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Abstract 13 

The identification of enhancers has always been an important task in bioinformatics owing to 14 

their major role in regulating gene expression. For this reason, many computational 15 

algorithms devoted to enhancer identification have been put forward over the years, ranging 16 

from statistics and machine learning to the increasing popular deep learning. To boost the 17 

performance of their methods, more features tend to be extracted from the single DNA 18 

sequences and integrated to develop an ensemble classifier. Nevertheless, the 19 

sequence-derived features used in previous studies can hardly provide the 3D structure 20 

information of DNA sequences, which is regarded as an important factor affecting the 21 

binding preferences of transcription factors to regulatory elements like enhancers. Given that, 22 

we here propose DENIES, a deep learning based two-layer predictor for enhancing the 23 

identification of enhancers and their strength. Besides two common sequence-derived 24 

features (i.e. one-hot and k-mer), it introduces DNA shape for describing the 3D structures of 25 

DNA sequences. The results of performance comparison with a series of state-of-the-art 26 

methods conducted on the same datasets prove the effectiveness and robustness of our 27 

method. The code implementation of our predictor is freely available at 28 

https://github.com/hlju-liye/DENIES. 29 
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1. Introduction 35 

The living and development of organisms are inseparable from the proper function of gene 36 

expression in cells, which is regulated by the concerted cooperation of various types of gene 37 

regulatory elements located in the non-coding regions of genome [1]. The typical regulatory 38 

elements include enhancers, promoters, silencers and insulators. Among these, enhancers are 39 

deemed as the most crucial ones responsible for regulating the transcription of their target 40 

genes. Different from gene proximal regulatory elements like promoters, the location of 41 

enhancers relative to their target genes can’t be simply formulated. They can be located 42 

upstream or downstream and sometimes within introns of their target genes. Beyond that, 43 

some enhancers can bypass their nearest genes to regulate more distant ones along a 44 

chromosome. In some special cases, they can even regulate genes on another chromosome [2]. 45 

This kind of locational uncertainty has made their prediction a very challenging task for 46 

modern biologists.  47 

The very early attempts to identify enhancers on a genome-wide scale started with 48 

biologically experimental methods. The most representative one is chromatin 49 

immunoprecipitation followed by deep sequencing (ChIP-seq) [3]. By targeting at enhancer 50 

associated marks like transcription activator p300, histone H3 monomethylated at K4 51 

(H3K4me1) and H3 acetylated at lysine 27 (H3K27ac) [4-6], this technique has been 52 

successfully applied in some cell lines to identify enhancers. Another category of 53 

experimental method is based on chromatin accessibility, i.e., detecting the open regions on 54 

the genome. Two commonly used techniques are DNase I digestion coupled to sequencing 55 

(DNase-seq) [7] and transposase-accessible chromatin followed by sequencing (ATAC-seq) 56 

[8]. In addition, further studies on enhancers have shown that they can function as 57 

transcriptional units and produce non-coding RNAs (eRNAs), which are hallmarks of active 58 

enhancers [9]. But eRNAs are generally unstable and have a short half-life, which make them 59 

extremely hard to detect in cells. Despite of this, several techniques have been developed to 60 

detect the expression of eRNAs, like global run-on sequencing (GRO-seq) and cap-analysis 61 

of gene expression (CAGE) [10-11]. While all of the aforementioned experimental methods 62 

are useful to some extent, there is currently no golden standard in biology for enhancer 63 

identification. And beyond that, experimental ways are time-consuming and labor-intensive. 64 

It’s basically impractical at present to identify enhancers for all the cell types at various 65 

stages. 66 

On this account, some computational methods have been put forward to fill this gap. As 67 

the first attempt, Heintzman et al. developed a computational prediction algorithm to locate 68 

enhancers in the ENCODE regions of HeLa cells based on similarity to the training set 69 

chromatin profiles [5]. Firpi et al. further proposed a computational framework named 70 

