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Abstract 

Reaction-diffusion models have been widely used to elucidate pattern formation in 

developmental biology. More recently, they have also been applied in modeling cell fate 

patterning that mimic early-stage human development events utilizing geometrically confined 

pluripotent stem cells. However, the traditional reaction-diffusion equations could not 

satisfactorily explain the concentric ring distributions of various cell types, as they do not yield 

circular patterns even for circular domains. In previous mathematical models that yield ring 

patterns, certain conditions that lack biophysical understandings had been considered in the 

reaction-diffusion models. Here we hypothesize that the circular patterns are the results of the 

coupling of the mechanobiological factors with the traditional reaction-diffusion model. We 

propose two types of coupling scenarios: tissue tension-dependent diffusion flux and traction 

stress-dependent activation of signaling molecules. By coupling reaction-diffusion equations 

with the elasticity equations, we demonstrate computationally that the contraction-reaction-

diffusion model can naturally yield the circular patterns.  

Introduction 

The reaction-diffusion models have been widely used to explain pattern formation in 

developmental biology, where an activator-inhibitor network dominates the certain stage in 

biological development and leads to Turing Patterns afterwards. For example, Kondo et al1 

applied the model to study the movement of zebrafish strips in a recovery process. More 
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recently, Human pluripotent stem cells (hPSCs)-based in vitro models have been developed to 

study early-stage human development2–7 (see an experimental result in Fig. 1). In these models, 

hPSCs were confined in mesoscale circular patterns and exposed to uniform morphogens or 

small molecules in culture media. Under these conditions, hPSCs differentiated into self-

organized concentric rings of different cell types, mimicking the formation of three germ layers 

during gastrulation, or neuroepithelium/neural crest/epidermis patterning during neural plate 

induction. To explain such autonomous cell patterning behaviors, reaction-diffusion models 

have also been applied in these in vitro systems. Tewary et al3 studied the self-organized human 

peri-gastrulation-like-pattering, and suggested that the three germ layers formed in confined 

hPSCs were induced by reaction-diffusion of BMP4 and its inhibitor Noggin, by using a 

stepwise reaction-diffusion model. We recently reported that the patterning of neuroepithelium, 

neural crest, and epidermis can be tuned by temporally modulating the reaction-diffusion of 

BMP-Noggin and Wnt-Dkk pairs6. 

 

The basic reaction-diffusion models do not predict axisymmetric patterns in a circular domain, 

instead they only produce dotted or stripped patterns, as shown in Fig. 2. While reaction-

diffusion equations were generally successful in explaining the orders of different cell types in 

circular patterns, to produce circular patterns observed in experiments, previous studies have 

incorporated additional mathematical treatments that lack biophysical relevance into reaction-

diffusion models. Namely, In Sanderson et al.’s work8, axisymmetric diffusion constant or 

reaction rate coefficient were directly defined. Tewary et al3. imposed circular initial conditions 

without direct experimental evidence, and Xie et al6. computationally modeled the pattern 

generation using an axisymmetric model directly. Therefore, the physical mechanism for the 

robust formation of concentric rings of different cell types across various models is still poorly 

understood.  

 

Figure 1. Schematic illustration and fluorescence images showing the self-organized ring-

structure of neuroepithelium, neural crest and epidermis formed on micropatterned substrate. 

(a) The schematic illustration of a two-layer structure of the work by Xue et al.4; (b) A three-

layer-structure showing the epidermis markers (TP63), the neuroepithelial cell marker (PAX6), 

and the neural crest markers (SOX10, PAX3), (Reprinted with permission from Xie et al.6).  

A number of previous works have studied the cellular mechanobiology9–11, such as stress-

dependent pattern formation12–16. Nelson et al17 have shown a correspondence between the 

patterns of proliferative foci regions and the areas of high traction forces. Yuan et al studied 

the maximum principal-stress-guided myofibril organizations14 and developed a contraction-

reaction-diffusion model for morphological study of single-cell migration15. In these works, 

the solution of the elasticity equation for a contractile tissue, in general, predict a tension 

distribution highest in the middle of the domain and vanish at the free edge, and a traction force 
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distribution highest at the edge and decreases towards the center. We hypothesize that this 

radial distribution feature can naturally lead to circular/ring pattern.  

Here we propose that circular patterns are caused by the combination of mechanical stresses 

presented in the cellular tissue and the reaction-diffusion processes of signaling molecules. 

