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Abstract 

Traits lacking fitness benefit cannot be directly selected for under Darwinian evolution. 

Thus, features such as metabolite secretion are currently inaccessible to adaptive laboratory 

evolution. Here, we utilize environment-dependency of trait correlations to enable 

Darwinian selection of fitness-neutral or costly traits. We use metabolic models to design 5 

selection niches and to identify surrogate traits that are genetically correlated with cell fitness 

in the selection niche but coupled to the desired trait in the target niche. Adaptive evolution 

in the selection niche and subsequent return to the target niche is thereby predicted to 

enhance the desired trait. We experimentally validate the theory by evolving Saccharomyces 

cerevisiae for increased secretion of aroma compounds in wine fermentation. Genomic, 10 

transcriptomic, and proteomic changes in the evolved strains confirmed the predicted flux 

re-routing to aroma biosynthesis.  The use of model-designed selection niches facilitates the 

predictive evolution of fitness-costly traits for ecological and biotechnological applications. 

 

Introduction 15 

Adaptive evolution can give rise to and optimize complex phenotypes as evident from the current 

and historical biodiversity (1–4). Evolutionary optimization can also be observed in molecular 

detail in the laboratory, as illustrated by, for example, the Escherichia coli long-term evolution 

experiment (5). While the evolution can involve numerous alternative paths at the level of the 

genotype, Darwinian selection constrains the phenotypic end points (fitness) (6). The phenotypic 20 

evolution can therefore be more precisely controlled through environmental selection pressure. 

This allows improving cells without the explicit knowledge of the underlying genotype-phenotype 

relations using adaptive laboratory evolution. Adaptive laboratory evolution has been used for 
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improving microbial strains, including alleviation of fastidious vitamin requirements (7), and 

enhancement of photosynthetic capabilities of engineered microorganisms (8, 9). 

While useful in optimizing complex traits and operationally simple, adaptive laboratory evolution 

is inherently limited to the traits genetically linked to the cell fitness. Improving fitness-neutral or 

costly trait requires artificial, non-Darwinian, selection through screening of large numbers of 5 

variants. This is a considerable combinatorial challenge for complex multigenic traits, and, thus, 

application of artificial selection has yet been limited to single proteins or pathways with 

photometric readouts (10–14). Adaptive selection of a complex trait requires identification of an 

environmental condition where the trait becomes growth-linked (15), for example, selection for 

increased antioxidant production under oxidative conditions (16). However, generalization of such 10 

anecdotal and intuition-guided methods is difficult and calls for predictive models of trait 

dependences. 

Here, we ask whether first-principle models could enable use of Darwinian selection for enhancing 

traits that carry no fitness benefit. We base our strategy on genome-scale metabolic models, which 

allow predicting metabolic fluxes consistent both with the mass balance constraints and the fitness 15 

objectives of the cells (e.g. optimal growth) (17, 18). In the context of laboratory evolution, 

genome-scale metabolic models have been shown to predict fitness improvement and the 

associated metabolic flux changes (19–22). We use these models to predict environment-

dependence of the correlations between metabolic traits, and that between metabolic traits and the 

cell fitness. This allowed us to predict selection environments, distinct from the target niche 20 

wherein the trait manifestation is required, for adaptive laboratory evolution. We put the predicted 

selection niches to experimental test through the improvement of wine aroma production in yeast. 
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RESULTS 

Selection niche 

Consider a target niche wherein the manifestation of a metabolic trait of interest is desired, e.g. 

wine must. We propose that an improvement of the desired trait, e.g. aroma production, in the 

target niche can be achieved through adaptive evolution in a distinct selection niche followed by 5 

the return to the target niche. To devise the selection niche, we take advantage of the observation 

that the covariance between any two traits is dependent on the growth environment. 

The selection acting on a phenotypic trait is the covariance between the trait and the relative fitness, 

as described by Robertson-Price identity (23–26) (Equation 1). 

𝑠 = 𝑐𝑜𝑣(𝑤, 𝑧)          Equation 1 10 

where s is the selection differential, w fitness, and z the trait of interest. 

When there is genetic covariance between the trait and relative fitness, evolutionary response to 

selection can occur (Equation 2, the secondary theorem of selection). 

𝑅 = 𝑠, = 𝑐𝑜𝑣-(𝑤, 𝑧)         Equation 2 

where R is the response to selection, sg is the genetic selection differential, and cova(w,z) is the 15 

additive genetic covariance. Equation 2 generalizes to a multivariate form for multiple traits (27). 

𝑹 = 𝑐𝑜𝑣-(𝑤, 𝒛)         Equation 3 

A metabolic trait can be modelled as a set of metabolic fluxes. Metabolic trait interdependencies 

(i.e. flux couplings) under a given nutrient environment can then be predicted using genome-scale 

metabolic models (28). Two metabolic reactions are coupled if a non-zero flux through one 20 

reaction implies a non-zero flux through the other. For an organism adapted to a particular 
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environment, flux coupling leads to genetic dependences between the corresponding enzyme-

coding genes (29). We use the coupling between metabolic traits and the specific growth rate 

(proxy for mean fitness) to predict relative responses to selection analogously to the secondary 

theorem of selection (Equation 4). 

𝑹0 =
𝒗
2
           Equation 4 5 

where Rv is the relative responses of single-flux metabolic traits to selection, v the metabolic fluxes, 

and µ the specific growth rate. 

We use the selection response relation (Equation 3) as a basis to search for a suitable selection 

niche – a defined chemical environment in which the adaptive evolution is to take place. Ideally, 

the selection niche would be chosen such that there is a direct selection for the desired trait through 10 

coupling with cell growth. This, however, will only rarely be possible as most desired traits, such 

as metabolite secretion, are a trade-off with cell growth due to competition for metabolic 

precursors and co-factors (30, 31) (Fig. 1a). We therefore aim at growth coupling of a surrogate 

trait, which we define as a set of fluxes that are coupled to cell growth in the selection niche, and 

with the desired trait in the target niche (Fig. 1b). It is not necessary for the surrogate trait to be 15 

coupled with the desired trait in the selection niche, nor it is likely, due to the trade-off against the 

growth. Thus, the surrogate trait is necessarily a proper subset of fluxes that must increase or 

decrease for the desired trait enhancement in the target niche. Due to the dependence of genetic 

correlations between traits on the growth environment (Equation 3), the surrogate trait and the 

selection niche are inherently linked to each other and need to be identified simultaneously. 20 

In the target niche, a desired trait that does not pose a fitness advantage will not be under Darwinian 

selection (Figure 1a). But the selection niche is designed such that it couples the surrogate trait to 
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mean fitness (Figure 1c), allowing positive selection on de novo mutations enhancing the surrogate 

trait. Following environment switch to the target niche, in which the surrogate trait is coupled with 

the desired trait, the latter is enhanced (Figure 1d and 1e). To visualize this process, consider a 

simple metabolic network (Figure 1e-g). While the parental strain is well adapted to channel the 

nutrients to cell growth (Figure 1e), in the selection niche different metabolic fluxes are coupled 5 

with growth (Figure 1f). When the selection niche is designed to couple the surrogate trait to 

growth, the mutations enriched in the selection niche improve the desired trait in target niche 

(Figure 1g). While the desired trait may be negatively selected in the target niche, this is not an 

obstacle for use in applications. A typical microbiological process involves only a few generations 

(below ten), and is thus unlikely to diminish the desired trait. The necessary condition will be to 10 

maintain the cell stock in a separate environment (in this case the selection niche), which is a 

common practice in microbiological applications. 