CSI-ANN [12]. It was composed of a data transformation and a feature extraction step 71 

followed by a classification step with time-delay neural network. With the discovery and map 72 
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of more and more histone modifications, the selection of the optimal set from the entire range 73 

of chromatin modifications for enhancer identification become an urgent question for 74 

biologists. So in the work of Rajagopals et al., they developed RFECS, a Random-Forest 75 

based algorithm to integrate 24 histone modification profiles in all for identification of 76 

enhancers in several cell types [13]. They claimed that their method not only led to more 77 

accurate predictions but also identified the most informative and robust set of three chromatin 78 

marks for enhancer identification. However, the goals of all the aforementioned methods 79 

were simply to label a DNA sequence as an enhancer or not. They neglected to determine the 80 

strength of enhancers, i.e., their activity level, which is also biologically meaningful. Given 81 

that, Liu et al. proposed a two-layer predictor called iEnhancer-2L by formulating DNA 82 

elements with pseudo k-tuple nucleotide composition [14]. In the second layer of their 83 

predictor, they identified the strength of enhancers for the very first time. Considering the 84 

poor performance of iEnhancer-2L, they further improved their algorithm by formulating 85 

sequences with different feature representations and using ensemble learning in their later 86 

work iEnhancer-EL [15]. On the basis of Liu et al.’s work, Jia et al. developed a predictor 87 

called EnhancerPred by extracting three types of sequence-based features and using support 88 

vector machine to identify enhancers and their strength [16]. Recently, Cai et al. proposed a 89 

more advanced predictor named iEnhancer-XG. In their method, as many as five different 90 

sequence derived feature representations were used as the input of XG-boost, a new learning 91 

algorithm based on gradient boosted decision trees [17].  92 

Over the past few years, deep learning has seen a comprehensive penetration into various 93 

fields, including computer vision, natural language processing and even bioinformatics 94 

[18-23]. Naturally, a torrent of deep learning based methods for enhancer identification have 95 

sprung up, such as EP-DNN, BiRen, DECRES, DeepEnhancer and so on [24-27]. Comparing 96 

to traditional machine learning methods, deep learning obviates the need for manually 97 

curating features and can unearth informative hidden patterns in the data. While these deep 98 

learning based enhancer predictors give much better performance than that of traditional 99 

machine learning based ones, their weaknesses are also quite obvious, i.e., the prediction of 100 

enhancer strength is not reflected in their methodologies. 101 

We here present a two-layer enhancer predictor named DENIES by utilizing DNA shape 102 

information besides two common sequence-derived features (i.e. one-hot encoding and k-mer) 103 

as the input of our developed deep learning model. DNA shape refers to the 104 

three-dimensional structures of DNA. While several studies have pointed out its extremely 105 

importance in biology, the appliance of this particular feature has been limited to the 106 

modeling of TF-DNA binding [28-29]. In the study of iEnhancer-2L, Liu et al. incorporated 107 

six DNA local structural parameters into their formulated pseudo k-tuple nucleotide 108 

composition [14]. But these local structural parameters are just predicted from the 109 

physicochemical properties of two neighboring base pairs and unable to accurately reflect the 110 

three-dimensional structure of DNA sequences. Given this, we use DNAshape [30], a Monte 111 
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Carlo (MC) simulation based method, to derive more accurate DNA shape features in our 112 

study. Comparing to existing state-of-the-art methods, the performance of our proposed 113 

predictor gets an obvious boost for both layers of enhancer identification. More importantly, 114 

it proves that DNA shape can be used as another major feature to enhance the identification 115 

of enhancers and their strength. 116 

 117 

2. Materials and Methods 118 

2.1. Benchmark and independent datasets  119 

The benchmark and independent datasets used in our study were obtained from a series of 120 

previous works [14-17]. The construction of the two datasets was based on the chromatin 121 

state annotation. Specifically, Ernst et al. mapped nine chromatin marks across nine cell types 122 

and used recurrent combinations of these marks to define 15 chromatin states including 123 

repressed, poised and active promoters, strong and weak enhancers and so on. Then 124 

