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Abstract
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1 Introduction

Racial/ethnic group identities such as Black, White, Hispanic, Native Ameri-
can, East Asian and South Asian show empirically strong linkages to medical
and behavioural traits such as obesity (Wang et al. 2007), type 2 diabetes
(Cheng et al. 2013), hypertension (Lackland 2014), asthma (Choudry et al.
2006), neuropsychological performance (Llibre-Guerra et al. 2018), smoking
behaviours (Choquet et al. 2021), and sleep disorders (Halder et al 2015). An
important research question is to what degree any such observed trait varia-
tion arises from differences in the typical diets, cultural practices and other
environmental particularities of the racial/ethnic groups, or from similarity
in genetic pools within each group traceable to shared geographic ancestry.
Many diverse national populations descend demographically from isolated
continental groups within a few hundred years. Modern genetic technology
can measure with high accuracy the proportion of an individual’s ancestry
associated with these continental groups. Also, in many culturally diverse
nations, most individuals can reliably self-identify as members of one or
more racial or ethnic groups. Admixture regression leverages these two data
sources, self-identified race or ethnicity (SIRE) and genetically-measured ad-
mixture proportions, to decompose trait variation correspondingly. Admix-
ture regression has been widely applied to medical and behavioural traits
including asthma (Salari et al. 2007), body mass index (Klimentidis et al.
2009), type 2 diabetes (Cheng et al. 2013), blood pressure (Klimentidis et
al. 2012), neuropsychological performance (Lasker et al. 2019), and sleep
depth (Halder et al. 2015). It has particular value in the case of com-
plex behavioural traits where reliably identifying genetic loci associated with
trait variation is beyond the current reach of science. Admixture mapping
is a more technically challenging methodology, often used in conjuction with
admixture regression, which uses ancestral population trait differences to at-
tempt to identify genetic loci associated with a trait. This paper focusses
exclusively on admixture regression.
This paper first develops a new statistical framework for admixture re-

gression of behavioural traits by linking it to the linear polygenic index model
from behavioural genetics; this framework clarifies the key assumptions that
are implicit in this simple and powerful statistical technique. The paper then
extends the admixture regression methodology in several ways. We provide a
new test statistic for identifying whether a given multi-racial identity differs
in its trait impact from the average impact of its component single-SIRE
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categories. We examine the role of additional explanatory variables in the
admixture regression and their interpretation with and without orthogonal-
ization with respect to the core explanatory variables. We generalize the
linear admixture regression specification to a partially linear semiparametric
form.
We illustrate our methodology using neuropsychological performance data

from the Adolescent Brain Cognitive Development database. Neuropsycho-
logical performance is one of the most complex traits to which admixture
regression analysis has been applied. Using our new test statistic, we find
that some multi-racial categories have identifiably distinct impact on trait
variation relative to their component categories. We find that orthogonaliza-
tion of additional variables can substantially change the interpretation of the
core coeffi cients in the admixture regression. Our results hint that a partially
linear semiparametric specification potentially adds empirical value.

2 A statistical framework for admixture re-
gression tests of trait variation

2.1 Variable definitions

We assume that the database consists of n individuals indexed by i = 1, n who
have each self-identified their racial or ethnic group membership(s), recorded
a score on a behavioural trait, si, and provided a personal DNA sample. The
k racial or ethnic group self-identification choices are captured by a matrix
of zero-one dummy variables SIREij, i = 1, n; j = 1, k. We assume that
every individual has self-identified as belonging to at least one and possibly
more of the k groups.
We assume that a set of m geographic ancestries covered in the study

have been chosen, such as African, European, Amerindian, South Asian,
and East Asian, indexed by h = 1,m. The genotyped DNA samples are
carefully decomposed into admixture proportions of geographic ancestry, as
discussed in Section 4 below. For each individual the ancestry proportions
across the chosen geographic ancestries sum to one. This gives a matrix of
ancestry proportions Aih, i = 1, n; h = 1,m with 0 ≤ Aih ≤ 1 for all i, h and
m∑
h=1

Aih = 1 for each i.

In most applications of admixture regression, individuals’racial or ethnic
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group identities will have statistical relationships with individuals’ genet-
ically identified geographic ancestries and also with the observed trait si.
The objective of admixture regression is to decompose trait variation into
linear components due to genetic ancestries and linear components due to
racial/ethnic group related effects.

2.2 An empirically infeasible GWASmodel of ancestry-
related behavioural trait variation

Admixture regression is an indirect method of analyzing group-related trait
variation. In this subsection we provide a foundation for admixture regression
be considering a more direct, but empirically infeasible, alternative approach
based on a linear polygenic index model. Then in the next subsection we
will show that the admixture regression model can be viewed as a statis-
tically feasible simplification of this linear polygenic index model, in which
proportional ancestries serve as statistical proxies for ancestry-related genetic
differences.
The human genetic code contains a very large number of genetic variants

(the allelles on the genome which vary between individuals) called single nu-
cleotide polymorphisms or SNPs. Consider hypothetically a complete list
of all genetic variants with any impact on variation in the observed trait.
Assign a value of 0, 1 or 2 to each SNP for individual i depending upon
the number of minor allelles for that SNP. Let SNPiz i = 1, n; denote the
number of minor allelles on the zth SNP of the ith individual in the sam-
ple. The biochemical process linking human genetic variation to behavioural
trait variation is unimaginably complex, and scientific understanding of the
full biochemical process is very limited. Genome-wide association studies
(GWAS) have made slow but steady progress in statistically modeling these
linkages, although precise biochemical linkages are beyond the contempo-
rary scientific frontier for most behavioural traits. A standard, admittedly
highly simplified, model of the gene variation - trait variation nexus is the
linear polygenic index model, in which the genetic component of a trait is
a simple linear function of a relevant subset of the individual’s genetic vari-
ants. The linear polygenic index model has been applied to a wide range
of medical and behavioural traits including body mass index (Yengo et al.
2018), neuroticism (Nagel et al. 2018), depression susceptibility (Wray et
al. 2018), suicidal ideation (Mullins et al. 2014), schizophrenia (Mistry et

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 16, 2021. ; https://doi.org/10.1101/2021.05.14.444173doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.14.444173
http://creativecommons.org/licenses/by-nc-nd/4.0/


al. 2018), educational attainment (Lee et al. 2018), neuropsychological test
performance (Savage et al. 2018), and risk-taking (Clifton et al. 2017). The
linear admixture regression model can be derived elegantly by invoking this
standard linear polygenic index model, and hence we impose it in our model:

pi = c1 +
∑
z

βzSNPiz; i = 1, n, (1)

where pi denotes the "genetic potential" of individual i regarding the observ-
able trait.
Let Prz(·) denote the univariate probability distribution for SNPz (prob-

abilities of the three possible values 0, 1, and 2). The probability distributions
of many SNPs differ substantially across geographic ancestries, hence we de-
fine the conditional probability distributions: let Prz(·|Ah = 1) denote the
conditional probability distributions for SNPz for individuals with purebred
ancestry Ah = 1 for h = 1,m. There is no assumption of genetic homogene-
ity within the ancestral populations, only that they are genetically distinct
and hence these (unobserved) conditional probability distributions exist as
hypothetical entities. There is no attempt to estimate these conditional prob-
ability distributions directly, but rather only to use them create conditional
expectations in the construction of statistical proxy variables.

The expectation of
∑
z

βzSNPiz using each purebred probability distri-

bution defines the average genetic trait potential of each purebred (that is,
Ah = 1) ancestry:

ph = c1 +
∑
z

βzE[SNPz|Ah = 1], h = 1,m (2)

which are not observed directly, but will be inferred indirectly from the ad-
mixture regression findings.
A key assumption of the admixture regression model is that admixture

arises from recent random mating between the previously geographically-
isolated ancestral groups. Assuming recent random mating between ances-
tral lines, it follows from the fundamental processes of sexual reproduction
that the univariate probability distribution of any SNP for an admixed indi-
vidual is the convex combination of the purebred probability distributions,
with linear coeffi cients equal to the individual’s admixture proportion. (The
relationship between the multivariate distributions is more complicated, but
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the multivariate distributions do not impact the expected trait given the lin-
ear polygenic index assumption.) We use a subscript · to denote the vector
created from the ith row of a matrix. We assume that mating across ge-
ographic ancestries is recent and random, and therefore in particular that
the univariate frequency distribution of each SNP for any individual is the
convex combination of the purebred frequency distributions:

Pr z(•|Ai·) =
k∑

h=1

Pr z(•|Ah = 1)Aih (3)

Equation (3) is a fundamental condition for the admixture regression method-
ology.
The linearity of genetic potential in the SNPs (1) and the random mix-

ing assumption (3) imply that conditional expected genetic potential of an
admixed individual is a convex combination of the individual’s admixture
proportions. Combining (1), (2) and (3) the conditional expected value of
genetic potential for an individual with admixture proportions Ai· is the con-
vex combination of the unobserved values ph with observed linear coeffi cients
Aih:

E[pi|Ai·] = c1 +
k∑

h=1

Aihph. (4)

2.3 Ancestry proportions as a statistical proxy for ancestry-
linked trait variation

A key difference in the admixture regression methodology compared to GWAS
is that there is no attempt to estimate (1) directly. Rather, admixture regres-
sion uses the natural experiment of subpopulation mixing to infer differences
in the conditional expected value of (1) arising from differences in the prob-
ability distribution of genetic variants across ancestries.
For expositional simplicity, in this subsection we assume that every indi-

vidual included in the sample has self-identified as belonging to exactly one

from the pre-specified set of k racial or ethnic groups, so that
k∑
j=1

SIREij = 1

for all i. In this case, the n × k matrix of racial/ethnic group explanatory
variables used in the admixture regression, denoted G, is simply set equal to
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the SIRE matrix: Gij = SIREij for i = 1, n; j = 1, k. Multi-racial individ-
uals (those who have self-identified as belonging to two or more groups) will
be introduced into the analysis in the next subsection.
Define the environmental component of the trait, ei, as the observed trait

minus genetic potential:
si = pi + ei, (5)

where ei is defined as all trait variation not captured by pi. Equation (5)
is only definitional; later we will impose various conditions on ei to enable
statistical identification of the model. Define p̃i as the genetic component of
the trait for each i which is not explained by geographic ancestry Ai·:

p̃i = pi − E[pi|Ai·],

by simple substitution into (5) this gives:

si = c1 +
k∑

h=1

Aihph + p̃i + ei. (6)

Recall that
k∑

h=1

Ahi = 1, for all i, so that one term in (6) is redundant;

substitute Ai1 = 1−
k∑

h=2

Aih into (6) to get:

si = c2 +
k∑

h=2

bAhAih + p̃i + ei, (7)

where bAh = ph − p1; h = 2,m, and c2 = c1 + p1.
Equation (7) is not well-specified as a regression model since the error

term p̃i+ ei will not be mean zero conditional on Ai· due to racial and ethnic
group-related effects in ei. In order to transform (7) into a regression model
it is necessary to add explanatory terms to the regression model to remove
the expected value of ei conditional on Ai·. This is accomplished by assuming
that the expected differences in ei conditional on Ai· are linearly dependent
on the group identifiers Gi· and not otherwise dependent upon admixture
proportions:

ei = c3 +
m∑
h=2

bGhGih + ẽi, (8)
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where bGh captures the environmental component associated with mem-
bership in group h relative to the reference group h = 1, and ẽi is as-
sumed to be independent of Ai·, Gi· and p̃i. Although not strictly necessary,
we also assume for simplicity that both residuals are normally distributed:
p̃i ∼ N(0, σ2p) and ẽi ∼ N(0, σ2e). Combining (7) and (8) produces the key
linear admixture regression specification:

si = c4 +
k∑
j=2

bGjGij +

m∑
h=2

bAhAih + εi. (9)

where εi = ẽi + p̃i. Note that εi is normally distributed with zero mean and
variance σ2ẽ + σ2p̃ and is independent of Ai· and Gi·.
The ordinary least squares coeffi cient estimates of bGj, bAh, j = 2, k;h =

2,m in (9) are maximum likelihood and effi cient. In many applications, the
analyst also has information on the sampling substructure of the data, such as
its division into site-specific subsamples. In this case, a linear mixed effects
model can be used for estimating (9) rather than ordinary least squares.
This involves partially decomposing the residual term εi in (9) into linear
random effects components linked to data collection site identifiers and/or
other subsample identifiers, see Heeringa and Berglund (2021).

2.4 Adding multi-racial individuals to the regression

An identifying assumption of the admixture regression technique is that the
environmental influences associated with racial/ethnic group membership are
captured by the group membership self-identification choices, SIRE. Many
individuals self-identify as belonging to two or more racial or ethnic groups
and the model must be adapted to this reality. In the context of our sta-
tistical framework, there are essentially three approaches: evenly splitting
the individual’s affi liation across their chosen groups, creating a new group
for one or more particular multi-racial combinations, or deleting particular
multi-racial observations where neither of the other two approaches seem
appropriate.
Recall that SIRE is the n×k matrix of race/ethnicity self-identifications,

and we now allow that some individuals choose more than one category, so

that
k∑
j=1

SIREij > 1 for some i. The simplest regression specification in
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this case is to assume that the group environment faced by a multi-racial
individual is the average of the component group environments:

Gij = SIREij/(

k∑
j∗=1

SIREij∗) for all i = 1, n; j = 1, k. (10)

Although (10) is a reasonable specification, it is restrictive. It is possible
to replace (10) with a more general specification at some loss of parsimony.
Suppose that we are concerned about imposing the restrictive condition (10)
for some common multi-racial choice (such as, for example, Black-White
biracial in a US dataset). Let V1 denote a k−vector with ones for the included
race/ethnicity groups in this particular multi-racial combination and zeros
elsewhere. We can supplement (10) by adding a k + 1st group and using a
different rule for this subset of multi-racials:

Gij = 0 for j = 1, k if SIREi· = V1

Gi,k+1 = 1 if SIREi· = V1 (11)

Gi,k+1 = 0 if SIREi· 6= V1,

where SIREi· = V1 denotes vector equality between these two k−vectors.
There are now k+ 1 groups: the originally specified SIRE groups and a new
group for the selected multiracial combination. G becomes a n × (k + 1)
matrix, and the regression (9) described in the previous subsection applies
exactly as before but with one extra dimension to G. Any small number of
defined multi-racial groups can be appended in this way. The only change
to the regression methodology is that G becomes a n × k∗ matrix (with an
associated increase in the set of estimated parameters ) where k∗ − k is the
number of multiracial combinations added as new categories.
It is not feasible to use rule (11) for all race/ethnicity choice combinations

due to lack of parsimony; there are 2k−k potential multi-racial combinations
and each one added requires an additional parameter in the regression. It
can only be used for the common multi-racial choices where there is suffi cient
data of that combination in the sample. For all others, it is necessary to
stick with the restrictive assumption (10) or drop the observations from the
sample. This will be illustrated in the empirical application in Section 4.
Once a regression model is estimated using (11), it is possible to test

the accuracy of restrictive assumption (10) for that multi-racial group. The
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restrictive assumption implicit in (10) requires that the average of the co-
effi cients of the components equals the added-group coeffi cient in the unre-
stricted model:

1

#j∗

∑
j∗

bGj∗ = bG,k+1, (12)

where #j∗ denotes the number of components in the multiracial category
(typically either two or three) and the sum runs over these element only.
This is a linear restriction on the vector of coeffi cients, or multiple linear
restrictions for k∗−k greater than one, which can be tested with a t-test (for
each group coeffi cient singly) or a Wald test for all them, as detailed below.
Let b̂ denote the m + k∗−vector of all the coeffi cients in the admixture

regression (9):
b̂ = [ĉ4, b̂G, b̂A],

and let Ĉovb̂ denote the estimated (m+ k∗)× (m+ k∗)−covariance matrix
of these estimates.
First consider the case k∗ − k = 1. Let R denote the (m + k∗)−vector

expressing restriction (12) imposed on b. For example, if the group combi-
nation consists of individuals who choose all three of the first, second, and
third SIRE categories (recalling that the first SIRE category has a zero beta
by definition) the restriction vector is:

R = [0,−1
3
,−1
3
, 0, .., 0, 1, 0, ..., 0]

where the 1 is element k∗ in the vector. Any other restriction of type (12)
is easily stated in this way. In the case of one group, this gives rise to a
standard t-test of the one coeffi cient restriction, and in particular:

b̂′R

(R′Ĉovb̂R)
∼ t(n−m− k∗). (13)

For the case k∗ − k > 1 it is possible to test each multi-racial group
equality individually as above using (13) or perform a joint Wald test on
all of them. Let R denote the (m + k∗) × (k∗ − k)−matrix of all the linear
restrictions, giving the standard Wald test:

b̂′R(R′(Ĉovb̂)
−1R)−1R′b̂

a∼ χ2(k∗ − k) (14)
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where a∼ denotes the approximate distribution for large n. In the case of
estimation by linear mixed effects modeling, both test statistics (13) and
(14) are large−n asymptotic distributions rather than exact finite-sample
distributions, but they remain valid tests.