Specifically, we hypothesize two possible mechanisms that are (1) the tissue-tension-driven 

diffusion of signaling molecules and (2) the traction-forces-mediated activation of signaling 

molecules. By coupling reaction-diffusion equations with elasticity equations, we demonstrate 

computationally that the contraction-reaction-diffusion model can naturally yield circular 

patterns. 

 

Diffusion-driven Turing Instability for signaling mechanism in biological tissue 

development 

The pattern formations in the process of tissue development, such as skin patterns of zebrafish1 

and limbs development18,19, have been described by reaction-diffusion models in the literature20: 

𝜕𝜙𝑖

𝜕𝑡
= −∇ ∙ 𝐉𝑖 + 𝑟𝑖(𝜙1, 𝜙2), 𝑖 = 1,2, in Ω,     (1a) 

𝐉𝑖 ∙ 𝐧 = 0, 𝑖 = 1,2, at 𝜕Ω,      (1b) 

where 

 𝐉𝑖 = −𝐷𝑖∇𝜙𝑖, 𝑖 = 1,2.        (1c) 

The active levels of the activators and inhibitors: two signaling molecules generated in the 

process of the tissue development, are described by the concentration of the two variables 𝜙1 

and 𝜙2  in the diffusion-reaction equation. The parameters 𝐷𝑖  ( 𝑖 = 1,2 ) are the overall 

diffusivity with respect to the active levels of the two kinds of the molecules. Their values are 

set in the following way: 𝐷1 = ℎ𝐷 , 𝐷2 = 𝐷 , where 𝐷  and ℎ  are model parameters. The 

nonlinear reaction term is expanded in a Taylor’s series to third orders with some terms 

neglected: 

[
𝑟1

𝑟2
] = [

𝛼 𝛽
𝛾 𝛿

] [
𝜙1 − 𝜙1

0

𝜙2 − 𝜙2
0] + [

−𝛼𝑟1(𝜙2 − 𝜙2
0)2 −𝑟2(𝜙1 − 𝜙1

0)

𝛼𝑟1(𝜙2 − 𝜙2
0)2 𝑟2(𝜙1 − 𝜙1

0)
] [

𝜙1 − 𝜙1
0

𝜙2 − 𝜙2
0],   (2) 

Where 𝛼 , 𝛽 , 𝛾 , 𝛿 , 𝑟1 , and 𝑟2  are model parameters. The initial values of the two 

components (𝜙1, 𝜙2) are set to be 𝜙1
0 and 𝜙2

0, respectively.  

 

For the basic reaction-diffusion model defined in Eq. (1)-(2), the following conditions must be 

satisfied for Turing instability to occur20: 

𝛼 + 𝛿 < 0,        (3a) 

𝛼𝛿 − 𝛽𝛾 > 0,       (3b) 

𝛼 + 𝛿ℎ > √4ℎ(𝛼𝛿 − 𝛽𝛾),     (3c) 

The wavenumber-related parameter at which the instability grows fastest is approximately 

given as: 

𝑘 = √
𝛼+𝛾ℎ

2ℎ𝐷
,         (3d) 

All the parameters are in the dimensionless form. The equations are all solved by the COMSOL 
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Multiphysics by finite elements method, and an adaptive time integration scheme is used for 

the time-dependent problem. The quadratic triangular elements are adopted to generate the fine 

mesh for our problem.  

 

Figure 2 shows the simulation results of the reaction-diffusion model (i.e., Eq. (1) and (2)). The 

simulation is carried out in a circular domain with a unit-length radius in X-Y plane. The center 

of the domain sits at the origin of the coordinate system. The initial condition for 𝜙1 and 𝜙2 

is described by a random function ranging from −0.005 to −0.015 with an average equal to 

0.005. The non-zero parameters are set to be: ℎ = 0.516, 𝛼 = 8.99 × 10−3, 𝛽 = 1 × 10−2, 

𝛾 = −𝛼, 𝛿 = 9.1 × 10−3, 𝑟1 = 35, 𝑟2 = 0, 𝑘 = 12. From Fig. 2, one can see that for the 

basic reaction-diffusion model, non-axisymmetric Turing instability occurs, which lead to 

typical Turing patterns for both components (𝜙1, 𝜙2). By looking into the third column in Fig. 

2, one can see the wave-like oscillation of both 𝜙1 and 𝜙2 along the line X=0. 