ChromHMM was developed using a multivariate Hidden Markov Model to learn these 125 

chromatin states information and got the genome-wide chromatin state annotation in these 126 

different cell lines [31-32]. After that, different sorts of DNA sequences were selected as 127 

candidate samples to construct the two datasets based on the genome-wide chromatin state 128 

annotation given by ChromHMM in a total of nine cell types. 129 

A detailed description of the post processing on these candidate samples can be looked 130 

up in the original works of Liu et al [14-15]. Here, we just report the composition of the final 131 

datasets. The benchmark dataset consists of 2968 sequence samples, each of which is 200 bp 132 

long. Among these, 1484 samples are enhancers and the other 1484 samples are 133 

non-enhancers. They are used to construct the first layer predictor. Of the 1484 enhancer 134 

samples, strong enhancers and weak enhancers are half and half. They are used to construct 135 

the second layer predictor. The independent dataset was constructed based on the same 136 

protocol as used to construct the benchmark dataset. It’s composed of 200 enhancers and 200 137 

non-enhancers. Of the 200 enhancers, one half are strong enhancers, and the other half are 138 

weak enhancers. These samples of the independent dataset are used to evaluate the 139 

performance of predictors developed using the benchmark dataset. Note that there’s no 140 

overlap between the samples in benchmark dataset and independent dataset [15]. 141 

 142 

2.2. Feature representation 143 

A fundamental problem in developing a bioinformatics related predictor is how to formulate a 144 

biological sequence (i.e. DNA sequence in our study) with some specific feature 145 

representations. While an effective feature representation is able to extract the most 146 

informative patterns in a sequence, an unsatisfactory one can hardly ensure the integrality of 147 

the information. In truth, quite a lot of feature representations for biological sequences have 148 
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been proposed so far, such as k-mer, pseudo k-tuple nucleotide composition (PseKNC), 149 

subsequence and mismatch profile [33]. In this study, we explore three feature representation 150 

methods, namely, one-hot, k-mer and DNA shape. Among these, one-hot and k-mer represent 151 

two common ways to formulate DNA sequences. They have been widely used in 152 

bioinformatics to resolve various types of classification and prediction problems. However, 153 

sequence-constraint methods often fail to identify non-coding functional elements like 154 

enhancers because they neglect to consider the three-dimensional structures of DNA 155 

sequences [34]. Hence, DNA shape is used as another feature representation method in our 156 

study for describing the 3D structures of DNA sequences. A detailed description of these 157 

three different feature representation methods is as below. 158 

 159 

2.2.1. K-mer 160 

Oligomers of length k, or k-mer refers to all the subsequences of length k contained within a 161 

biological sequence. It’s a widely used and probably the simplest feature representation 162 

method for modeling the properties and functions of biological sequences [33]. In the case of 163 

deoxyribonucleic acid, every sequence is composed of four different types of nucleotides (i.e. 164 

A, C, G and T). K-mer approach will first list all the possible subsequences of length k and 165 

scan the whole DNA sequence to find the occurrence frequency of each subsequence. Then 166 

the occurrence frequency of each subsequence will be combined by the order of the listed 167 

subsequences. This combined feature vector is called the k-mer feature vector of that 168 

sequence. Suppose we have a sequence S, then the k-mer feature vector of S can be defined 169 

as: 170 

𝑓𝒔 = [𝑦"𝒔, 	𝑦#𝒔, ⋯ , 	𝑦$𝒔, ⋯ , 	𝑦%𝒔]																																																															(1)               171 

where 𝑦$𝒔 is the occurrence frequency of the ith k neighboring nucleotides in the sequence S 172 

and the value of L is 4k. As pointed in [35], the selection of the parameter k in k-mer feature 173 

representation is of great difficulty owing to its inherent limitation. The k-mer feature vector 174 

tends to get sparser and encode less efficient information when k gradually increases. We 175 

observed that the k-mer vector is quite sparse when the value of k is higher than 5 in our case 176 

since the length of enhancer sequences in our dataset is comparatively short. Here, we use a 177 

combination of different k-mer feature vectors where k ranges from 1 to 5. Then these vectors 178 

are concatenated to a final feature vector. 179 

 180 

2.2.2. One-hot encoding 181 

One-hot encoding is another common feature representation method for formulating DNA 182 

sequences. With deep learning gradually penetrated into bioinformatics, this encoding 183 

scheme is very popular when it’s combined in use with convolutional neural networks (CNN) 184 

[20-25]. With this feature representation, every nucleotide in the sequence will be 185 
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transformed into a four-dimensional binary vector with the bit marking the current nucleotide 186 

set to one and all the other bits set to zero. Specifically, the four nucleotides, A (adenine), C 187 