3 Extensions of the linear admixture regres-
sion model

3.1 Additional explanatory variables with and without
orthogonalization

It is straightforward to include additional explanatory variables in the admix-
ture regression model. Let xi1, xi2, ..., xil denote a set of explanatory variables
that help to linearly explain the trait along with the ancestry proportions
and group identities. We modify specification (9) to include these:

si = +
k∑
j=2

bGjGij +
m∑
h=2

bAhAih +
l∑

d=1

bxdxid + εi (15)

and keep all the other assumptions as before. The estimation theory for (15)
is essentially identical to that of (9) as discussed above.
In some cases, the admixture regression model with additional explana-

tory variables (15) can be made more useful and informative by orthogonal
rotation of one or more of the explanatory variables, in order to aggregate the
full linear effects of proportional ancestries and group identities into their as-
sociated coeffi cients. To understand why such an orthogonal rotation might
be useful, consider the hypothetical case of an admixture regression model
of Body Mass Index (BMI) in which waist measurement is one of the ex-
planatory variables. Waist measurement has such strong explanatory power
for BMI that its presence in an admixture regression model like (15) will
diminish the direct explanatory power of proportional ancestries and group
identities; their total impact will be partly hidden within the waist measure-
ment variable. This can be remedied by orthogonalizing the waist measure-
ment variable with respect to the proportional ancestry and group identity
variables before estimating the admixture regression, as explained next.
Suppose that variable x1 in (15) has strong explanatory power for s and

substantial correlation with proportional ancestry and/or group identity vari-
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ables, and therefore the analyst wishes to orthogonalize it with respect to Gij

and Aih, j = 2, k;h = 2,m. In a first step, the analyst can perform a sim-
ple least square regression decomposition of x1 into the component linearly
explained by these variables, and the residual, orthogonal component xo1:

x1 = ĉ7 +

k∑
j=2

b̂GjGij +

m∑
h=2

b̂AhAih + xo1 (16)

Since all the explanatory variables are deterministic (that is, conditionally
fixed variables rather than random variables in the regression model), this
orthogonalization step (16) is interpreted as a matrix transformation of fixed
vectors and does not alter any statistical assumptions of the main regres-
sion model. It merely serves to linearly rotate the deterministic explanatory
variables used in the actual, second-stage, admixture regression. Replacing
x1 with xo1 in (15) changes the interpretation of the coeffi cients b̂Gj and b̂Ah,
j = 2, k;h = 2,m since they now include the Gij and Aih related explanatory
power from x1. An illustrative example will be provided in Section 4 below.

3.2 A semiparametric extension of the admixture re-
gression model

The linear dependence of the trait on admixture proportions in our regres-
sion model is in part an artifact of the assumption of a linear polygenic
index (1). It is possible to weaken this linearity assumption using nonpara-
metric regression methods. We replace the restrictive assumption of a linear
polygenic index (1) with a very general description of genetic potential as a
function of the full vector of genetic variants:

pi = p(SNPi·)

and instead of linearity as in (1) only require smoothness conditions on the
conditional expectation of p(·) as a function of the ancestral proportions
vector, as delineated below.
As in earlier subsections, we consider pi as a stochastic function of the

ancestral proportions vectorAi·, but now without imposing the strict linearity
(4) arising from the linear polygenic index assumption:

f(Ai·) = E[p(SNPi·)|Ai·].
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Define the unexplained component of pi as before:

p̃i = pi − f(Ai·)

and as before we assume that p̃i ∼ N(0, σ2p̃) and independent of Ai· and Gi·.
We impose exactly the same assumptions on ei as in Subsection 2.2, giving:

si =

k∑
j=2

bGjGij + f(Ai·) + εi, (17)

where εi = p̃i+ ẽi is normally distributed with mean zero and variance σ2p̃+σ
2
ẽ

and independent of Ai· and Gi·. This equation (17) is a partially linear
nonparametric regression model, see, e.g. Li and Racine (2007). This model
can be consistently estimated using the three-step procedure of Robinson
(1988). We will impose Condition 7.1 from Li and Racine (2007) in order to
justify this procedure within our framework (see the Technical Appendix for
details).
For the case m > 2 the general specification (17) suffers from the curse of

dimensionality and is unlikely to be estimable on moderate-sized datasets. A
more restrictive specification is needed to give the model suffi cient parsimony
for estimation. One reasonable specification choice is to restrict the nonlin-
earity in the impact of ancestries on the trait to a single ancestral category,
which we assume is ancestry category 2, giving rise to the specification:

si =
k∑
j=2

bGjGij + f2(Ai2) +
m∑
h=3

bAhAih + εi, (18)

and we will now rely on this more restrictive specification throughout the
remainder of this subsection.
We assume that the unconditional density Pr(A2) is continuous and strictly

positive everywhere on the [0, 1] interval. Let P̂r(Ai2) denote the nonpara-
metrically estimated unconditional density of Ai2 :

P̂r(Ai2) =
1

n

n∑
i′=1

k(Ai′2 − Ai2), (19)

where k(•) is a kernel weighting function. In our empirical application in
Section 4 we use the Gaussian kernel weighting function, k(x) = 1

φ
√
2π
e−(x/φ)

2

where φ is the chosen bandwidth.
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In the first step of the Robinson procedure, the conditional means of the
dependent variable and linear-component explanatory variables are estimated
nonparametrically as functions of the nonparametric-component explanatory
variable, Ai2:

f̂0(Ai2) ≈ E[si|Ai2]

f̂Gj(Ai2) ≈ E[Gij|Ai2]; j = 2, k
and

f̂Ah(Ai2) ≈ E[Aih|Ai2]; h = 3,m
that is:

f̂0(Ai2) =
1

n

n∑
i′=1

si′k(Ai′2 − Ai2)/P̂r(Ai2),

f̂Gj(Ai2) =
1

n

n∑
i′=1

Gi′jk(Ai′2 − Ai2)/P̂r(Ai2), j = 2, k.

and

f̂Ah(Ai2) =
1

n

n∑
i′=1

Gi′jk(Ai′2 − Ai2)/P̂r(Ai2), 3 = 2,m.

In the second step, the linear parameters of the model (17) are esti-
mated by ordinary least squares, replacing the dependent variable and linear-
component explanatory variables with the deviations from their conditional
mean functions:

(̂bG·, b̂A·) = (X
′X)−1X ′y

where
yi = si − f̂0(Ai2)

Xij = Gij − f̂Gj(Ai2); j = 2, k,

Xih = Aih − f̂Ah(Ai2); h = 3,m.

Note that (̂bG·, b̂A·) is a (k+m−3)−vector and X is a n×(k+m−3)−matrix
where the index first runs from 2 to k over j and then from 3 to m over h.
In the third step, the nonparametric component of the model is estimated

by subtracting the predicted linear component from both sides of (17) and
then applying standard nonparametric regression:

y∗i = si − (
k∑
j=2

b̂GjGij +

m∑
h=3

b̂AhAih); i = 1, n
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and then:

f̂(Ai2) =
1

ci

n∑
i′=1

k(Ai′2 − Ai2)y∗i′ ,

where ci =
n∑

i′=1

k(Ai′2 − Ai2).

The partially linear nonparametric approach to admixture regression is
more empirically challenging than the linear specification. Proper implemen-
tation of the technique involves a tradeoff between parsimony, the generality
of the specification used, and the distributional features of the available data.
An example of (18) will be estimated in Section 4 below.

4 Empirical Application

In this section, we illustrate the techniques by performing an admixture
regression analysis of neuropsychological performance from the Adolescent
Brain Cognitive Development (ABCD) database. The ABCD study is the
largest long-term study of brain development and child health in the United
States, testing 11,000 children ages 9-10 at 21 testing sites; see Karcher
and Barch (2020) for an overview. Our sample consists of age and gender-
adjusted scores and genotyped DNA samples of the 9972 children who met
our sample selection criteria, along with questionaire responses of their par-
ent(s)/guardian(s). The dependent variable in our model is the compos-
ite neuropsychological performance score based on the NIH Toolbox R© (NI-
HTBX) neurocognitive battery provided in the ABCD database; this consists
of tasks measuring attention, episodic memory, language abilities, execu-
tive function, processing speed, and working memory. Our core explanatory
variables are seven SIRE variables, White, Black, Hispanic, Native Ameri-
can, East Asian, South East Asian, and Other (and including multiple SIRE
choices from among these) and five genetic ancestry proportions of European,
African, Amerindian, East Asian and South East Asian background obtained
from the genotyped DNA samples. Children whose parent(s)/guardian(s)
identified the child as belonging to Pacific Islander racial groups were ex-
cluded from our analyses owing to a lack of corresponding ancestry category
in our chosen five categories. The ABCD Version 3 database provides 516,598
genotyped SNP variants for each individual’s DNA sample. After quality
control, filtering, and pruning we were left with 99,642 SNP variants to de-
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termine the five ancestry proportions, employing the Admixture 1.3 software
package (Alexander et al. 2015). See the Supplemental Materials for more
detailed description of the ABCD database, our sample selection procedure,
and the construction of the variables that we use.
Table 1 displays empirical results from four specifications of the admixture