 

Predicting selection niche  

To predict selection niches satisfying the conditions laid out above, we devised an algorithm, 15 

termed EvolveX, based on genome-scale metabolic models. In brief, the algorithm simultaneously 

identifies a surrogate trait and evaluates the suitability of a niche – a set of available nutrients – as 

a selection niche for adaptively evolving the surrogate trait. 

The EvolveX algorithm involves four principle steps. Step 1: The flux basis of the desired trait is 

determined as fluxes that must change the desired trait to become enhanced in the target niche. 20 

Step 2: A response to selection of the desired trait’s flux basis is predicted in the selection niche. 

The subset of the flux basis with predicted non-zero responses to selection forms the surrogate 

trait. As the covariances of traits may change through evolution (32–34), we define the flux basis 
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of the desired trait (Step 1) in the ancestral state but predict the response to selection in an evolved 

state that is expected to be approached during experimental evolution (19, 22, 35). Step 3: A 

minimum size (cardinality) of the flux basis subset having stronger desired response to selection 

in the selection niche than in the target niche is estimated. Step 4: A suitability score of a selection 

niche is calculated by combining: (a) results of Step 1, indicating the strength of response to 5 

selection; (b) results of Step 2, indicating the coverage of flux basis with desired selection; and (c) 

the number of chemical components in the selection niche. The last criterion is included to discount 

for the uncertainty in the knowledge concerning the organism’s nutritional preferences. The details 

of EvolveX implementation, including accounting for alternative steady-state flux distributions, 

and normalization to enable comparison across different growth media likely eliciting different 10 

growth rates, are provided in Methods. 

 

Model-predicted selection niches increase aroma production 

To experimentally test the concept of the selection niche in adaptive evolution, we used EvolveX 

to improve secretion of aroma compounds by S. cerevisiae in wine must, a niche that is 15 

characterized by high sugar content and relatively less assimilable nitrogen including amino acids. 

As aroma synthesis diverts carbon and nitrogen away from the production of daughter cells, it 

cannot be selected in adaptive evolution in the target niche (wine must). Furthermore, while the 

metabolic pathways that synthesize aroma compounds are known, their regulation is poorly 

understood, preventing facile engineering of aroma secretion (36). We targeted two main groups 20 

of aroma compounds for selection: phenylethyl alcohol and the derived acetate ester, 

phenylethylacetate, which have a rose and honey scent and raspberry-like flavor; and, branched-

chain amino acid-derived higher alcohols (i.e. 2-methyl-1-butanol and 3-methyl-1-butanol) and 
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their acetate esters (i.e. 2-methylbutylacetate and isoamyl acetate), which have a banana and pear 

scent and fruity flavor. 

To identify a suitable selection niche and surrogate trait, we assessed all 1540 combinations of up 

to three carbon and nitrogen sources, out of 22 common constituents of yeast growth media. All 

potential niches were ranked by using the EvolveX score (Step 3) (supplementary information, 5 

Table S1). Following literature-based assessment of substrate utilization preferences of S. 

cerevisiae, two of the high-scoring niches (in the top 20 out of the 1171 niches that supported 

growth) were selected for experimental evolution. A selection niche containing glycerol, 

phenylalanine, and threonine as the sole carbon and nitrogen sources was chosen for phenylethyl 

alcohol and phenylethylacetate production, creating a surrogate trait of seven fluxes out of the flux 10 

basis of 20 (supplementary information, Table S2). This growth medium is referred to as the 

glycerol niche (Figure 2a). For increasing the production of branched-chain amino acid-derived 

aromas, a selection niche containing ethanol, arginine, and glycine was chosen, creating a 

surrogate trait of eleven fluxes out of the flux basis of 44 (supplementary information, Table S2). 

This growth medium is referred to as the ethanol niche (Figure 2a). 15 

A diploid S. cerevisiae wine strain was grown in the two selection niches. Three replicate 

populations were independently evolved asexually for ~150 generations. The parental strain and a 

single colony isolate (out of nine) from all evolved populations were then characterized in 

industrially relevant wine must fermentations. The fermentation performance of the selected 

strains was monitored through culture weight loss and the HPLC profiles of sugars and the main 20 

fermentation byproducts (i.e. ethanol, glycerol, acetate) of the cultures (supplementary 

information, Table S3). The evolved isolates maintained their fermentation performance in wine 

must indicating their suitability for use in wine fermentations. The volatile flavor compounds in 
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the wine must fermentations were quantified using GC-MS analysis. Principal component analysis 

of the quantified volatile compounds of interest, those deriving from aromatic (four compounds or 

indistinguishable compound sets) and branched chain amino acids (seven compounds or 

indistinguishable compound sets), showed a clear divergence of the evolved strains from the 

parental aroma profile (Figure 2b). Further, the isolates selected in the glycerol niche were distinct 5 

from those selected in ethanol niche. The volatile compounds separating the three groups were in 

accord with the model predictions. The first principle component (PC1, 38% of the total variance) 

distinguished the parental strains from the evolved strains, the separation being driven by the 

surrogate traits that overlapped between the two selection niches – fluxes through transketolase 1 

and ribulose 5-phosphate 3-epimerase. In accord with the model predictions, the isolates selected 10 

in the ethanol and glycerol selection niches were separated by the target aroma compounds except 

isoamyl acetate (PC2, 25% of the total variance, Figure 2b-c). Phenylethylacetate was specifically 

increased in fermentations with the isolates selected in the glycerol niche (Figure 2c). Similarly, 

the combined pool of branched-chain amino acid-derived aroma compounds 2-methyl-1-butanol 

and 3-methyl-1-butanol was increased only for the isolate selected in the ethanol niche. 15 

Evolved strains exhibit molecular changes in line with the model predictions 

To understand the genetic basis of the selected phenotypes, we sequenced the whole genomes of 

the evolved populations. In addition, we sequenced the isolates from the evolved populations at an 

earlier (~100 generations) and at a later (~214 and 165 generations in ethanol niche and in glycerol 

niche, respectively) stage of the adaptive laboratory evolution process. The clones and the 20 

populations selected in the glycerol niche experienced low frequencies of single nucleotide 

variants (SNVs) and no genes showed recurrent SNVs. However, copy number variants (CNVs) 
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were prevalent with a majority of the genome having been triplicated in some populations and 

clones (Figure 3a; supplementary information, Table S4). 