 

 

Figure 2. The non-axisymmetric Turing pattern contour generated by the basic reaction-

diffusion model (red for large, and blue for small) and the active levels of the activators and 

inhibitors along the Y-axis at the initial and steady states. 

  

Contraction-based colony elasticity 

The elasticity model of tissue contraction is described here. The cell colony is modeled as a 

thin layer of elastic sheet with a thickness ℎ𝑐 , and a displacement field 𝐮  within itself, 

occupying a region of Ω. The plane-stress constitutive law in the elastic sheet can be expressed 

by12: 

𝜎𝑖𝑗 =
𝐸

(1−𝜈2)
[𝜈𝜀𝑘𝑘𝛿𝑖𝑗 + (1 − 𝜈)𝜀𝑖𝑗] + 𝜎𝐴𝛿𝑖𝑗,     (4) 

where 𝐸 and 𝜈, are Young’s modulus, and Poisson’s ratio, respectively. The active 

contractility of cells is modeled by an active stress 𝜎𝐴𝛿𝑖𝑗 that resembles a uniform thermal 
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cooling across the cell sheet. Since the amount of the activator and the inhibitor are both 

low3, the stress-free strain caused by them is neglected in Eq. (4). The small deformation 

strain is written as: 

𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖).        (5) 

The cell colony interacts with the substrate by exerting traction forces on it through focal 

adhesions. The traction forces, which in turn are transmitted back into the colony, are 

balanced with the intercellular stress inside the colony. Hence, the mechanical equilibrium 

and the boundary condition in this case is given by21: 

∇ ∙ 𝛔 −
𝑌

ℎ𝑐
𝐮 = 0 in Ω,          (6a) 

𝛔𝐧 = 𝟎 at 𝜕Ω,            (6b) 

where 𝑌  is the effective stiffness of the focal adhesion which depends on the stretching 

strength and the density of the focal adhesions, as well as the stiffness of the substrate. In this 

article, for simplicity 𝑌  is assumed to be homogeneous over the whole colony. The two-

dimensional tensor 𝛔  denotes for the Cauchy stress inside the colony, while the vector 𝐧 

stands for the outer unit normal of the colony boundary. For the case that ℎ ≪ 𝑅, the traction 

force −𝑌𝐮 can be averaged along the colony thickness and considered as a body force.  

 

The dimensionless parameters used for the mechanical equilibrium of the cell colony are: 𝐸 =

104 , 𝜈 = 0.4 , ℎ𝑐 = 0.1 , 𝑌 = 104 , 𝜎𝐴 = 500 . Solving for the contraction-based elasticity 

equations (4)-(6) yield the stress field 𝛔 and the traction stress = 𝑌𝐮 that will be used in the 

following two sections. 

 

Tension-diffusion coupling: the tension-gradient driven diffusion model 

The first proposed mechanism underlying the axisymmetric pattern is a tension-gradient driven 

diffusion hypothesis. We hypothesize that the diffusion of the activators and the inhibitors 

within the cell colony is driven by the gradient of “forces” inside, which under this 

circumstance is the gradient of the intercellular tension −∇𝑃 = ∇(𝜎𝑟𝑟 + 𝜎𝜃𝜃)/2 . Such 

gradient maintains the membrane tensions for adjacent cells to help the diffusion of 

molecules/ions across cell membranes22. Thus, the tension-gradient driven diffusion flux is 

assumed to be proportional to the gradient of the intercellular tension and should exist only 

when 𝜙𝑖 is non-zero: 

𝐉𝑝
𝑖 = −𝐷𝑖

𝑇𝜙𝑖∇𝑃, 𝑖 = 1,2,       (7) 

where 𝐷𝑖
𝑇 denotes the diffusivity related to the tension-gradient for the i-th unknown, which 

is set to be 𝐷𝑖
𝑇/𝐷𝑖 = 6.014 × 10−3. From Eq. (6), one can see that the two signaling molecules 

are attracted by the increasing of the intercellular tension and repelled by the increasing of the 

intercellular compression. The total flux is then computed as: 

𝐉𝑇𝑜𝑡𝑎𝑙
𝑖 = 𝐉𝑖+𝐉𝑝

𝑖 , 𝑖 = 1,2,        (8) 

The reaction-diffusion equations and the corresponding zero-flux boundary conditions are then 

written as: 