regression methodology. Model 1 uses a linear regression specification and
singleton SIRE categories for the group-identity variables G; individuals who
choose multiple SIRE categories have G exposures equally divided between
the chosen SIRE categories as in (10). Three of the four ancestral propor-
tion variables and one of the seven group-identity variables have statistically
significant coeffi cients. Model 2 adds a selected set of multiple-SIRE com-
posite categories to the G specification. We include the seven two-category
choices with the largest number of observations in our sample. The same
three of four ancestral proportion variables as in Model 1 are significant in
Model 2, with similar coeffi cients to Model 1. None of the single-SIRE group
identity variables is significant. Two of the seven selected two-SIRE group
identity variables, Black-White and Hispanic-White, have significantly dif-
ferent coeffi cients from that implied by equal weightings of the component
single-category coeffi cients. One of these two (Black-White) has a statisti-
cally significant coeffi cient; the Hispanic-White coeffi cient is not significantly
different from zero, but is significantly different from the value implied by
its composite single-category coeffi cients. As a robustness test on the role
played by multiple-SIRE observations, Model 3 discards all observations of
individuals who choose three or more SIRE category or choose two categories
other than the seven two-category combinations of Model 2. This completely
eliminates invocation of the averaging rule (10); it decreases the sample size
by 50, from 9972 to 9922. The regression results are very similar to those
from Model 2. Random effects are included in Models 1-3 and 5-8 (all mod-
els except Model 4) to capture any common variation associated with the 22
individual data collection sites in the ABCD study or associated with those
families having multiple individuals in the sample. We use the lmer maxi-
mum likelihood mixed effects model estimation routine from the R language
library, see Bates et al. (2015), for all models except Model 4. See Nakagawa
and Schielzeth (2013) for the definition and interpretation of conditional and
marginal R2 in a linear mixed effects model.
Model 4 implements a partially linear nonparametric specification. This

specification requires that the highlighted ancestry proportion (whose im-
pact is estimated nonparametically) has observations throughout the [0,1]
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range. For each of the five ancestry categories, Table 2 gives the number
of sample observations of proportional ancestry in decile bins of percent an-
cestry, for each of the five genetic ancestry categories. We use African pro-
portional ancestry as the highlighted variable since it fulfils the requirement
for observations throughout the [0, 1] interval and therefore partially linear
nonparametric estimation is feasible. Figure 1 shows the probability density
of African ancestry for the full sample population; Figure 2 shows the den-
sity restricted to those individuals having measured African ancestry greater
than 0.5%, this provides greater detail in the graph by excluding observations
with near-zero ancestry. Interestingly, this density has three local peaks, at
approximately 5%, 40% and 80% African ancestry.
Partially linear semiparametric Model 4 (18) is estimated using the npplr

routine in the R programming language subroutine library NP written and
maintained by Hayfield and Racine (2020). We use the simple average SIRE
specification of G as in Model 1. We use the Guassian kernel throughout,
and all bandwidths are chosen by iterated least-squares cross-validation. The
linear coeffi cient estimates in Model 4 do not differ notably from those in
Model 1. Figure 3 displays the nonparametric estimate of the impact of
African ancestry on the performance variable along with the corresponding
linear impact estimate from Model 1, that is, f̂(A2) − f̂(0) and A2b̂2 for
A2 ∈ [0, 1]. There is some graphical evidence for an uptick in the nonlinear
gradient for ancestry proportions above 90%. We now briefly examine this
further.
Model 4 does not capture the effi ciency gain from the mixed effects mod-

eling used in the estimation of the other models. Figure 3 of Model 4 is esti-
mated in the second stage of a two-stage semiparametric estimation process
and this weakens its empirical reliability. To examine more carefully the
graphical pattern observed in Figure 3, but with single-stage estimation and
the advantage of mixed effects modeling, we estimate a piecewise linear spec-
ification for Ai2 ≥ 0.9. This was chosen in order to mimick the observed
nonlinear uptick seen in Figure 3 within a linear regression functional form.
Recall that African ancestry proportion is ancestry variable 2, giving the
formulation:

si = c+

7∑
j=2

bGjGij +

5∑
h=2

bAhAih + bkinkAi2D[Ai2 ≥ 0.9] + εi, (20)

where D[•] is a zero-one dummy variable and bkink is the added coeffi cient.
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The results are shown as Models 5 and 6 in Table 3. In Model 5 we use the
simple average SIRE specification of G as in Model 1; Model 6 adds the same
seven two-SIRE combination groups as in Model 3 and, as in Model 3, only
uses observations which have singleton SIRE choices or conform exactly to
one of these seven groups of two-SIRE combinations. The coeffi cient bkink is
significantly positive in one of the two models; the significance of this finding
must be treated with caution since the particular kink specification (20) is
based on examination of Figure 3 using the same data.
Table 4 adds two new variables, US born child and Social-Economic Sta-

tus (SES), to the admixture regression model. US born child equals one if the
child was born in the USA and zero if born elsewhere. SES is a factor-analytic
composite of underlying variables from the ABCD database including neigh-
borhood SES, subjective SES as determined from a set of questionaire an-
swers by the parent(s)/guardian(s) of the child on parental/guardian marital
status, completed level of parental/guardian education, reported neighbor-
hood safety, and parental/guardian employment. See the Supplemental Ma-
terials for more detailed discussion. Models 7 and 8 are identical to Models
5 and 6 (respectively) from Table 3, except for the addition of these two
variables. As discussed in Section 3 above, including additional explanatory
variables complicates the interpretation of an admixture regression model in
terms of the implied decomposition of trait variation into linear components
linked to group identities and components linked to genetic ancestries. The
SES variable covaries strongly with both genetic and environmental com-
ponents of neuropsychological performance scores. To retain the standard
interpretability of the admixture regression it is important to orthogonalize
SES with respect to the group identity and ancestry variables before running
the regression. For completeness, Models 7 and 8 are shown with and with-
out the orthogonalization of SES (versions a and b of each model). If the
purpose of the estimation is to identify the total impact of SES on the trait,
the regression with raw SES is more appropriate (version a). For admixture
analysis intended to capture the total effects of group identity and genetic
ancestry on the trait, orthogonalized SES is more appropriate (version b).

5 Conclusion

Many behavioural traits covary strongly with racial/ethnic self-identities, but
it is often ambigous whether this covariance reflects environmental causes
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associated with racial/ethnic identity groups or reflects underlying genetic
similarity among group members arising from shared geographic ancestry.
Admixture regression relies on the natural experiment of recent genetic ad-
mixture of previously geographically-isolated ancestral groups to measure the
explanatory power arising from racial/ethnic group identities and that aris-
ing from ancestry-based similarities of genetic background. The admixture
regression methodology, in various formulations, has been applied to a wide
range of medical and behavioural traits including asthma, obesity, type 2
diabetes, hypertension, neuropsychological performance, and sleep depth.
This paper provides a statistical framework for admixture regression based

on the linear polygenic index model of behavioural genetics, and develops re-
finements and extensions of the methodology within this framework. We
provide a simple new test procedure for determining whether multiple-SIRE
categories have independent explanatory power not captured by the individ-
ual component categories. We consider additional explanatory variable in the
admixture regression and their interpretation with and without orthogonal-
ization with respect to core variables. We weaken the linearity assumption
and develop a partially linear semiparametric regression specification. We
illustrate our methodology using neuropsychological performance test data
from the Adolescent Brain Cognitive Development database, but the tech-
niques have broader applicability.
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Technical Appendix

In this technical appendix we re-state condition 7.1 from (Racine and
Li 2007, p. 224) in the context of our partially linear admixture regression
model (18).
We assume that the (k+m− 1)−vector of observations (si, Gij, Aih) j =

2, k;h = 2,m has an i.i.d. distribution over observations i = 1, n and that the
conditional mean functions E[Gij|Ai2] and E[Aih|Ai2] are twice differentiable
throughout the interior of the domain of A2, the closed unit interval . Let
m(•) denote any of these conditional mean functions or their first or second
derivative functions. As in Racine and Li, we impose the following Lipschitz-
type smoothness condition on these conditional mean functions and their
first and second derivatives: |m(A2)−m(A′2)| ≤ H(z)|A2 −A′2| where H(•)
is some continuous function such that E[H(A2)2] is finite. The expectation
of H(A2)2 is over the probability distribution of A2.
We continue to assume that εi is mean-zero normally distributed with

constant variance. Since Gij only takes the values of zero and one and Aih is
confined to the unit interval, it necessarily follows that both have bounded
fourth moments. We assume that k(•) is a bounded second-order kernel.
To formally derive the limiting distribution of the Robinson estimator, it

is necessary to define a trimming parameter which ensures that the estimates
P̂r(Ai2) are bounded away from zero. Let t denote a trimming parameter
and consider the estimator described in the text but where observations such
that P̂r(Ai2) < t in (19) are dropped from the subsequent estimation steps.
Let φ denote the kernel bandwidth for sample size n. Assume that the
trimming parameter obeys the following two limiting conditions as n→∞ :
nφ2t4 →∞ and nt−4φ8 → 0.
Under these conditions we have from (Robinson 1988) that

d lim
√
n[(̂bG·, b̂A·)− (bG·, bA·)] ∼ N(0, σ2εE[X

′X]−1).