(cytosine), G (guanine), T (thymine) will be transformed into binary vectors (1, 0, 0, 0) T, (0, 188 

1, 0, 0) T, (0, 0, 1, 0) T, (0, 0, 0, 1) T respectively. Then the binary vector for each nucleotide in 189 

the DNA sequences will be merged into a binary matrix. Given a DNA sequence S = N1 N2 ⋯ 190 

Ni ⋯ NL, then the one-hot encoding matrix M for sequence S can be formulated as: 191 

𝐌 =	 [𝑓(𝑁")	𝑓(𝑁#)	⋯ 	𝑓(𝑁$)	⋯ 	𝑓(𝑁%)]																																																								(2) 192 

where 𝑓 is a function defined as: 193 

𝑓(𝑁$) =

⎩
⎪
⎨

⎪
⎧ (1,0,0,0)&; 	𝑖𝑓	𝑁$ = 𝐴
(0,1,0,0)&; 	𝑖𝑓	𝑁$ = 𝐶
(0,0,1,0)&; 	𝑖𝑓	𝑁$ = 𝐺
		(0,0,0,1)&; 	𝑖𝑓	𝑁$ = 𝑇		

																																																																		(3) 194 

2.2.3. DNA shape 195 

DNA shape presents the chromatin structural information about DNA sequences with which 196 

the other two classic feature representation methods can not provide. As distal cis-regulatory 197 

elements that can activate downstream genes, the chromatin structures of enhancer regions 198 

tend to be open so as to provide a protein-binding platform for a combination of transcription 199 

factors and co-factors. In fact, several former studies have pointed out the role of DNA shape 200 

in the recognition of three-dimensional DNA structures for transcription factors [36-38]. 201 

Before long Zhou et al. proposed a high-throughput method called DNAshape for predicting 202 

chromatin structural features from DNA sequences [28]. The core of their methodology is a 203 

pentamer based model built from all-atom Monte Carlo simulations where a sliding-window 204 

approach is used to mine DNA shape features from DNA sequences. Later, Chiu et al. 205 

developed DNAshapeR, an R/Bioconductor package on the basis of DNAshape to generate 206 

DNA shape predictions in an ultra-fast, high-throughput and user-friendly manner [39]. At 207 

first, only four DNA shape features were included, that is minor groove width (MGW), helix 208 

twist (HelT), propeller twist (ProT) and Roll, for their extremely importance in the 209 

recognition of DNA structures. And in their latest package release, another 9 DNA shape 210 

features were added and the entire repertoire was finally expanded to a total of 13. Among 211 

these, seven features were nucleotide shape parameters and the other six were base pair-step 212 

parameters. A simple sketch on explaining the distinction between generating the two types 213 

of DNA shape parameters is presented in Fig. 1 where the DNA sequence is scanned with a 214 

pentamer sliding window. For each pentamer subsequence currently being scanned, a DNA 215 

shape prediction value of the central nucleotide or two prediction values of the two central 216 

base pair steps will be computed based on the specific type of the given DNA shape 217 
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parameter. Supposing the length of a DNA sequence is N, then the dimension of nucleotide 218 

shape parameter-based feature vector and base pair-step shape parameter-based feature vector 219 

can be easily induced as N - 4 and N - 3 respectively. As there are 7 nucleotide shape 220 

parameters and 6 base pair-step shape parameters used in our study, the length of the 221 

concatenated shape feature vector can be formulated as 7 ´	(N - 4) + 6 ´	(N - 3). Given N = 222 

200 in our case, an input DNA sequence can be finally encoded with a DNA shape vector of 223 

dimension 2554. 224 

 225 

2.3 Network architecture 226 

The detailed network architecture of our designed deep learning model is depicted in Fig. 2. 227 