In contrast, in populations and clones selected in the ethanol niche the chromosome copy number 

aberrations were limited to chromosome VII (triplicated), and recurrent SNVs were found in SKY1, 

encoding a protein serine/threonine kinase involved in the regulation of polyamine transport 5 

(missense p.Ala591Val, frameshift p.Leu64fs, stop gain p.Ser117*). We also observed a loss-of-

heterozygosity (LoH) segment in the contig containing the SKY1 locus (supplementary 

information, Table S4). SKY1 deletion gives yeast tolerance to high spermine concentrations (37), 

a degradation product of arginine, one of the three components in the ethanol niche. In cases where 

SKY1 mutations were not detected, we either found paired missense mutations in genes encoding 10 

the ubiquitin ligase Rsp5 (p.Arg355Gly) and its target-guide and adapter Ldb19 (p.Pro679Thr), 

which drive the endocytosis of plasma membrane-localized amino-acid transporters, and a LoH in 

the contig containing the LDB19 locus (supplementary information, Table S4). Thus, in the ethanol 

niche, mutations in genes involved in arginine utilization were enriched during adaptive laboratory 

evolution, consistent with the selection regime. However, the recurrent copy number variants 15 

enriched in the glycerol niche affected multiple genes rendering it challenging to elucidate 

associations with either the particular selection or the improved aroma generation trait. 

To better understand the complex multigenic changes associated with the improved aroma 

production phenotypes, we investigated the underlying transcript and protein abundance states. 

We analyzed these in wine must (our target niche), as well as in the selection niches. The overlap 20 

of differentially expressed transcripts and proteins was limited (max 6 % of all differentially 

abundant proteins and RNAs in a strain) suggesting post-transcriptional regulation plays a 

substantial role in both the improved aroma generation in wine must and to the improved fitness 
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in the selection niches. The fitness improvement in the glycerol niche was associated with a 

differential abundance of 40 (evolved strain G2-2) and 38 (evolved strain G2-1) metabolic 

enzymes (as per yeast genome-scale metabolic model v. 7.6; Aung, Henry and Walker, 2013). The 

proteins with increased abundance were enriched in respiratory processes: oxidative 

phosphorylation for G2-1, (p-value 2.74e-05) and mitochondrial electron transport for G2-2 (p-5 

value 0.0424). This is in accord with the strong selection pressure on these processes, as predicted 

by EvolveX (supplementary information, Table S5). Additionally, three glycolytic enzymes 

(Cdc19, Pdc6, and Tdh1) become less abundant in G2-1, suggesting increased respiratory activity 

relative to glycolysis. 

The fitness improvement in the ethanol niche was also associated with only a handful of enzyme 10 

abundance changes: 13 in evolved strain E2-2 and 10 in evolved strain E2-1 (supplementary 

information, Table S5). Consistent with arginine being the sole nitrogen source in this selection 

niche, these changes involved arginine metabolism, including decreased abundance of arginine 

biosynthetic pathway enzymes (Arg1 and Arg8 in E2-1, and Arg5,7 in E2-2). Strain E2-2 further 

had decreased abundance of proline oxidase Put1, involved in the utilization of one of the four 15 

nitrogen atoms in arginine. Several transporters had higher abundance in E2-2: arginine permease 

(Can1), monocarboxylate transporter (Jen1), methionine permease (Mup1), and hexose transporter 

(Hxt6). The endocytosis of all of these transporters is mediated by Rsp5-Ldb19 (39–41), which is 

mutated in the E2-2. Thus, in both selection niches, the changes in protein expression were limited 

and included pathways predicted by EvolveX – respiration in the case of the glycerol niche and 20 

arginine metabolism in the case of the ethanol niche. 

In the target niche, wine must, the desired traits of improved aroma generation were associated 

with few changes in protein abundances (11–24 proteins, Figure 3c). Changes in metabolic 
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enzymes could be attributed to increased target aroma precursor supply or to decreased 

competition for the precursors. The precursor supply was enhanced in all evolved strains through 

increases in the level of transketolase (Tkl1), which was included in the both surrogate traits (i.e. 

for increasing the aromatic and branched chain amino acid derived aromas). The clones from the 

glycerol niche specifically showed decreased levels of ATP phosphoribosyltransferase His1, 5 

which competes with Tkl1 for the precursor ribose 5-phosphate (Figure 3d). Orotidine-5'-

phosphate decarboxylase (Ura3) involved in purine nucleotide synthesis, was found in decreased 

abundance in one of the clones from the glycerol niche, consistent with aroma synthesis competing 

for nucleotide precursors. Gene expression changes influencing precursor supply were observed 

in the clones from the glycerol niche, and specifically genes involving chorismate synthesis 10 

(ARO1, ARO3, and RKI1 being part of the trait flux basis), in the gene for aromatic amino 

transferase (ARO8), and in the PDC1, PDC5 genes, which encode phenylpyruvate decarboxylating 

enzymes involved in the Ehrlich pathway of phenylethyl acetate formation (42) and belong to the 

surrogate trait. 

While the clones from the ethanol niche and the glycerol niche both showed increased abundance 15 

of Tkl1, the ethanol niche clones did not show reduced levels of His1 or Ura3 (Figure 3c). Instead, 

one of the ethanol niche clones showed increased levels of dihydroxyacid dehydratase (Ilv3) and 

isopropylmalate isomerase (Leu1), involved in branched-chain amino acid biosynthesis, the origin 

of the target aroma compounds (Figure 3e). Both Ilv3 and Leu1 belonged to the corresponding 

trait flux basis, as does beta-isopropylmalate dehydrogenase (Leu2), which catalyzes the reaction 20 

following that catalyzed by Leu1 in the leucine biosynthesis pathway. However, the flux basis of 

enhanced phenylethyl acetate generation was coupled with Leu2 down-regulation, and one of the 

clones from glycerol niche showed the predicted decrease in Leu2 abundance (Figure 3e, 
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supplementary information, Table S5). Thus, we were able to directly associate altered protein 

abundances in the clones selected in the glycerol and ethanol niche with the corresponding desired 

aroma synthesis pathways and the competing metabolic pathways. 
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Discussion 

In our approach, we are able to select for what would otherwise be fitness-costly or fitness-neutral 

traits by placing the cells in an appropriately chosen selection niche. Our theory and experimental 

results show that this selection niche can be predicted using first-principle modelling. We used 

such model-designed niches to improve two aroma production traits in wine yeasts. Previously, 5 

adaptive evolution of fitness-beneficial traits in one niche has been shown to facilitate exaptation, 

i.e. the predisposition to fitness improvement in another niche (22). In contrast, we propose and 

show that, in an appropriately chosen selection niche, a trait without a fitness benefit in the target 

niche can adaptively evolve. 

Using surrogate traits and the selection niche maintains the key advantage of adaptive laboratory 10 

evolution, in circumventing the need to know the genetic and regulatory basis of the traits of 

interest beyond the basic metabolic network structure. Indeed, analysis of the improved aroma 

generation traits in our case study revealed complex genotype-phenotype relationships. Improving 

these traits using rational strain improvement would currently be challenging (Hassing et al., 

2019). Our approach of combining surrogate traits with the selection niche makes such traits 15 

amenable for adaptive evolution. As genome-scale metabolic models are becoming easier to 

reconstruct (44–47), our approach can be applied to any organism amenable for experimental 

evolution. 