where the matrix X is defined in the main text of the paper above, in step
two of the Robinson procedure.
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Table 1 
Admixture Regression Results for Neuropsychological Performance 

Linear Specifications with and without Composite Groups and a Partially Linear Semiparametric Specification 
 Core Explanatory Variables 

 Intercept 
% 
African 

% 
Amerindian 

% East 
Asian 

% 
South 
Asian 

Black 
SIRE 

Hispanic 
SIRE 

Native 
American 
SIRE 

East 
Asian 
SIRE 

South 
Asian 
SIRE 

Other 
SIRE 

Model 1 0.3028 -1.0014 -1.3322 0.5998 0.5403 -0.1623 -0.1639 -0.1463 -0.1779 -0.1216 -0.1343 
t-statistic 9.0860 -7.8810 -10.9390 2.8050 1.6140 -1.5500 -2.0250 -1.3520 -0.9520 -0.4550 -1.5710 
Model 2 0.2931 -1.0638 -1.3662 0.5988 0.5252 -0.1180 -0.0889 -0.0689 -0.2655 -0.2486 -0.1324 
t-statistic 8.8250 -8.8820 -11.0840 2.9590 1.6040 -1.1960 -0.9920 -0.5240 -1.4410 -0.9200 -1.1970 
Model 3 0.2924 -1.0093 -1.3522 0.6135 0.6237 -0.1615 -0.1010 -0.0848 -0.2816 -0.3271 -0.1517 
t-statistic 8.7700 -7.8130 -10.8430 2.8660 1.8560 -1.5210 -1.1130 -0.6430 -1.4600 -1.1830 -1.3580 
Model 4 N/A Figure 3 -1.1914 0.6924 0.7377 -0.1289 -0.1202 -0.2578 -0.1369 -0.1523 -0.0761 
t-statistic -9.9517 3.4772 2.3109 -1.3291 -1.4464 -2.5228 -0.7736 -0.5955 -0.9088 

 

Multiple-SIRE-Composite Explanatory Variables 

Wald Test 
Statistic 

Wald 
Test p-
value 

 

Black-
White 
SIRE 

Hispanic-
White 
SIRE 

Native 
America -
White SIRE 

East 
Asian - 
White 
SIRE 

South 
Asian - 
White 
SIRE 

Hispanic 
- Black 
SIRE 

Hispanic 
- Other 
SIRE 

Model 2 
[cont.] 0.0869 -0.3278 -0.0997 0.0302 0.3452 0.0127 -0.1088 
t-statistic 1.1750 -2.7690 -1.1780 0.2960 1.8500 0.0950 -1.5160 
Test 2 2.5540 -2.5400 -0.6345 2.2043 2.8120 -1.8884 0.0234 27.0031 0.0003 
Model 3 
[cont.] 0.0648 0.0648 -0.10146 0.02168 0.31041 

-
0.01709 

-
0.11923 Wald Test 

Statistic 

Wald 
Test p-
value t-statistic 0.8460 0.8460 -1.1980 0.2050 1.6470 -0.1260 -1.6420 

Test 2 2.5494 -2.5413 -0.6344 2.2143 2.8097 -1.8728 0.0235 26.8246 0.0004 
Conditional R2 Model 1: 0.550; Model 2: 0.549; Model 3: 0.550; Model 4:NA  
Marginal R2 Model 1: 0.157; Model 2:  0.159; Model 3: 0.158; Model 4:NA  
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Notes to Table: Model 1 uses single-SIRE categories with multiple-SIRE choices allocated evenly across them; Model 2 adds seven multiple-SIRE 
categories; Model 3 follows Model 2 but drops multiple-SIRE choice observations which do not conform to the seven added categories; Model 4 
uses semiparametric estimation and single-SIRE categories as in Model 1.  Test 2 gives the z-statistic for testing if the multiple-SIRE group 
coefficient equals the average of the component coefficients; the Wald statistic provides a joint test of all the Test 2 restrictions.  
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Table 2 

Number of Observations in Deciles of Proportional Ancestry for Each Ancestry Category 
European Interval A1i≤10% 10%<A1i≤20% 20%<A1i≤30% 30%<A1i≤40% 40%<A1i≤50% 

Number of Obs. 298 908 425 346 461 
Interval 50%<A1i≤60% 60%<A1i≤70% 70%<A1i≤80% 80%<A1i≤90% 90%<A1i 
Number of Obs. 700 406 462 514 5452 

African Interval A2i≤10% 10%<A2i≤20% 20%<A2i≤30% 30%<A2i≤40% 40%<A2i≤50% 
Number of Obs. 7557 2935 286 125 165 
Interval 50%<A2i≤60% 60%<A2i≤70% 70%<A2i≤80% 80%<A2i≤90% 90%<A2i 
Number of Obs. 88 130 406 787 149 

Amerindian Interval A3i≤10% 10%<A3i≤20% 20%<A3i≤30% 30%<A3i≤40% 40%<A3i≤50% 
Number of Obs. 8364 443 329 301 282 
Interval 50%<A3i≤60% 60%<A3i≤70% 70%<A3i≤80% 80%<A3i≤90% 90%<A3i 
Number of Obs. 156 75 18 0 4 

East Asian Interval A4i≤10% 10%<A4i≤20% 20%<A4i≤30% 30%<A4i≤40% 40%<A4i≤50% 
Number of Obs. 9455 74 84 20 225 
Interval 50%<A4i≤60% 60%<A4i≤70% 70%<A4i≤80% 80%<A4i≤90% 90%<A4i 
Number of Obs. 18 4 8 10 74 

South Asian Interval A5i≤10% 10%<A5i≤20% 20%<A5i≤30% 30%<A5i≤40% 40%<A5i≤50% 
Number of Obs. 9796 55 30 29 17 
Interval 50%<A5i≤60% 60%<A5i≤70% 70%<A5i≤80% 80%<A5i≤90% 90%<A5i 
Number of Obs. 4 11 9 21 0 

 

Notes to Table: For each of the five geographic ancestries, the table shows the number of the total 9972 observations within each of the deciles 
of proportional ancestry.  
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Figure 1 

Estimated Density of African Ancestry for the Full Sample 
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Figure 2 

Estimated Density of African Ancestry for a Restricted Sample (Ancestry > 0.5%) 
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Figure 3 

Linear and Nonlinear Gradients Measuring the Impact of African Ancestry  
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Table 3 

Piecewise Linear Admixture Regression Results with and without Composite Groups 
 Core Explanatory Variables 

 Intercept 
% 
African 

% 
Amerindian 

% East 
Asian 

% South 
Asian 

Black 
SIRE 

Hispanic 
SIRE 

Native 
American 
SIRE 

East 
Asian 
SIRE 

South 
Asian 
SIRE 

Other 
SIRE 

Model 5 0.3041 -1.1081 -1.3563 0.5808 0.4400 -0.0920 -0.1409 -0.1273 -0.1568 -0.0433 -0.1112 
t-statistic 9.1920 -9.1230 -11.2640 2.8720 1.3490 -0.9330 -1.7600 -1.1800 -0.8820 -0.1660 -1.3120 
Model 6 0.2931 -1.0780 -1.3610 0.6039 0.6100 -0.1248 -0.0874 -0.0700 -0.2717 -0.3165 -0.1356 
t-statistic 8.8240 -8.0850 -10.9110 2.8210 1.8150 -1.1600 -0.9600 -0.5300 -1.4090 -1.1450 -1.2110 

 

Piecewise 
Linear 
Variable Multiple-SIRE-Composite Explanatory Variables  

 D[A2≥0.9]A2 
Black-
White 
SIRE  

Hispanic-
White SIRE 

Native 
America -
White 
SIRE 

East 
Asian - 
White 
SIRE 

South 
Asian - 
White 
SIRE 

Hispanic 
- Black 
SIRE 

Hispanic - 
Other 
SIRE 

Wald 
Test Wald Test p-value 

Model 5 
[cont.] 0.1607 
t-statistic 1.8180 
Model 6 
[cont.] 0.1847 0.0911 -0.3278 -0.1011 0.0258 0.3149 0.0195 -0.1095 
t-statistic 2.0730 1.1740 -2.7550 -1.1940 0.2430 1.6720 0.1430 -1.5060 
Test 2  2.6808 -2.5415 -0.6416 2.1963 2.8330 -1.8440 0.0247 27.7371 0.0002 
Conditional R2 Model 5: 0.550; Model 6: 0.550 
Marginal R2 Model 5: 0.157; Model 6: 0.159 

 
 