The model is mainly composed of four modules that are already filled with a light blue 228 

background. The top three modules, from left, are DNA shape module, one-hot module and 229 

k-mer module respectively. A detailed description of each module is as follows. In DNA 230 

shape module, the R package DNAshapeR is used to generate the shape feature predictions 231 

from the given set of DNA shape parameters as the protocol illustrated in Fig. 1. In our study, 232 

all the 13 DNA shape features were generated for our enhancer dataset. In one-hot encoding 233 

module, the input sequence is firstly encoded with a 4 ´ 200 one-hot binary matrix and then 234 

fed into a two-layer convolution neural network. Sixteen convolutional kernels with 235 

dimension 4 ´ 8 and thirty-two convolutional kernels with dimension 1 ´ 8 are used for the 236 

first and second convolutional layer respectively. Notably, while it hasn’t been shown in the 237 

figure for simplicity, each convolutional layer is followed by a max pooling layer with 238 

dimension 1 ´ 2. After convolutions, the output feature maps will be flattened to a feature 239 

vector. And in kmer module, the frequency vector of different k-mers (k ranges from 1 to 5) 240 

will be computed separately and then concatenated. Finally, output vectors of the top three 241 

modules are concatenated and sent into the joint module where a multilayer perceptron 242 

network (MLP) with two hidden layers is used. The number of neurons used for the first and 243 

second layers are 512 and 64 respectively. The output layer has only one neuron representing 244 

the binary classification result of our network. 245 

 246 

2.4. Configuration and implementation 247 

All the models built in our study are implemented with Pytorch 1.4.0 [40]. Adam [41] is 248 

chosen as our optimizer algorithm and the learning rate for training models is set to 1e-5. The 249 

mini-batch size is 20 and binary cross entropy is employed as the loss function. To prevent 250 

models from overfitting, the early stopping strategy is used with patience set to 30 and the 251 

evaluation metric MCC is monitored in validation set. That is to say, after a successive of 30 252 

training epochs with no increase on the metric MCC, the training process is stopped and the 253 

model at the epoch with the highest MCC value will be saved for evaluation on the 254 

independent dataset. 255 

 256 
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2.5. Performance evaluation 257 

For a fair comparison, the identical set of evaluation metrics as used in a series of previous 258 

works is also adopted in our study. These metrics are sensitivity (SN), specificity (SP), 259 

accuracy (ACC), and Matthew correlation coefficient (MCC). They are all formulated as 260 

below: 261 

			

⎩
⎪
⎪⎪
⎨

⎪⎪
⎪
⎧ 𝑆𝑁 =

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

𝑆𝑃 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

	𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

@(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

																																							(4) 262 

where TP, TN, FP, FN represent the number of true positives, true negatives, false positives 263 

and false negatives respectively. Considering our dataset is comparatively small, a five-fold 264 

cross validation is used to evaluate the performance of our model. Specifically, our 265 

benchmark dataset is partitioned into five folds. Every time four parts of them will be used as 266 

the training set and the remaining one will be used as the validation set. This process is 267 

repeated after 5 times and each time we will get a different data partition for the training of 268 

our model. Then the five trained models will be tested in turn on the independent dataset. As 269 

there are a total of five predicts given by the respective trained models, we further adopt an 270 

ensemble learning strategy to get the final predict on the independent dataset (i.e. taking the 271 

mean value of the five predicts). To reflect the stability of our models, the five-fold cross 272 

validation experiment is conducted for ten times in all and the results are shown with box 273 

plots. 274 

 275 

3. Results 276 

3.1. Performance comparison between the basic set and full set of DNA shape 277 

features 278 

DNAshape initially provided the prediction of only 4 DNA shape features, namely MGW, 279 

ProT, Roll and HelT, which we refer to as the basic set. Another 9 features (Rise, Roll, Shift, 280 

Slide, Tilt, Buckle, Opening, Shear, Stagger and Stretch) were added in the latest version of 281 

DNAshapeR and the feature set was expanded to a total of 13, which we refer to as the full 282 

set. While former studies focused mainly on the basic set, the full set of DNA shape features 283 

were used in our study. Naturally, it’s worth evaluating whether these 9 new added DNA 284 

shape features have a positive effect on the identification of enhancers and their strength. To 285 

prove that, we compared the performance of basic set and full set of DNA shape features on 286 

the independent dataset. The results of the performance evaluation on five metrics have been 287 
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shown in Fig. 2. For the first layer targeting at distinguishing enhancers from non-enhancers, 288 

the performance of full set is better than that of basic set by a narrow margin on four 289 

evaluation metrics except for sensitivity (SN). While for the second layer aiming at 290 

distinguishing strong enhancers from weak enhancers, the edge of full set comparing to basic 291 

set is more obvious with a lead of performance on all five evaluation metrics. Obviously, the 292 

introduction of the additional 9 DNA shape features has a positive influence for both layers of 293 

enhancer prediction, especially for the second layer. 294 

 295 

3.2. Visualization of DNA shape features 296 

Besides the prediction of DNA shape features, another outstanding function provided by 297 