𝜕𝜙𝑖

𝜕𝑡
= −∇ ∙ 𝐉𝑇𝑜𝑡𝑎𝑙

𝑖 + 𝑟𝑖(𝜙1, 𝜙2), 𝑖 = 1,2, in Ω,    (9a) 
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𝐉𝑇𝑜𝑡𝑎𝑙
𝑖 ∙ 𝐧 = 0, 𝑖 = 1,2, at 𝜕Ω,      (9b) 

Where 𝑟𝑖(𝜙1, 𝜙2)  (𝑖 = 1,2 ) are the source terms and are expressed by Eq. (2). The initial 

conditions are set to be the same with the basic reaction-diffusion model.  

 

Next, we focus on the evolution of 𝜙1  and 𝜙2  driven by the gradient of the intercellular 

tension. The time evolution of the active level of both signaling molecules are presented in Fig. 

3, in which the contours of the active levels of 𝜙1 and 𝜙2 are plotted with respect to several 

dimensionless time steps. Steered by the axisymmetric distribution of the intercellular tension, 

the active levels of 𝜙1  and 𝜙2  start from randomness, then gradually evolve into an 

axisymmetric configuration, and finally arrives at the steady state with alternatively generated 

peaks and troughs, forming an axisymmetric Turing pattern. At the central region of the colony, 

𝜙1 exhibits a high activity, while at the colony periphery, 𝜙2 shows to be more active. Next, 

we study how the wavenumber-related parameter 𝑘 would affect our results. By setting 𝑘 =

6, 9, 12 , we obtain the contours of the steady state solution with respect to different 

wavenumbers in Fig. 4. From the first column to the last, a clear trend is revealed that a larger 

𝑘  will lead to more peaks and troughs to the distribution of the active levels of the two 

components. When 𝑘 = 12, there are two thorough peaks and troughs; when 𝑘 = 9, we could 

see one peak with two troughs for 𝜙1 and two peaks with one trough for 𝜙2; when 𝑘 = 6, 

only one peak and one trough for both 𝜙1 and 𝜙2. At last, we apply the model to predict the 

activity of the activators and the inhibitors in a square-shaped colony with a dimensionless side 

length equal to 2. The predicted active levels are plotted in Fig. 5. The results show a 90-degree 

rotational symmetry of the distribution of the peaks and the troughs, indicating that the tension-

gradient driven diffusion is highly regulated by the colony geometry. The effect by the different 

values of wavenumber-related parameter on the prediction is also fully replicated for the square 

configuration. However, regardless of the value of 𝑘, the colony periphery is always the region 

where 𝜙2 shows its high activity. 
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Figure 3. The time evolution contours of the active levels of 𝜙1  and 𝜙2  at different 

dimensionless time steps are presented (red for large, and blue for small) for a circular colony, 

by the tension-gradient driven diffusion model. The active levels along X axis for both variables 

are also plotted. 
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Figure 4. The contours of the steady state solution for the active levels of 𝜙1 and 𝜙2 are 

plotted for different wavenumbers in a circular-shaped colony. Row (a) is for the results of 𝜙1; 

Row (b) for 𝜙2; Row (c) shows the distribution of the activity of both 𝜙1 and 𝜙2 along the 

X-axis. 

 

 

Figure 5. The predicted contours of the steady state solution for the active levels of 𝜙1 and 

𝜙2 are plotted for different wavenumbers in a square-shaped colony. Row (a) is for the results 
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of 𝜙1; Row (b) for 𝜙2; Row (c) shows the distribution of the activity of both 𝜙1 and 𝜙2 

along the X-axis. 

 

 

Traction-force coupling: the traction-force mediated diffusion-reaction model 

Unlike the intercellular tension which is developed all over the colony sheet, the traction forces 

are mainly distributed at the colony periphery that is called boundary layer12. The aggregated 

traction forces in the boundary layer can activate certain signaling pathways that facilitate the 

generation of the specific signal molecules. By this hypothesis, it is the traction forces, not the 

intercellular tension that drive the reaction process. Under this hypothesis, the form of the 

reaction-diffusion equations is still in the form of Eq. (1a) ~(1c), yet some of the parameters 

are set to be traction-force-dependent. The source term in Eq. (7) is rewritten to be: 

[
𝑟1

𝑟2
] = [

𝛼(𝐓)𝜙1 − 𝛼1
0𝜙1

0 𝛽(𝜙2 − 𝜙2
0)