Notes to Table:  Model 5 uses single-SIRE categories with multiple-SIRE choices allocated evenly across the categories. Model 6 adds seven 
multiple-SIRE categories and excludes multiple-SIRE observations which do not match any of these seven categories. Both models include a 
kinked-linear explanatory variable for African ancestry above 90%. Test 2 gives the z-statistic for testing if the multiple-SIRE group coefficient 
equals the average of the component coefficients; the Wald statistic provides a joint test of all the Test 2 restrictions. 
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Table 4 
Linear Admixture Regression Results Including Social-Economic Status (SES) and US Born Variables 

Table 4a: Using Raw SES 
 Core Explanatory Variables 

 Intercept % African 
% 
Amerindian 

% East 
Asian 

% South 
Asian 

Black 
SIRE 

Hispanic 
SIRE 

Native 
American 
SIRE 

East 
Asian 
SIRE 

South 
Asian 
SIRE 

Other 
SIRE 

Model 7a 0.0824 -0.6465 -0.7071 0.5630 0.3551 -0.0958 -0.0564 -0.0070 -0.1713 -0.0917 -0.0595 
t-statistic 1.3550 -5.4470 -5.9860 2.8770 1.1230 -1.0060 -0.7320 -0.0670 -0.9940 -0.3630 -0.7260 
Model 8a 0.0817 -0.6714 -0.7433 0.5509 0.4650 -0.0886 0.0106 0.0771 -0.2098 -0.2947 -0.0718 
t-statistic 1.3320 -5.1700 -6.0880 2.6600 1.4280 -0.8510 0.1210 0.6030 -1.1220 -1.1030 -0.6630 

 

Piecewise 
Linear 
Variable Socio-Economic Variables Multiple-SIRE-Composite Explanatory Variables  

 D[A2≥0.9]A2 

Socio-
Economic 
Status US Born 

Black-
White 
SIRE  

Hispanic-
White 
SIRE 

Native 
America 
-White 
SIRE 

East 
Asian - 
White 
SIRE 

South 
Asian - 
White 
SIRE 

Hispanic 
- Black 
SIRE 

Hispanic 
- Other 
SIRE Wald 

test and 
p-value 

Model 7a 
[cont.] 0.0489 0.2612 0.0914 
t-statistic 0.5720 25.3120 1.6120 
Model 8a 
[cont.] 0.0804 0.2601 0.0830 0.1333 -0.1898 -0.0492 -0.0158 0.2473 0.0093 -0.0235 

t-statistic 0.9310 25.1160 1.4460 1.7770 -1.6440 -0.6020 -0.1540 1.3590 0.0700 -0.3340 22.2170 
Test 2 3.2033 -1.7969 -0.8785 1.2392 2.4404 -1.2921 0.0945 0.0023 
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Table 4b: Using Orthogonalized SES 
 Core Explanatory Variables 

 Intercept % African 
% 
Amerindian 

% East 
Asian 

% South 
Asian 

Black 
SIRE 

Hispanic 
SIRE 

Native 
American 
SIRE 

East 
Asian 
SIRE 

South 
Asian 
SIRE 

Other 
SIRE 

Model 7b 0.1998 -1.1432 -1.3275 0.6671 0.5892 -0.1032 -0.1422 -0.2365 -0.1687 -0.0969 -0.0912 
t-statistic 3.2580 -9.7210 -11.4380 3.4000 1.8580 -1.0800 -1.8390 -2.2670 -0.9770 -0.3820 -1.1110 
Model 8b 0.1996 -1.1166 -1.3306 0.6908 0.7604 -0.1342 -0.0951 -0.1669 -0.2812 -0.3744 -0.1186 
t-statistic 3.2280 -8.6420 -11.0590 3.3270 2.3300 -1.2860 -1.0840 -1.3030 -1.5000 -1.3970 -1.0930 

 

Piecewise 
Linear 
Variable Socio-Economic Variables Multiple-SIRE-Composite Explanatory Variables  

 D[A2≥0.9]A2 

Socio-
Economic 
Status US Born 

Black-
White 
SIRE  

Hispanic-
White 
SIRE 

Native 
America 
-White 
SIRE 

East 
Asian - 
White 
SIRE 

South 
Asian - 
White 
SIRE 

Hispanic 
- Black 
SIRE 

Hispanic 
- Other 
SIRE Wald 

test and 
p-value 

Model 7b 
[cont.] 0.2092 0.2848 0.1014 
t-statistic 2.4410 24.1330 1.7830 
Model 8b 
[cont.] 0.2330 0.2839 0.0910 0.0874 -0.3298 -0.1637 0.0130 0.2923 0.0216 -0.0991 
t-statistic 2.6950 23.9660 1.5820 1.1620 -2.8520 -1.9970 0.1260 1.6030 0.1630 -1.4050 29.6172 
Test 2 2.7864 -2.5972 -0.8024 2.1343 2.9652 -1.8410 0.1030 0.0001 
Conditional R2 Models 7a,b: 0.548; Models 8a,b: 0.549 
Marginal R2 Models 7a,b: 0.220; Models 8a,b: 0.221 

 

Notes to Table:  Models 7a,b use single-SIRE categories with multiple-SIRE choices allocated evenly among them; Models 8a,b add seven 
multiple-SIRE categories and exclude multiple-SIRE observations which do not match any of these seven categories. All models include a kinked-
linear explanatory variable for African ancestry above 90%, a dummy variable for a child born in the US, and a composite variable measuring 
social-economic status. In Models 7a and 8a the social-economic status variable is in raw form whereas in Models 7b and 8b it is orthogonalized 
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with respect to the other explanatory variables (except US born). Test 2 gives the z-statistic for testing if the multiple-SIRE group coefficient 
equals the average of the component coefficients; the Wald statistic provides a joint test of all the Test 2 restrictions. 
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Supplementary material for “Linear and partially linear models of behavioural trait variation using 

admixture regression” in which the dataset, variables, and methods for the empirical analysis are 

detailed. 

Materials and Methods 

1.1 Dataset 

The Adolescent Brain Cognitive Development Study (ABCD) is a collaborative longitudinal 

project between 21 sites across the US. Its goal is to further research into the psychological and 

neurobiological basis of development. At baseline, around 11,000 9-10 year old children were 

sampled, using a probabilistic sampling strategy, from public and private elementary schools and 

through non-school-based community outreach between 2016 and 2018, with the goal of creating a 

broadly representative sample of US children of this age. Children who were not fluent in English (or 

whose parents were not fluent in either English or Spanish) were excluded, along with those with 

severe medical, neurological, or psychiatric conditions. Informed consent was provided by parents.  

Baseline ABCD 3.0 data release was used. For this analysis, we excluded individuals who did 

not have NIH Toolbox® results, who did not have admixture data, or who were identified as being a 

Pacific Islander. This left 9972 individuals. 

1.2 Variables  

1.2.1. Admixture 

Subjects were genotyped using Illumina XX, with 516,598 variants directly genotyped and 

surviving the quality control done by the data provider. We used the 3.0 release of the dataset, which 

also includes an edition with imputed variants using TOPMED and Eagle 2.4. Because we had very 

few samples from Pacific Islanders, we excluded these from further analysis to simplify the reference 

populations needed (n = 69). All our work was done on build 38. Files in hg17/37 were lifted to hg38 
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using liftOver (https://github.com/sritchie73/liftOverPlink) and the GRC chain file at 

ftp://ftp.ensembl.org/pub/assembly_mapping/homo_sapiens/ (GRCh37_to_GRCh38.chain.gz). 

Before global admixture estimation, we applied quality control using plink 1.9. We used only 

directly genotyped, bi-allelic, autosomal SNP variants (494,433, 493,196, before and after lifting). We 

pruned variants for linkage disequilibrium at the 0.1 R² level using plink 1.9 (--indep-pairwise 10000 

100 0.1), as recommended in the admixture documentation 

(https://vcru.wisc.edu/simonlab/bioinformatics/programs/admixture/admixture-manual.pdf). This 

variant filtering was done in the reference population dataset to reduce bias from sample 

representativeness. After pruning, we were left with 99,642 variants. To ensure a reasonable balance in 

the estimation dataset, we merged the target samples from ABCD, with reference population data for 

the populations of interest. We desired a k=5 solution (European, Amerindian, African, East Asian, 

and South Asian), so we merged with relevant samples from 1000 Genomes and from the HGDP. The 

following populations were excluded: Adygei, Balochi, Bedouin, Bougainville, Brahui, Burusho, 

Druze, Hazara, Makrani, Mozabite, Palestinian, Papuan, San, Sindhi, Uygur, Yakut. These reference 

populations were excluded because they were overly admixed or because, in the case of Melanesians 

and San, the individuals in the ABCD sample lacked significant portions of these ancestries.  