The increased phenylethyl alcohol and phenylethyl acetate generation we observed occurred in a 

selection niche containing the direct aroma precursor phenylalanine. In contrast, no target aroma 20 

precursor was included in the selection niche for the branched-chain amino acid-derived aroma 

compounds. This demonstrates the utility of metabolic modelling in identifying non-intuitive 

selection niches. While we designed the selection niches in this study using carbon and nitrogen 
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sources, enzyme inhibitors and substrate analogs can also be used to expand the search space for 

the selection niches. 

The theory of the surrogate traits and the selection niches is generalizable to non-metabolic traits 

as long as the dependency between the fitness and other traits can be quantitatively modelled. This 

could be done by using signaling networks or genetic interaction networks, for example. Our 5 

theory provides means for understanding complex adaptive processes through systematizing the 

joint environment-genetic dependences between fitness and other traits, and also enables the 

manipulation of complex traits for biotechnological applications. 
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Figures 

 

 

 

Figure 1. Selection niches and surrogate traits for Darwinian selection in absence of fitness 5 

advantage. Current phenotype is represented with an orange circle whereas the orange star 

represents a desired phenotype. a) In the target niche (yellow), Darwinian process (grey arrows) 

selects for fitter phenotypes with diminished desired trait(s). b) The surrogate trait is chosen such 

that it is coupled to the desired trait in the target niche, but not in the selection niche (green). c) 

The surrogate trait is coupled to fitness in the selection niche and can therefore be improved 10 

through Darwinian selection. d) Evolved cells with a strengthened surrogate trait manifest an 

improved desired trait in the target niche. e) A simplified schematic example of how the selection 

niche can be used for evolving desired traits. The desired trait in the example is the production of 
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the open hexagon. The squares are nutrients available differing between the target and selection 

niches. The arrows represent metabolic fluxes, the thicker the arrow the higher the flux. The 

desired trait does not share metabolic fluxes (i.e. genotypic features) with growth (i.e. proxy for 

mean fitness) in the target niche, but the surrogate trait (red arrows) is a subset of the flux basis of 

the desired trait. In the selection niche, the surrogate trait is coupled to fitness through shared 5 

intracellular fluxes. Thus, the surrogate trait can be improved through adaptive evolution in the 

selection niche. The improved surrogate trait supports the desired trait in the target niche. 
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Figure 2. Adaptive laboratory evolution of S. cerevisiae in model-designed selection niches led to 

predicted changes in aroma compound production in wine must fermentations. a) Origin of aroma 

compounds in the yeast central metabolism: branched-chain amino acid derived compounds (esp. 

2-methyl-1-butanol, 3-methyl-1-butanol, isoamyl acetate and 2-methylbutylacetate), and aromatic 5 

amino acid derived compounds (esp. phenylethyl alcohol and phenylethyl acetate). Acetate esters 

of higher alcohols share an acetyl-CoA (ACCOA) precursor. b) Principal components analysis of 
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aromatic and branched amino acids-derived aroma compound profiles of natural wine must 

fermentations, with the parental (grey) and evolved strains. Strain from the ethanol selection niche 

(ethanol, arginine, glycine in light blue, that from the glycerol selection niche (glycerol, 

phenylalanine, threonine) in orange. First principle component mainly captures the variation 

between the parental strains and the evolved strains while the second principle component captures 5 

the variation between the isolates from the two different selection niches. c) Selected aroma 

compound abundances in wine must fermentations of evolved strains (the scale is in arbitrary units, 

AU). E2-clone 1 (light blue) was selected in the ethanol niche, and G2-clone 1 (orange) was 

evolved in the glycerol niche. 2+3-methylbutanol (a combined pool of 2-methyl-1-butanol and 3-

methyl-1-butanol) and isoamyl acetate (acetate ester of 3-methyl-1-butanol) were the desired target 10 

aromas of the ethanol niche, deriving from branched-chain amino acids. Phenylethyl alcohol and 

its acetate ester, phenylethyl acetate, were the desired target aromas of the glycerol niche. 
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Figure 3. Evolved yeast strains show molecular changes in line with the model predictions. a) 

Evolved populations and clones from the glycerol niche (indicated with G) exhibited large CNVs. 

Genome segment copy numbers are shown for evolved populations and clones (from glycerol and 5 

ethanol niche indicated with G and E, respectively) along the chromosomes. Vertical lines indicate 

ends of contigs. The clones for which we determined protein and transcript alterations are indicated 

in bold. b) Loss-of-heterozygosity was associated with SNVs in evolved populations, and clones 

from the ethanol niche. c) Proteomics analysis of the evolved clones grown in wine must (the target 

niche) revealed both shared and niche-specific changes in comparison to the parental strain (three 10 

biological replicates, multiple testing corrected p-value < 0.01, -1 ≥ log2 fc ≥ 1). Clones for which 
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we measured the aroma production are highlighted with blue and orange. Clones from the glycerol 

niche specifically featured higher abundance of Tkl1p and lower abundance of His1p. d) Evolved 

clones grown in wine must featured changes in protein and transcript abundances (three biological 

replicates, fdr < 0.05, -1 > log2 fc > 1) in the pathways leading to the target aroma compounds 

phenylethyl alcohol and phenylethyl acetate. The changes consistent with the predictions in 5 

specific clones are indicated with colored arrows (protein-level) and clouds around the arrows 

(transcript-level). e) Proteomic and transcriptomic changes in evolved cells, marked as in d), for 

pathways leading to the branched chain amino acids derived target aroma compounds. 
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Material and Methods 

EvolveX algorithm 

The flux bases of the desired traits were determined as minimum sets of fluxes requiring up- or 

down-regulation (respective to current metabolic phenotype) for the desired metabolic traits to 

arise. Such flux sets were determined by solving a mixed-integer linear programming (MILP) 5 

problem after which the required flux change directions either up or down were assigned. The 

MILP problem was formulated similarly to (48) (Equation 5). 

𝑚𝑖𝑛6𝑦8

9

8:;

 

𝑠. 𝑡.           Equation 5 

𝑺 ∙ 𝒗 = 0 10 

𝒗AB ≤ 𝒗 ≤ 𝒗DB 

𝑣EF-8E ≥ 𝛼 ∙ 𝑣	EF-8E,9-J  𝛼	ϵ	[0	1] 

𝑣8 − 𝑦8P𝑣DB,8 − 𝑤DB,8Q ≤ 𝑤DB,8 

𝑣8 − 𝑦8P𝑣AB,8 − 𝑤AB,8Q ≥ 𝑤AB,8  𝑦8	ϵ	[0,1] 

𝑤DB,8 = 𝑤9-J,8 + 𝛿T𝑤9-J,8T + 𝜀 15 

𝑤AB,8 = 𝑤98V,8 − 𝛿T𝑤98V,8T − 𝜀 

 

where S is the stoichiometric matrix, v the vector of metabolic fluxes, vlb and vub the flux lower 

and upper bounds, respectively, yi are binary variables representing whether a reaction flux i 

requires up- or downregulation for the rise of the target trait vtrait at level 𝛼 of maximum, vtrait,max. 20 

wub,i and wlb,i are the flux thresholds of wild type metabolic phenotype derived from the wild type 

minimum fluxes wmin,i and maximum fluxes wmax,i and parameters δ and ε. 