DNAshapeR is its graphical representation, which means various shape features predicted 298 

from DNA sequences can be visualized for further analysis. Here, we use the function 299 

plotShape given in the software package to visualize DNA shape features as aggregated line 300 

plots (i.e., the shape feature values of all the sequence samples are aggregated in column 301 

direction to get the mean value). The shape features of positive set and negative set are both 302 

shown in a single picture to reflect the difference. The line plots of some representative shape 303 

features have been chosen and shown in Fig. 4 and Fig. 5. For minor groove width, the two 304 

aggregated lines are separated on the first layer while overlapped on the second layer, which 305 

suggests that MGW is an efficient shape feature to distinguish enhancers from non-enhancers 306 

but may not be ideal for distinguishing strong enhancers from weak enhancers. For the DNA 307 

shape feature Opening, the two aggregated lines are obviously separated on both layers 308 

suggesting its effectiveness for both layers of enhancer identification. For Buckle, though the 309 

aggregated line of positive set is higher than that of negative set, there’s still some overlap 310 

between them. And for Tilt, the profiles of both lines just fluctuate around zero, which may 311 

suggest this shape feature can hardly be used for enhancer identification task. 312 

 313 

3.3. Performance of different feature representations and their combinations 314 

As there are total three different types of feature representations used in our method, a natural 315 

question in face of us is to determine the importance of them in the identification of 316 

enhancers. For that, each module used in Fig. 2 is taken out and designed as an individual 317 

network. Besides, different modules are combined to see the effect of various combinations 318 

of these feature representations. For the sake of simplicity, the model combining one-hot and 319 

DNA shape modules is denoted as ‘O-S’; the model combining one-hot and k-mer modules is 320 

denoted as ‘O-K’; the model combining DNA shape and k-mer modules is denoted as ‘S-K’; 321 

the model combining all three modules is denoted simply as ‘ALL’. Then the performance of 322 

all these models is evaluated with a five-fold cross validation on the independent dataset. To 323 

reflect the stability of these models, the cross validation experiment is repeated after 10 times. 324 

The results of the ten experiments have been shown with box plot in Fig. 6 and the mean 325 

values of the five evaluation metrics are given in Table 1 and Table 2. For the first layer, kmer 326 
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approach achieves the best performance among the three single feature representations with 327 

ACC at 75.8% and MCC at 0.516. The performance of the other two feature representations, 328 

namely one-hot and shape, are very close with accuracy over 73.5% and MCC around 0.47. 329 

While for the second layer prediction, the performance of one-hot feature is much 330 

unsatisfactory with ACC at 57.95% and MCC at 0.163. For the other two feature 331 

representations, the performance of DNA shape is slightly lower than that of kmer. Their 332 

ACC and MCC are over 62% and 0.24 respectively. Overall, kmer outperforms the other two 333 

feature representations on both layers. The performance of DNA shape comes next and 334 

one-hot performs worst among the three feature representations. As for those combined 335 

feature representations, their performance basically all improved compared to that of single 336 

feature representations. Notably, the model combining all three feature representations 337 

performed best on both layers. For the first layer, it achieves the best performance on all 338 

evaluation metrics except for sensitivity (SN). And for the second layer, it outperforms the 339 

other models on all evaluation metrics except for specificity (SP). For that reason, it’s 340 

selected as our final model for performance comparison with a series of state-of-the-art 341 

methods.  342 

 343 

3.4. Performance comparison with existing methods 344 

We compare the performance of our final model on the independent dataset with some 345 

existing state-of-the-art works. The result of comparison has been listed in Table 3. It can be 346 

seen from the table that our method achieves the highest performance on most evaluation 347 

metrics for both layers. Note that ACC and MCC are deemed as the two most important ones 348 

among the five evaluation metrics for our prediction task [15]. For the first layer, ACC is 349 

improved by over one percentage point and MCC is improved by 0.024. And for the second 350 

layer, these two metrics are boosted by 4.75% and 0.108. As another important evaluation 351 

metric for binary classification, AUC is improved from 0.817 to 0.834 and from 0.680 to 352 

