ξ2 + ξ3 = 0.
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The bispectrum drops from N3 for ξ1 = ξ2 = ξ3 = 0 to N at high
frequencies. This drop is even more pronounced than that of the power
spectrum that decreases from N2 to N . This may lead to numerical diffi-
culties in inverting the bispectrum as it has a large dynamic range, e.g., it
spans eight orders of magnitude for N = 104.

The terms in the first two lines of (29) have similar behavior to the
power spectrum (12). The last term depends on the decay rate of ĝ. If
|ĝ(ξ)| ≤ C|ξ|−2 as for the ball, then

E
[
φ̂(ξ1)φ̂(ξ2)φ̂(ξ3)

]
= Nf̂(ξ1)f̂(ξ2)f̂(ξ3) + o(N), (30)

for |ξ1|, |ξ2|, |ξ3| � 1, which can be regarded as a generalization of Wilson
statistics (e.g., (13)) to higher order spectra. However, for higher order
spectra such as the bispectrum the behavior at high frequencies is more
involved. For example, taking ξ1 and ξ2 to be high frequencies does not
imply ξ3 = −(ξ1 + ξ2) is necessarily a high frequency, as can be readily seen
by taking ξ2 = −ξ1 for which ξ3 = 0. For this particular choice of ξ2 = −ξ1

the expected bispectrum is always greater than N2.

4 Discussion

This paper provided the first formal mathematical derivation of Wilson
statistics, offered generalizations to other statistics, and highlighted poten-
tial applications in structural biology.

The assumption underlying Wilson statistics of independent atom loca-
tions is too simplistic as it ignores correlations between atom positions in
the protein. It is well known that the power spectrum deviates from Wilson
statistics at frequencies that correspond to interatomic distances associated
with secondary structure such as α-helices. A more refined model that in-
cludes such correlations is beyond the scope of this paper.

From the computational perspective, we note that numerical evaluation
of Fourier transforms and power spectra associated with Wilson statistics
involves computing sums of complex exponentials of the form (1). These
can be efficiently computed as a Type-1 3-D non-uniform fast Fourier trans-
form (NUFFT) [26]. The computational complexity of a näıve procedure is
O(NM), where M is the number of target frequencies, whereas the asymp-
totic complexity of NUFFT is O(N +M) (up to logarithmic factors).

Wilson statistics is an instance of a universality phenomenon: all pro-
teins regardless of their shape and specific atomic positions exhibit a similar
power spectrum at high frequencies. From the computational standpoint in
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cryo-EM, this universality is a blessing and a curse at the same time. On
the one hand, it enables to correct the magnitudes of the Fourier coefficients
of the reconstructed map so they agree with the theoretical prediction. On
the other hand, it implies that the high frequency part of the power spec-
trum is not particularly useful for structure determination, as it does not
discriminate between molecules. The generalization of Wilson statistics to
the higher order spectra shows that the bispectrum also becomes flat at
high frequencies. These observations may help explain difficulties of the
autocorrelation approach as a high resolution reconstruction method [23].
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