As equally small, alternative, flux sets may exist, they were enumerated by introducing an 

additional constraint ∑ 𝑦X < 𝑛V
X:;  rendering previous solutions infeasible. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 16, 2021. ; https://doi.org/10.1101/2021.05.14.443989doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.14.443989


23 
 

An evolved metabolic state was predicted by minimizing the total nutrient uptake flux for 

synthesizing an arbitrary unit of growth while the cells were exposed to inhibitors and metabolic 

effectors present in the selection niche (Equation 6). 

min 𝒄 ∙ 𝒗            

𝑠. 𝑡.           Equation 6 5 

𝑺 ∙ 𝒗 = 0 

𝑣2 = 10 

𝑣V ≤ −1   𝑛 ∈ 𝑁 

𝑣8V` = 0,    𝑖𝑛ℎ ∈ 𝐼 
𝒗AB ≤ 𝒗 ≤ 𝒗DB 10 

 

where c defines the nutrient uptakes possible in the particular selection niche with -1, vµ is the 

growth flux, vn are the uptake fluxes from niche N, and I is the set of metabolic reactions inhibited 

by the inhibitors present in the selection niche. 

The total response to selection of the desired trait (in worst-case scenario) was predicted as the 15 

sum of growth couplings of its flux basis. For the subsets of the flux basis associated with flux 

change directions up and down, the minimum and maximum growth coupled fluxes, respectively, 

under the constraint of minimized total nutrient uptake flux for an arbitrary unit of growth, were 

summed (Equation 7). 

min	 6 𝑣|D| + 6 P−𝑣|d|Q
A

|d|:;

e

|D|:;

 20 

𝑠. 𝑡.           Equation 7 

𝑺 ∙ 𝒗 = 0 

𝑣2 = 10 
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𝑣V ≤ −1    𝑛 ∈ 𝑁 

𝑣8V` = 0    𝑖𝑛ℎ ∈ 𝐼 
𝒗AB ≤ 𝒗 ≤ 𝒗DB 

𝒄 ∙ 𝒗 ≥ 𝑟DgE-eh,9-J  

0 ≤ 𝑣|D| ≤ 𝑣|D|,DB ,    |𝑢| ∈ 𝑈, 𝑣|D|,DB = 𝑚𝑎𝑥	(𝑣D,AB, 𝑣D,DB) 5 

0 ≤ 𝑣|d| ≤ 𝑣|d|,DB,    |𝑑| ∈ 𝐷, 𝑣|d|,DB = 𝑚𝑎𝑥	(𝑣d,AB, 𝑣d,DB) 

𝑣D − 𝑣|D| ≤ 0,    𝑢 ∈ 𝐻 

−𝑣D − 𝑣|D| ≤ 0 

𝑣d − 𝑣|d| ≤ 0,    𝑑 ∈ 𝐿 

−𝑣d − 𝑣|d| ≤ 0 10 

−𝑣d −𝑀 ∙ 𝑑|d| + 𝑣|d| ≤ 0 

𝑣d +𝑀 ∙ 𝑑|d| + 𝑣|d| ≤ 𝑀,  𝑑|d|	𝜖	[0, 1] 

 

where ruptake,max is the optimal state from Equation 3, H and L are the sets of fluxes (and k and l the 

sizes of sets) belonging to the desired trait’s flux basis requiring up- and down-regulation, 15 

respectively, and U and D are sets of absolute flux variables representing the fluxes belonging to 

the desired trait’s flux basis requiring up- and down-regulation, respectively. v|u|,ub and v|d|,ub are 

the upper bounds of the absolute flux variables whose values were derived as maximum absolute 

value of the flux bounds vlb and vub. M is a parameter for which a value of 20000 was used. It is 

double the maximum flux upper bound. d|d| is a binary variable introduced for each reversible flux 20 

belonging to the flux basis of the desired trait and requiring down-regulation. 

The minimum subset size (i.e. worst-case scenario) of the flux basis of the desired trait having 

stronger response to selection in the particular selection niche than in common laboratory growth 

conditions (or target niche) was estimated under the constraint of minimized total nutrient uptake 

flux for an arbitrary unit of growth and under the constraint of worst-case total response to selection 25 

of the flux basis of the desired trait (Equation 8). 
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min	6𝑏E

g

E:;

 

𝑠. 𝑡.           Equation 8 

𝑺 ∙ 𝒗 = 0 

𝑣2 = 10 

𝑣V ≤ −1    𝑛 ∈ 𝑁 5 

𝑣8V` = 0    𝑖𝑛ℎ ∈ 𝐼 

𝒗AB ≤ 𝒗 ≤ 𝒗DB 

𝒄 ∙ 𝒗 ≥ 𝑟9-J 

0 ≤ 𝑣|D| ≤ 𝑣D,DB   |𝑢| ∈ 𝑈, 𝑣|D|,DB = 𝑚𝑎𝑥	(𝑣D,AB, 𝑣D,DB) 

0 ≤ 𝑣|d| ≤ 𝑣d,DB    |𝑑| ∈ 𝐷, 𝑣|d|,DB = 𝑚𝑎𝑥	(𝑣d,AB, 𝑣d,DB) 10 

𝑣D − 𝑣|D| ≤ 0    𝑢 ∈ 𝐻 

−𝑣D − 𝑣|D| ≤ 0 

𝑣d − 𝑣|d| ≤ 0    𝑑 ∈ 𝐿 

−𝑣d − 𝑣|d| ≤ 0 

−𝑣d −𝑀 ∙ 𝑑|d| + 𝑣|d| ≤ 0 15 

𝑣d +𝑀 ∙ 𝑑|d| + 𝑣|d| ≤ 𝑀,  𝑑|d|	𝜖	[0, 1] 

6 𝑣|D| + 6 P−𝑣|d|Q 	≤ 𝑠98V

A

|d|:;

e

|D|:;

 

𝑣|D| + (1 + 𝛾)𝑤9-J,|D| − 𝑣DB,|D| ≤ (1 + 𝛾)𝑤9-J,|D| 

−𝑣|d| + (𝛾 − 1)𝑤98V,|d| + 𝑣AB,|d| ≤ (𝛾 − 1)𝑤98V,|d| 

 20 

where smin is the minimum combined response to selection of the desired trait’s flux basis 

determined above, and γ is a threshold parameter for stronger response to selection than in the 

common laboratory conditions represented by maximum and minimum growth couplings wmax,|u| 

and wmin|d| respectively. 
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The suitability of an selection niche for adaptively evolving a desired metabolic trait was evaluated 

by deriving a weighted sum of 1) the total flux couplings to growth of the desired trait’s flux basis, 

2) the minimum subset size of the desired trait’s flux basis with higher/lower predicted responses 

to selection than in common laboratory growth conditions (or target niche), and 3) the number of 

chemical components in the selection niche (Equation 9). The lower the score for the selection 5 

niche, the better suited it was considered for adaptively evolving desired traits. 