𝛾(𝐓)𝜙1 − 𝛾1
0𝜙1

0 𝛿(𝜙2 − 𝜙2
0)

] + [
−𝛼(𝐓)𝑟1(𝜙2 − 𝜙2

0)2 −𝑟2(𝜙1 − 𝜙1
0)

𝛼(𝐓)𝑟1(𝜙2 − 𝜙2
0)2 𝑟2(𝜙1 − 𝜙1

0)
] [

𝜙1 − 𝜙1
0

𝜙2 − 𝜙2
0],  

                    (10) 

with 𝛼(𝑇) = 𝛼1
0𝑎(𝐓) , 𝛾(𝑇) = 𝛾1

0𝑎(𝐓) , and the traction-force-dependent coefficient 𝑎(𝐓) 

being assumed as: 

𝑎(𝐓) = 1 + 𝜂(|𝐓| − |𝐓|0)𝐻(|𝐓| − |𝐓|0),     (11) 

Where 𝜂 = 1/15  is a constant; |𝐓|0 = 130  acts as a threshold; 𝐻(∙)  is the Heaviside 

function; 𝛼1
0 = 8.99 × 10−3, and 𝛾1

0 = −𝛼1
0; The initial conditions and the rest parameters 

are again set to be the same with the previous models. 

 

The predictions made by the traction-force mediated diffusion-reaction model are then 

presented and briefly discussed in this section. The time evolution of the active level of both 

signaling molecules are presented in Fig. 6. By comparing Fig. 6 with Fig. 3, we see that the 

distribution of the active levels of 𝜙1 and 𝜙2 predicted by the traction-force mediated model 

is altered from that predicted by the tension-gradient driven model. Specifically speaking, the 

location where 𝜙1 shows the high activity and 𝜙2 shows the low activity in the previous 

model now becomes the place where 𝜙2  shows the high activity and 𝜙1  shows the low 

activity. This reverse trend is also held even if the value of 𝑘 (see Fig. 7) or the geometry of 

the colony changes (see Fig. 8, except the last column). Another difference brought by this 

model is that for the square-shape colony and 𝑘 = 12, the pattern of the predicted active levels 

changes from rings to strips and dots. This pattern change happens when 𝑘 ≿ 11.5.  

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 16, 2021. ; https://doi.org/10.1101/2021.05.14.444097doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.14.444097


 

Figure 6. The time evolution contours of the active levels of 𝜙1  and 𝜙2  at different 

dimensionless time steps are presented (red for large, and blue for small) for a circular colony, 

by the traction-force mediated diffusion model. The active levels along X axis for both 

variables are also plotted. 
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Figure 7. The contours of the steady state solution for the active levels of 𝜙1 and 𝜙2 are 

plotted for different wavenumbers in a circular-shaped colony. Row (a) is for the results of 𝜙1; 

Row (b) for 𝜙2; Row (c) shows the distribution of the activity of both 𝜙1 and 𝜙2 along the 

X-axis. 
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Figure 8. The predicted contours of the steady state solution for the active levels of 𝜙1 and 

𝜙2 are plotted for different wavenumbers in a square-shaped colony. Row (a) is for the results 

of 𝜙1; Row (b) for 𝜙2; Row (c) shows the distribution of the activity of both 𝜙1 and 𝜙2 

along the X-axis. 

 

Conclusion 

We raise up two biophysical hypotheses to understand the axisymmetric distribution of the 

activators and inhibitors in geometrically confined hPSCs-derived microtissues, one is the 

tension-gradient driven diffusion hypothesis and the other is the traction-force mediated 

reaction hypothesis. Both theories predict a geometry-regulated distribution of wave-like active 

levels of the two signaling molecules with random initial conditions. Namely, for the circular-

shape colony, an axisymmetric distribution is derived, while a 90-degree rotational symmetric 

distribution is predicted for the square-shape colony. We note that the locations of the peaks 

and troughs are altered in the predictions made by the two different theories. The effect of the 

values of the wavenumber-related parameter is also examined in this article. It is found that a 

larger value of wavenumber will lead to more waves in the distribution of activity of the two 

signaling molecules. The authors hope the two biophysical hypotheses can shed some light on 

the study of mechanisms of early-stage cell fate patterning, particularly using hPSCs-derived 

in vitro models.  
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