0.753 for the first and second layer respectively. On the whole, the performance of our 353 

method surpasses these existing methods terms of a comprehensive comparison on these 354 

evaluation metrics. 355 

 356 

4. Discussion and conclusion 357 

As the core parts of DNA regulatory elements responsible for regulating gene expression, 358 

enhancers have always been paid the most attention in bioinformatics. However, their 359 

locational uncertainty and the poor understanding of their sequence code have made their 360 

identification an extremely challenging task [2]. To further enhance the identification of 361 

enhancers and their strength, most of the current machine learning based predictors tend to 362 

derive more feature representations from DNA sequences and ensemble the prediction results 363 

of individual features. While some of the existing structural biology and genomics studies 364 
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have confirmed the relationship between TF-DNA binding and the recognition of chromatin 365 

structures, we observe that the sequence-derived feature representations used in previous 366 

works cannot reflect the structural information of DNA sequences. In light of this, DNA 367 

shape is used as an additional feature input besides two commonly used ones, i.e., one-hot 368 

encoding and kmer for our developed deep learning model. Through the ablation experiment, 369 

we find that the performance of feature combined models is boosted comparing to those 370 

single feature representation based ones. Above all, the deep learning model with all the three 371 

feature representations as input achieves best performance on both layers of enhancer 372 

identification. And in the comparison with some state-of-the-art methods, DENIES achieves 373 

remarkable performance with only three features all derived from DNA sequences. 374 

 Yet, our study can be further improved from two main aspects. One is to increase the 375 

interpretability of our method. An inherent and obvious drawback of deep learning based 376 

method is its poor interpretability since it operates like a black box. In our method, we throw 377 

ten more DNA shape features into the deep learning model for training, but the importance 378 

degree of each feature in the identification of enhancers is unclear for us. Though we 379 

visualize different DNA shape features as aggregated line plots, there still needs a method to 380 

quantitatively determine the importance degrees of them. In the work of RFECS [13], they 381 

developed a new type of random forest algorithm named vector-random forest by utilizing 382 

linear discriminant at each node. The most significant feature of this random forest is that the 383 

nodes of decision trees can be vectors. By utilizing this new type of random forest algorithm, 384 

each DNA shape feature will be given a score representing its importance degree in 385 

identifying enhancers. We can further rank these DNA shape features by the importance 386 

scores to derive an optimal set of DNA shape features for identifying enhancers. Another 387 

aspect is to integrate epigenetic features like histone modifications. Many studies have 388 

associated the enhancer activities with certain characteristic histone modification patterns [5, 389 

13, 42]. However, histone marks are cell line specific while the enhancer dataset used in our 390 

study are not, so it’s beyond our reach at present. Nevertheless, it doesn’t affect us to apply 391 

this method in later constructed cell line specific enhancer dataset. 392 

 393 
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 519 

Figure 1. A simple sketch on illustrating the difference between the generation of nucleotide 520 

shape parameters and base pair-step shape parameters. The DNA sequence is scanned with a 521 

pentamer sliding window to derive DNA shape feature vectors. For each pentamer 522 

subsequence being scanned, a single prediction value of the central nucleotide will be 523 

computed for nucleotide parameters like MGW and ProT. While for base pair-step shape 524 

parameters like Roll and HelT, the prediction values of the two central base pair steps will be 525 

provided. Take the first pentamer in the sequence as an example, the central nucleotide is T 526 

and the two central base pair steps are CT and TC respectively. It’s worth noting that the 527 

second central base pair step of a pentamer subsequence is identical to the first central base 528 

pair step of the next pentamer subsequence, so they share the same DNA shape prediction 529 

value. 530 
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 531 

Figure 2. The network architecture of our designed deep learning model. The top three 532 

modules, from left, are DNA shape module, one-hot module and kmer module respectively 533 

and the bottom one is the joint module. The output vector from the top three modules will be 534 

concatenated and fed into the joint module where a multilayer perceptron (MLP) is used to 535 

get the final prediction result. 536 
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 539 

Figure 3. Performance comparison between the basic set and full set of DNA shape features on the (A) first 540 

layer and (B) second layer. 541 
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 544 