𝑠𝑐𝑜𝑟𝑒 = ;vw∙exyz{|
(e}A)

+ ;vw∙(e}AxBz{|)
(e}A)

+ 𝑧     Equation 9 

where bmin is the minimum subset size (i.e. worst-case scenario) of the desired trait’s flux basis 

having stronger response to selection than in common laboratory growth conditions (or target 

niche), and z is the number of components in the particular selection niche. 10 

 

Model simulations 

S. cerevisiae consensus genome-scale metabolic model v. 7.6 (38) was used with few revisions 

including augmenting the model with missing Ehrlich pathway (42) reactions and conditional 

constraints for predicting parental and evolved flux states. For implementing the model revisions, 15 

Matlab R2017b v. 9.3.0 and Cobra toolbox v.3.0 (cloned 29.03.2018) (49) were used. EvolveX 

algorithm was implemented and run in Matlab R2017b v. 9.3.0 with IBM ILOG CPLEX v. 12.8.0 

functions ‘cplexlp’ and ‘cplexmilp’. The Matlab codes are available upon request. 

 

Strains and culture media 20 

Both selection niches were created by modifying the defined minimal yeast growth medium by 

Verduyn et al. 1992 (50). The selection niche media contained 6.6 g/L K2SO4, 3 g/L KH2PO4, 0.5 
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g/L (MgSO4)7H2O, and the vitamins and trace elements as in Verduyn et al. 1992. The vitamin 

solution was composed of 50 mg/L d-biotin, 200 mg/L para-amino benzoic acid, 1.0 g/L nicotinic 

acid, 1.0 g/L Ca-pantothenate, 1.0 g/L pyridoxine-HCl, 1.0 g/L thiamine-HCl and 25 mg/L myo-

inositol and the trace minerals solution of 3 g/L FeSO4·7H2O, 4.5 g/L ZnSO4·7H2O, 4.5 g/L 

CaCl2·6H2O, 0.84 g/L MnCl2·2H2O, 0.3 g/L CoCl2·6H2O, 0.3 g/LCuSO4·5H2O, 0.4 g/L 5 

NaMoO4·2H2O, 1 g/L H3BO3, 0.1 g/L KI and 15 g/LNa2EDTA·2H2O. The nitrogen and carbon 

sources were specific for a particular selection niche medium. The ethanol niche contained 7.5 g/L 

ethanol, 1.7 g/L arginine and 0.8 g/L glycine. The glycerol niche contained 5 g/L glycerol, 5g/L 

phenylalanine and 1.2 g/L threonine. The pH of the media were set to 6 and the media were sterile 

filtered. 10 

Initially twelve different S. cerevisiae wine strains (commercial and vineyard isolates) were tested 

for their ability to grow in the two selected selection niches. The majority of the strains were able 

to grow sufficiently in ethanol niche after 4 days of culture, however only four strains were able 

to grow in glycerol niche even after a week of culture had passed. We selected as a parental strain 

for adaptive laboratory evolution a commercial diploid wine strain S. cerevisiae obtained from 15 

Lallemand which was able to grow in both selection niches.  

Precultures and cells for genomic DNA extraction were grown overnight in rich medium (YPD) 

containing 10 g/L of yeast extract, 20 g/L peptone and 20 g/L glucose sterilized through 

autoclaving. Single strain isolations were performed using YPD or synthetic wine must mimicking 

medium (WMM) plates containing 2% agar as solidifying agent. The WMM composition was 100 20 

g/L glucose, 100 g/L fructose, 5 g/L citric Acid, 0.5 g/L malic acid, 0.25 g/L MgSO4, 0.75 g/L 

KH2PO4, 0.5 g/L K2SO4, 0.155 g/L CaCl2, 0.2 g/L NaCl, 0.15 g/L NH4Cl, 2 mL/L anaerobic factors 

(1.5 g/L ergosterol, 0.5 g/L oleic acid, 50 g/L Tween 80 and 5 g/L ethanol), 3.5 mL/L amino acids 
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solution (1.95 g/L tyrosine, 17.5 g/L tryptophan, 3.25 g/L isoleucine, 4.42 g/L aspartic Acid, 11.95 

g/L glutamic Acid, 44.5 g/L arginine, 4.8 g/L leucine, 7.54 g/L threonine, 1.82 g/L glycine, 49.92 

g/L glutamine, 14.56 g/L alanine, 4.42 g/L valine, 3.12 g/L methionine, 3.77 g/L phenylalanine, 

7.8 g/L serine, 4.57 g/L histidine, 2.11 g/L lysine, 2.7 g/L cysteine and 59.93 g/L proline), 5 mL/L  

vitamins solution (2 g/L myo-inositol, 0.15 g/L  Ca-pantothenate, 0.025 g/L thiamine-HCl, 0.2 g/L  5 

nicotinic acid, 0.036 g/L pyridoxine-HCl and 0.03 g/L biotin) and 5 mL/L trace elements solution 

[4 g/L  MnSO4, 4 g/L  ZnSO4, 1 g/L  CuSO4, 1 g/L  KI, 0.4 g/L  CoCl2, 1 g/L  H3BO3 and 1 g/L 

(NH4)Mo7O24] and the pH was set to 3.3. 

 

Adaptive laboratory evolution 10 

The adaptive laboratory evolution experiment was initiated by inoculating both selection niches in 

triplicate from overnight single colony precultures of the parental S. cerevisiae strain on YPD to 

starting OD600 of 0.2. The adaptive laboratory evolution was performed for the triplicate lineages 

on each selection niche as a serial transfer experiment with 7 ml liquid cultures in 50 ml shake 

flasks at 30 oC with shaking at 180 rpm. The shake flasks were capped with cotton plugs for 15 

enhanced aeration. When culture turbidity was visually observed, the lineages were transferred to 

fresh medium initially to a starting OD600 of 0.2 and later, after the growth had improved to OD600 

of 0.1, measured with a spectrophotometer (Ultrospec 2100, Biochrom). Intermediate lineage 

samples were collected to 30% w/v glycerol and stored at -80 oC. 

The adaptive laboratory evolutions were initially performed for approximately 107 generations in 20 

ethanol niche and 100 generations in glycerol niche after which single colonies were picked and 

the isolates performing the best in the corresponding selection niche characterized as described 

below. The number of generations was calculated back using the following formula 

[Log10(Af/Ai)]/0.3, where Af is the OD600 before the transfer and Ai is the OD600 that was initially 
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inoculated. A second round of adaptive laboratory evolution was initiated with the individual 

strains when they showed positive aroma profile development in the characterization (two lineages 

in ethanol niche, one lineage in glycerol niche), and with the last population stocks in case aroma 

profile improvement was not yet observed (one lineage in ethanol niche, two lineages in glycerol 

niche). The second round of evolution was continued approximately for additionally 97 and 65 5 

generations in selection niches with ethanol and glycerol, respectively. Then, single colonies were 

again picked and the isolates performing the best in the corresponding selection niche 

characterized as described below. 