  Because the estimation sample would still be very skewed towards European ancestry using 

this joint sample, we used repeated subsetting to achieve balance. Specifically, we split the ABCD 

target samples into 50 random subsets, each with about 222 persons, and merged them one at a time 

with the reference data, followed by running admixture k=5 on each merged subset. We verified that 

these subsets produced stable results by examining the stability of the estimates for the reference 

samples. There was very little variation across runs, e.g., for the reference sample with the most 

variance (European, NA12342), the mean estimate was 98.3% with SD=0.17% across the 50 runs. 
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Since Admixture does not label the resulting clusters, we used 5 reference samples to index the 

populations so the data would be merged correctly. In no case did this produce any inconsistencies. 

1.2.2. Neuropsychological Performance  

The NIH Toolbox® (NIHTBX) neuropsychological battery was designed to measure a broad 

range of cognitive abilities. It consists of seven tasks which index attention (Flanker Inhibitory Control 

and Attention Task), episodic memory (Picture Sequence Memory Task), language abilities (Picture 

Vocabulary Task & Oral Reading Recognition Task), executive function (Dimensional Change Card 

Sort Task & Flanker Inhibitory Control and Attention Task), processing speed (Pattern Comparison 

Processing Speed Task), and working memory (List Sorting Working Memory Task) (Akshoomoff et 

al., 2014; Weintraub et al., 2013). NIHTBX was normed for samples between ages 3 and 85; tasks 

correlate highly with comparable ability assessments (Weintraub et al., 2013). Moreover, this battery 

has been shown to be measurement invariant across American ethnic groups (Lasker, Pesta, Fuerst, & 

Kirkegaard, 2019).  

Age-corrected composite scores, based on the seven tasks, were provided by ABCD. We 

regressed out sex from these age-corrected composite scores. The residuals were then standardized.  

1.2.3. Self-identified Race and Ethnicity 

Self-identified race was based on parental responses to 18 questions asking about the child’s 

race (“What race do you consider the child to be? Please check all that apply”). From these questions, 

six broad racial categories were created: European (“White”), African (“Black/African American”), 

Native American (“American/Native American” and “Alaska Native”), South Asian (“Asian Indian”), 

East Asian (“Chinese,” “Filipino,” “Japanese,” “Korean,” and “Vietnamese”, “Other Asian,”), and 

Other (“Other race,” “Refused to answer,” “Don’t know”). The Other Asian group (N = 66) was 

classified as “East Asian” because the Asian ancestry component was predominantly East (44%;) not 
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South (7%) Asian; the remaining ancestry was predominantly European (40%).  The Pacific Islander 

groups (“Native Hawaiian,” “Guamanian,” “Samoan,” and “Other Pacific Islander”) were excluded as 

we did not have a corresponding admixture component. Self-identified ethnicity was based on parental 

responses to 1 question asking about Latin American ethnicity (“Do you consider yourself 

Hispanic/Latino/Latina?”). From this we created an additional ethnic category.  

Descriptive statistics for the SIRE groups are shown in Table S1. Statistics are reported for 

single ethnic categories i.e., individuals reported as being only White, Black, East Asian, Native 

American, or Other, with no combinations (e.g., Hispanic & White), Hispanics, the seven  top double 

combinations (i.e., Hispanic & White, Hispanic & Black, Hispanic & Other, non-Hispanic Black & 

White, non-Hispanic East Asian & White, non-Hispanic Native American & White, and non-Hispanic 

South Asian & White) and finally all other remaining groups combined.  

Table 1. Descriptive Statistics for the SIRE Groups. 

__________________________________________________________________________________ 

 N Age 
M 

Eur. 
% 

Afr.  
% 

E.Asian
% 

S.Asian 
% 

Amer.  
% 

US Born 
N 

Neuro
psy. 

SES 

NH White 
Only 

5498 9.93 0.97 0.01 0.00 0.01 0.01 5425 0.25 0.41 

NH Black 
Only 

1420 9.91 0.19 0.80 0.00 0.00 0.01 1388 -0.77 -1.01 

NH East Asian 
Only 

103 10.04 0.13 0.01 0.83 0.02 0.01 84 0.60 0.58 

NH South 
Asian Only  

43 10.03 0.24 0.00 0.03 0.73 0.01 35 0.45 0.87 

NH Native 
American Only  

31 9.70 0.71 0.11 0.01 0.01 0.15 31 -0.42 -0.78 
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NH Other Only 53 10.00 0.56 0.27 0.06 0.04 0.06 49 -0.20 -0.43 

Any Hispanic 1869 9.88 0.60 0.10 0.02 0.01 0.27 1755 -0.23 -0.41 

    Hispanic & 
White 

73 9.90 0.48 0.10 0.01 0.00 0.40 67.00 -0.65 -0.96 

    Hispanic & 
Black 

66 9.77 0.34 0.54 0.00 0.00 0.11 61.00 -0.42 -0.64 

    Hispanic & 
Other 

338 9.88 0.49 0.09 0.02 0.00 0.40 316.00 -0.41 -0.69 

NH Black & 
White 

293 9.88 0.58 0.40 0.00 0.00 0.01 292.00 -0.11 -0.44 

NH East Asian 
& White 

246 9.99 0.56 0.01 0.41 0.02 0.01 241.00 0.58 0.68 

NH Native 
American & 
White 

130 9.78 0.90 0.01 0.01 0.01 0.07 130.00 0.00 -0.06 

NH South 
Asian & White 

40 9.79 0.63 0.00 0.02 0.34 0.01 39.00 0.83 0.78 

Any_Other NH 
combination 

246 9.90 0.46 0.38 0.09 0.02 0.04 234.00 -0.23 -0.55 

__________________________________________________________________________________ 

Note: Euro.% = European ancestry percentage, Afr.% = African ancestry percentage, E.Asian% = East Asian Ancestry 

percentage, S.Asian% = South Asian Ancestry percentage, Neuropsy. = Neuropsychiatric performance, SES = general 

socioeconomic component score. NH = non-Hispanic. 

The racial and ethnic variables were then recoded to create interval categories for which 

individuals are assigned a percentage of each SIRE category based on the number of responses chosen 

(Liebler & Halpern-Manners, 2008; Kirkegaard et al., 2019). By this coding, if someone was marked 

as White and Hispanic, they were assigned scores of .5 for white and .5 for Hispanic and 0 for the 
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other 5 categories. The correlations between these interval scores and genetic ancestry components are 

shown in Table S2 below (N = 9972). As found by others (Guo, Fu, Lee, Cai, Harris, and Li (2014), 

self-identified race generally corresponds with genetic ancestry.  

Table S2. Correlations between Interval Coded SIRE and Genetic Ancestry. 

_____________________________________________________________________________ 

 European African East Asian South Asian  Amerindian 

 ancestry ancestry Ancestry ancestry ancestry 

White_SIRE 0.90 -0.73 -0.21 -0.05 -0.32 

Black_SIRE -0.76 0.95 -0.08 -0.09 -0.18 

East_Asian_SIRE -0.24 -0.08 0.92 0.02 -0.06 

South_Asian SIRE -0.11 -0.04 0.01 0.87 -0.04 

Native_SIRE -0.01 0.00 -0.01 -0.03 0.06 

Hispanic_SIRE -0.21 -0.10 -0.04 -0.06 0.77 

Other_SIRE -0.16 -0.01 0.01 0.00 0.38 

_______________________________________________________________________________ 

1.2.4. Region of Birth (US Born) 

 Region of birth was based on the parental response to the question, “In which country was the 

child born?”.  The response “United States” was recoded as 1 and all other responses were recoded as 

0. 

1.2.5. Socioeconomic Status  
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 Socioeconomic status was based on seven indicators: financial adversity, area deprivation 

index, neighborhood safety protocol, parental education, parental income, parental marital status, and 

parental employment status.  These are detailed below: 

 1.2.5.1. Financial Adversity (Reverse Coded). Parents answered a seven item Financial 

Adversity Questionnaire (PRFQ). They were asked: “In the past 12 months, has there been a time 

when you and your immediate family experienced any of the following:  

(1) “Needed food but could not afford to buy it or could not afford to go out to get it?”,  
(2) “Were without telephone service because you could not afford it?”  
(3) “Did not pay the full amount of the rent or mortgage because you could not afford it?”,  
(4) “Were evicted from your home for not paying the rent or mortgage?”, 
(5) “Had services turned off by the gas or electric company, or the oil company would not deliver oil 
because payments were not made?”,  
(6) “Had someone who needed to see a doctor or go to the hospital but did not go because you could 
not afford it?”, and  
(7) “Had someone who needed a dentist but could not go because you could not afford it?”  
For each of the seven items they answered “yes” (1) or “no” (0). We summed responses. Thus the 
maximum was 7 and the minimum was 0.   
 
 This variable was reverse coded, so that higher scores indicated less financial adversity, and 

then standardized.  