Figure 4. Visualization of four representative DNA shape feature features (A) MGW (B) Opening (C) 545 

Buckle (D) Tilt with aggregated line plots on the first layer. 546 

 547 

  548 

4.
92

4.
94

4.
96

4.
98

5.
00

5.
02

5.
04

M
ea

n 
va

lu
e 

(n
=1

48
4)

-100 Center +100

-0
.5
5
-0
.5
0
-0
.4
5
-0
.4
0
-0
.3
5
-0
.3
0
-0
.2
5
-0
.2
0

-100 Center +100

A B

C D
MGW Opening

-0
.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

M
ea

n 
va

lu
e 

(n
=1

48
4)

-100 Center +100

-0
.1
0

-0
.0
5

0.
00

0.
05

0.
10

-100 Center +100

Buckle Tilt

Enhancers Non-enhancers

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.14.444093doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.14.444093


 549 
Figure 5. Visualization of four representative DNA shape feature features (A) MGW (B) Opening (C) 550 

Buckle (D) Tilt with aggregated line plots on the second layer. 551 

 552 

  553 

4.
96

4.
98

5.
00

5.
02

5.
04

5.
06

M
ea

n 
va

lu
e 

(n
=7

42
)

-100 Center +100

-0
.4
0

-0
.3
5

-0
.3
0

-0
.2
5

-0
.2
0

-0
.1
5

-100 Center +100

-0
.4

-0
.2

0.
0

0.
2

0.
4

M
ea

n 
va

lu
e 

(n
=7

42
)

-100 Center +100

-0
.2

-0
.1

0.
0

0.
1

-100 Center +100

A B

C D
MGW Opening

Buckle Tilt

Strong enhancers Weak enhancers

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.14.444093doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.14.444093


 554 
Figure 6. Performance of different feature representations and their combinations. 555 
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Table 1 Performance of different feature representations and their combinations on the independent dataset 558 

of the first layer. 559 

Feature 

representations 
ACC (%) MCC AUC SN (%) SP (%) 

One-hot 73.70 0.475 0.812 71.20 76.20 

Shape 73.55 0.471 0.806 74.00 73.10 

K-mer 75.80 0.516 0.830 76.00 75.60 

O-S 74.13 0.483 0.814 72.85 75.40 

O-K 76.15 0.523 0.834 76.25 76.05 

S-K 76.40 0.528 0.833 77.25 75.55 

All 76.80 0.536 0.834 76.90 76.70 

The highest value achieved on every single metric has already been marked in bold. 560 

 561 

 562 

Table 2 Performance of different feature representations and their combinations on the independent dataset 563 

of the second layer 564 

Feature 

representations 
ACC (%) MCC AUC SN (%) SP (%) 

One-hot 57.95 0.163 0.638 66.40 49.50 

Shape 62.05 0.243 0.679 68.40 55.70 

K-mer 62.50 0.256 0.681 73.30 51.80 

O-S 63.05 0.276 0.661 78.90 47.20 

O-K 65.45 0.316 0.712 75.50 55.40 

S-K 67.35 0.358 0.739 79.20 55.50 

All 68.25 0.380 0.753 82.00 54.50 

The highest value achieved on every single metric has already been marked in bold. 565 
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Table 3 Performance comparison with existing methods on the independent dataset 578 

Task Method ACC (%) MCC AUC SN (%) SP (%) 

1st layer 

 

iEnhancer-2L 73.00 0.460 0.806 71.00 75.00 

Enhancer-Pred 74.00 0.480 0.801 73.50 74.50 

iEnhancer-EL 74.75 0.496 0.817 71.00 78.50 

iEnhancer-XG 75.75 0.515 - 74.00 77.50 

DENIES 76.80 0.536 0.834 76.90 76.70 

2nd layer 

iEnhancer-2L 60.50 0.218 0.668 47.00 74.00 

Enhancer-Pred 55.00 0.102 0.579 45.00 65.00 

iEnhancer-EL 61.00 0.222 0.680 54.00 68.00 

iEnhancer-XG 63.50 0.272 - 70.00 57.00 

DENIES 68.25 0.380 0.753 82.00 54.50 

The highest value achieved on every single metric has already been marked in bold. 579 
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