 

Characterization of evolved strains 10 

For discarding non-genetic adaptation and for ensuring wine fermentation performance, single 

colonies were picked from the evolved lineages following growth on WMM + 2% agar plates for 

48 h. Nine single colonies were isolated from each lineage and cultured overnight in liquid cultures 

on WMM. From these overnight cultures, stocks were prepared to 30% w/v Glycerol and stored 

at -80 oC. The overnight cultures on WMM were also used to inoculate corresponding selection 15 

niche as in adaptive laboratory evolution. Cell growth was monitored with turbidity (OD600) 

measurements. The best growing strain from each lineage was selected for a characterization in 

wine fermentation mimicking conditions. 

Yeasts were maintained at 4 °C on YPD plates (2% glucose, 2% peptone, 1% yeast extract and 2% 

agar), or as glycerol stocks at −80 °C. Inocula were grown on YPD for 48 h at 25°C, washed and 20 

suspended in water.  
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Natural white must from the 2017 harvest was kept frozen. This must contained 215.8 g/L of sugar, 

density 1088.3 g/L. Enough volume for the experiment was thawed and pasteurized. Pasteurization 

consisted on heating to 105°C and then allowing it to cool down inside the closed autoclave. 

Aliquots of 25 mL pasteurized grape must were inoculated at 0.2 final OD600. Fermentation was 

carried at 25 ºC in Falcon tubes (50 ml nominal volume), capped with air locks, and monitored by 5 

weight loss. After 8 days, weight was constant, and samples were centrifuged and supernatants 

were kept frozen for HPLC and GCMS analysis. All experiments were performed in triplicate. 

Determination of metabolite concentration 

The concentration of glucose, fructose, glycerol, ethanol, and acetic acid was determined using a 

Surveyor Plus liquid chromatograph (Thermo Fisher Scientific, Waltham, MA) equipped with a 10 

refraction index and a photodiode array detector (Surveyor RI Plus and Surveyor PDA Plus, 

respectively) on a 300 × 7.7 mm PL Hi-Plex H+ (8 µm particle size) column (Agilent 

Technologies, Santa Clara, CA) and 4 x 3 mm ID Carbo-H guard (Phenomenex, Torrance, CA). 

The column was maintained at 50 °C and 1.5 mM H2SO4 was used as the mobile phase at a flow 

rate of 0.6 mL/min. Prior to injection in duplicate, the samples were filtered through 0.22 µm pore 15 

size nylon filters (Micron Analitica). 

Analysis of volatile compounds 

Samples for gas chromatography-mass spectrometry (GC-MS) analysis contained 2000 µl of 

sample, 1g NaCl, and 20 µl internal standard, in 20 ml flasks. Internal standard contained 1000 

ppm each of 4-methyl 2-pentanol and heptanoic acid, and 100 ppm 1-nonanol, in water, prepared 20 

from 10000 ppm individual solutions in ethanol. Sample was preincubated for 10 min at 45 ºC, 

followed by 30 min at 45 ºC with 50/30 µm DBV/CAR/PDMS SPME fiber (Stableflex, 

SUPELCO, Bellefonte, PA). Fiber was desorbed for 5 min at 250 ºC.  
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GC-MS was carried out in a Thermo TRACE GC Ultra apparatus coupled to a Thermo ISQ mass 

detector, equipped with a Thermo TriPlus autosampler. Gas chromatography was carried in a 

Thermo Scientific fused-silica capillary column TG-WAXMS A (30 m long; 0.25 mm OD; 0.25 

µm film thickness). Chromatographic conditions were as follows: 5 min at 40 ºC, 3 ºC/min up to 

200 ºC, 15 ºC/min up to 240 ºC, 10 min at 240 ºC. Helium was used as carrier gas at a flow rate of 5 

1 mL/min, operating in split mode (ratio 30). Total analysis time was 71 min. Detection was 

performed with the mass spectrometer operating in the Full Scan mode (dwell time 500 ms), with 

70 eV ionization energy, and source and quadrupole temperatures of 250ºC. Detection was stopped 

during the time interval for ethanol elution. Peak identification was made by comparison of ion 

spectra with NIST mass spectral library. For each compound, including internal standards, the sum 10 

of the areas of the peaks of selected characteristic ions was obtained. Area of each compound was 

referred to one selected internal standard. 

GC-MS data has been deposited in the Metabolights database 

(https://www.ebi.ac.uk/metabolights/) with accession MTBLS2208. 

 15 

Whole genome sequencing of populations and isolates 

Genomic DNA was extracted from parental strains grown in YPD, lineages grown in selection 

niches, and single colony isolates grown in YPD using Phenol-Chloroform based extraction. 

Specifically, total volume of 7 mL overnight cultures was centrifuged at 3000 rpm for 3 min and 

the pellets were washed with sterile ddH2O. The cells were resuspended in 2 mL of TrisEDTA 20 

solution (0.1 M Tris and 0.1 M EDTA) and transferred to Eppendorf tubes, with 1.5 U lyticase. 

The pellets were then incubated at 37 oC for 30 min. Next the spheroplasted cells were centrifuged 

at 1500 rpm for 2 min (Eppendorf centrifuge), the supernatant was removed and the cells were 
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resuspended in 400 µL of breaking buffer which contained 10 mM Tris, 1 mM EDTA, 100 mM 

NaCl, 2% Triton X-100 and 1% SDS. The cell suspensions were transferred to FastPrep Cap tubes 

tubes with 200 µL of glass beads (400 nm acid washed, Sigma) and the cells were broken with 3 

rounds of bead beating at 4.5 Mhz/s for 20 seconds with 1 min cooling intervals or through 

vortexing only. The cell lysates were transferred to a new tube that contained 400 µL of phenol-5 

chloroform/ isoamyl alchocol and 400 µL of TE buffer (Tris 50 mM, EDTA 20 mM) and were 

centrifuged briefly until an emulsion was formed. The emulsions were centrifuged at 13.000 rpm 

for 5 min at room temperature. The aqueous phase of each tube was transferred to a new 

Eppendorf, it was mixed with 1 mL of cold 100% ethanol and incubated at room temperature for 

10 min to help precipitation. In the next step the tubes were centrifuged at 13.000 rpm for 5 min 10 

at room temperature, the ethanol was removed and the DNA pellet was resuspended at 400 µL of 

TE buffer with 2 µL of RNAse solution (20 mg/mL) and incubated for 15 min at 37 oC, followed 

by a second incubation step at 65 oC for 15 min, in order to deactivate the RNAse. The DNA 

solution was mixed with 400 µL of phenol-chloroform/ isoamyl alchocol and the extraction step 

was performed again as described above. DNA was precipitated from the aqueous phase with 1 15 

mL of cold 100% ethanol and centrifugation at 13.000 rpm for 5 min at room temperature. The 

pellet was left to dry for 30 min at 55 oC, next was resuspended with 50 µL of H2O and was left 

overnight at 4 oC for the pellet to dissolve completely. 