 
1.2.5.2. Area Deprivation Index (ADI) (Reverse Coded). Parents completed a residential 

history questionnaire. They provided the residential addresses and the number of full years they lived 

at each residence. For each address an Area Deprivation Index (ADI) was computed by ABCD and the 

national percentile of the area’s socioeconomic status was given. ADI was based on the following 

variables: 

1. “Percentage of occupied housing units without complete plumbing (log)”  
2. “Percentage of occupied housing units without a telephone”  
3. “Percentage of occupied housing units without a motor vehicle”  
4. “Percentage of single” 
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5. “Percentage of population below 138% of the poverty threshold”  
6. “Percentage of families below the poverty level”  
7. “Percentage of civilian labor force population aged >=16 y unemployed (unemployment 

rate)”  
8. “Percentage of occupied housing units with >1 person per room (crowding)”  
9. “Percentage of owner” 
10. “Median monthly mortgage” 
11. “Median gross rent” 
12. “Median home value” 
13. “Income disparity defined by Singh as the log of 100 x ratio of the number of households 

with <10000 annual income to the number of households with >50000 annual income” 
14. “Median family income” 
15. “Percentage of population aged >=25 y with at least a high school diploma”  
16. “Percentage of population aged >=25 y with <9 y of education”  
 

We weighted the ADI for the last three residences by the numbers of years at each residence. 

Before weighting, we recoded zero full years of residence as one-half of a year, so to give weight to 

time spend at a residence that was less than one year. The weighted ADI scores were then reverse 

coded, so that higher values indicated higher socioeconomic neighborhoods, and then standardized..   

1.2.5.3. Neighborhood Safety Protocol. Parents were asked three Likert scale (1 = strongly 

disagree; 5 = strongly agree) questions about neighborhood safety: “I feel safe walking in my 

neighborhood, day or night,” “Violence is not a problem in my neighborhood,” and “My neighborhood 

is safe from crime.” We used the precomputed summary scores for which the three scores were 

summed and then divided them by three.  

1.2.5.3. Education. Parents were asked, “What is the highest grade or level of school you have 

completed or the highest degree you have received.” To create an interval variable, we recoded 

parental education as 0 to 18: Never attended/Kindergarten only = 0, 1st grade = 1, 2nd grade = 2, 3rd 

grade = 3, 4th grade = 4, 5th grade = 5, 6th grade =  6, 7th grade = 7, 8th grade = 8, 9th grade = 9, 10th 

grade = 10, 11th grade = 11, 12th grade = 12,  High school graduate =12, GED or equivalent Diploma 

General =12, Associate degree: Occupational Program =14, Associate degree: Academic Program = 
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14, Bachelor's degree = 16, Master's degree = 18, Professional school = 18, Doctoral degree = 18. We 

standardized the scores for each  educational scores for both parents and standardized the averaged 

scores.  

1.2.5.4. Income. Family was an interval variable which reflected the parents’ total combined 

family income in the past 12 months. The variable was recoded as follows: 1.00 = less than $5000 

(recode: 4,500); 2.00 = $5000 to 11,999 (recode: 5,000); 3.00 = $12,000 to 15,999 (recode: 12,000); 

4.00 = $16,000 to 24,999 (recode: 16,000); 5.00 = $25,000 to 34,999 (recode: 25,000); 6.00 = $35,000 

to 49,999 (recode: 35,000); 7.00 = $50,000 to 74,999 (recode: 50,000); 8.00 = $75,000, to 99,999 

(recode: 75,000); 9.00 = $100,000 to 199,999 (recode: 100,000); 10.00 = $200,000 and greater 

(recode: 200,000). 

1.2.5.5. Marital Status. Parental marital status was coded as 1 if married and 0 for any other 

arrangement. 

1.2.5.6. Employment Status. Parental employment was coded as 1 if at least one parent was 

working now either full or part time and 0 for all other cases.  

3.2.5.7. General SES. Missing data for the seven economic indicators were imputed using the 

mice package (df, m=5, maxit = 50, method = 'pmm', seed = 500).  Descriptive statistics for the 

imputed SES indicators are provided in Table S3, while the correlation matrix for the imputed 

variables (N = 9972), along with neuropsychiatric performance, is shown in Table S4. 

Table S3. Descriptive Statistics for the SES Indicators.  

_____________________________________________________________________________ 
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Variable Mean SD Median Min Max Skew Kurtosis S.E. 

Financial Adversity  0.00 1.00 0.42 -6.00 0.42 -2.90 8.90 0.01 

ADI 0.00 1.00 0.22 -2.26 1.42 -0.64 -0.62 0.01 

 Safety Protocol 0.00 1.00 0.09 -3.04 1.13 -0.91 0.44 0.01 

Education 0.00 1.00 -0.02 -5.44 1.33 -0.82 1.19 0.01 

Income 0.00 1.00 -0.05 -1.33 2.24 0.92 0.35 0.01 

Marital Status 0.68 0.47 1.00 0.00 1.00 -0.78 -1.39 0.00 

Employment Status 0.91 0.28 1.00 0.00 1.00 -2.93 6.58 0.00 
  

_____________________________________________________________________________ 

Table S4. Correlation Matrix for the SES indicators, Genetic Ancestry, and Neuropsychiatric 

Performance (N = 9972 in all cases). 

__________________________________________________________________________________ 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

(1) Financial 
Adversity 

1.00             

(2)ADI 0.23 1.00            

(3)Safety Protocol 0.24 0.26 1.00           

(4)Education 0.29 0.30 0.28 1.00          

(5)Income 0.34 0.36 0.32 0.57 1.00         

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 16, 2021. ; https://doi.org/10.1101/2021.05.14.444173doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.14.444173
http://creativecommons.org/licenses/by-nc-nd/4.0/


(6)Marital 
Status 

0.27 0.25 0.23 0.33 0.46 1.00        

(7)Employed 0.16 0.14 0.15 0.26 0.27 0.28 1.00       

(8)European 0.24 0.29 0.30 0.38 0.38 0.37 0.21 1.00      

(9)African -0.26 -0.35 -0.28 -0.29 -0.36 -0.40 -0.20 -0.82 1.00     

(10)Amerindian -0.06 0.00 -0.12 -0.39 -0.23 -0.09 -0.08 -0.28 -0.13 1.00    

(11)East_Asian 0.05 0.07 0.02 0.10 0.09 0.07 0.02 -0.28 -0.09 -0.04 1.00   

(12)South_Asian 0.04 0.05 0.04 0.12 0.11 0.07 0.03 -0.07 -0.10 -0.07 0.00 1.00  

(13)Neuropsychic 
Performance 

0.20 0.23 0.18 0.40 0.35 0.27 0.18 0.33 -0.35 -0.15 0.11 0.09 1.00 

__________________________________________________________________________________ 

We then submitted the seven SES indicators to Principal Component Analysis (PCA). For this, 

we used the R package PCAmixdata, which handles mixed categorical and continuous data (Chavent, 

Kuentz-Simonet, & Saracco, 2014). The first unrotated component explained 40% of the variance. The 

PCA_1 loadings for the seven SES indicators were as follows: financial adversity (.250), area 

deprivation index (.153), neighborhood safety protocol (.256), parental education (.504), parental 

income (.658), parental marital status (.270), and parental employment status (0.183).  The vector of 

PCA_1 loadings correlated with the vector of SES indicator effects on Neuropsychiatric Performance 

at .84 (N=7). This indicates that the better measures of general SES have higher cognitive loadings.  

PCA_1 scores correlated with Neuropsychological Performance at r =  .43 in the full sample. 

Among non-Hispanic Whites, non-Hispanic Blacks, and Hispanics, the correlations between PCA_1 

and Neuropsychological Performance was r = .29 (N = 6246), r = .35 (N = 1474), and r = .32 (N = 

1869), respectively. These magnitudes of child-parental SES correlations are consistent with those 

previously reported (Flores-Mendoza, Ardila, Gallegos, & Reategui-Colareta, 2021; Sirin, 2005). The 

congruence coefficients for the SES component loadings were >= .97 for the largest three SIRE groups 
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(non-Hispanic Whites, non-Hispanic Blacks, and Hispanics), indicating identical structures across 

groups.  

2. Methods 

A series of regression models were run with NIHTBX as the dependent variable.  The 

NIHTBX and socioeconomic variables were standardized (based on the subsample of 9972 retained 

individuals). The ancestry variables were left unstandardized, thus the coefficients from ancestries can 

be interpreted as a change in 100% ancestry over a change in one standardized unit of NIHTBX 

scores. European ancestry and White SIRE were selected as reference values and thus not included as 

independent variables.  

For the regression analyses, following the recommendations of Heeringa and Berglund (2021), 

we used a three-level (site, family, individual) multi-level mixed effects model. This model was 

applied to the pooled twin and regular ABCD baseline sample. This specification approximates the 

ABCD Data Exploration and Analysis Portal (DEAP) specification (Heeringa and Berglund, 2021). 
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