The quality of the extracted DNA was evaluated with electrophoresis in a 1% [w/v] agarose gel. 

DNA concentrations were measured using a Qubit (Thermo Fisher Scientific, USA). Equal 20 

amounts of DNA from all samples were used for library preparation, which was done with the 

NEBNext DNA Ultra2 Library Preparation Kit (New England Biolabs). The preparation of the 

library was performed on an automated liquid handling system (Hamilton Robotics), the quality 
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of the library was tested on a 2100 BioAnalyzer (Agilent Technologies), and the DNA 

concentration was measured using a Qubit. Sequencing was performed at the Genomics Core 

Facility (EMBL Heidelberg) with use of the HiSeq2500 platform (Illumina, San Diego, USA) and 

the run produced 250 bp paired-end reads.  

The sequenced samples are listed in supplementary information (Table S6) and the raw reads are 5 

deposited in ENA database (https://www.ebi.ac.uk/ena/browser/home) in study PRJEB40761 with 

accession numbers ERS5457098 and ERS5290477-ERS5290502 for the parental and evolved 

samples and ERS6110907- ERS6110952 for Panel of Normals (PoN) -samples. 

 

Whole genome sequence data analysis 10 

The quality of the obtained reads was checked using Fastqc v. 0.11.4 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/; Andrews, 2010). Adapter removal 

and low quality read filtering was performed using cutadapt v. 1.9.1 

(https://pypi.org/project/cutadapt/; Martin, 2011). The trimmed reads were aligned to S. cerevisiae 

EC1118 reference genome (53) with the Burrows-Wheeler Aligner v. 0.7.12 mem (54) using 15 

default parameters. The alignments were processed (added read groups, sorted, reordered, and 

indexed) and duplicate reads were marked using Picard Tools v. 1.129 

(https://broadinstitute.github.io/picard/). Single nucleotide variant (SNV), and insertion-deletion 

(indel) variant calling was performed against the parental sample with GATK4 v. 4.1.0.0 (55, 56) 

Mutect2 using the S. cerevisiae EC1118 as the reference and default parameters. PoN for the 20 

variant calling was compiled of 47 wild type S. cerevisiae strains (winery isolates and commercial 

wine strains, including the parental) sequenced on the same platforms as the actual samples. 

Variant calling was first performed for the wild type strains by running Mutect2 in tumor-only -
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mode and then the panel of normal was created with GATK4 v. 4.1.0.0 

CreateSomaticPanelOfNormals. The variant calls were filtered using GATK4 v. 4.1.0.0 

FilterMutectCalls using default thresholds and by keeping the variants at PoN sites. 

Copy number variant (CNV) analysis was performed on read counts and B-allele frequencies (baf) 

using GATK4 v. 4.1.0.0 tools. First, the read counts were binned for 1000 bp intervals with 5 

CollectReadCounts. These read counts were denoised with DenoiseReadCounts using the parental 

sample as a matched normal. The allelic counts were collected using CollectAllelicCounts and 

combined with the binned read counts for modelling the CNV segments using ModelSegments 

with number-of-changepoints-penalty-factor of eight (8). CNVs were called using 

CallCopyRatioSegments. In major copy number aberrations the default centralization of the log2 10 

copy ratios to median across all contigs, misplaced the zero level to deviate from the conserved 

copy number. As there were major differences in the copy number aberrations between the 

samples, the copy ratios were re-normalized to the level of FN393086.1 contig with conserved 

copy number across samples. The contig was identified using the minor allele frequencies and the 

copy ratio differences between modelled segments. After the re-normalization, CNV’s were called 15 

for segments longer than 10 kb with -0.6 ≤ log2 copy ratio ≥ 0.3. Each CNV call was evaluated 

against baf data. The calls were corrected conservatively if the baf data did not support the log2 

copy ratio call. The population sample calls were corrected only if the call could not be explained 

even by partial loss-of-heterozygosity (LoH). LoH were identified as baf zero/one segments. The 

log2 copy ratios of modelled segments, their copy number calls, and the LoH identified in the 20 

samples are provided in supplementary information (Table S4). Heatmap of contig median copy 

ratios was plotted using R v. 4.0.3 (R Core Team, 2020) gplots package v. 3.1.1 (57). 
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RNA-sequencing sample preparation and data analysis 

All the RNA samples were prepared according to the following procedure. Total volume of 20 mL 

from each culture was transferred to a 50 mL Falcon® filled with ice and was immediately 

centrifuged at 3000 rpm for 3 min at 4 oC (Eppendorf centrifuge). Next the supernatant was 

discarded and the cell pellet was snap frozen into liquid nitrogen and stored at -80 oC, until the 5 

extraction. Total RNA from the pellets was extracted with the RNAeasy kit (Qiagen) according to 

the manufacturer’s recommendations. In brief, 594 µL of RTL buffer plus 6 µL of β-

Mercaptoethanol were used to resuspend the frozen cell pellet which was left on ice. The 

resuspended cells were transferred to an ice cold FastPrep Cap tube which contained 600 µL glass 

beads (400 nm acid washed, Sigma). The cells were then lysed with 2 cycles of bead beating, each 10 

cycle lasted 10 sec at 6 Mz/s with 15 s cooling interval. Cell lysates were transferred to a new tube 

and were centrifuged for 2 min at full speed (Eppendorf centrifuge) and the supernatant was 

carefully mixed with 1 volume of 70% HPLC-grade ethanol. Next the total volume of the sample 

was transferred to an RNAeasy column and the manufacturer’s instructions were followed. Total 

RNA was eluted with 60 µL of RNAse free water and Turbo DNAse (Invitrogen Ambion) was 15 

used to digest leftover DNA according to the manufacture instruction. Finally, one more step of 

RNA clean-up was performed with the same kit.  

RNA library was prepared using the NEBNext® Ultra™ II Directional RNA Library Preparation 

Kit for Illumina: polyA transcripts capture. Briefly, barcoded stranded mRNA-seq libraries were 

prepared from high quality total RNA samples (~200 ng/sample) using the NEBNext Poly(A) 20 

mRNA Magnetic Isolation Module and NEBNext Ultra II Directional RNA Library Prep Kit for 

Illumina (New England Biolabs (NEB), Ipswich, MA, USA) implemented on the liquid handling 

robot Beckman i7. Obtained libraries that passed the QC step were pooled in equimolar amounts; 
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2 pM solution of this pool was loaded on the Illumina sequencer NextSeq 500 and sequenced uni-

directionally, generating ~500 million reads, each 85 bases long.  

The quality of the obtained RNA-sequencing reads was assessed and summarized with Fastqc v. 

0.11.5 (51). Adapter trimming, to remove the standard lllumina TrueSeq Index adapter sequences, 

was performed using cutadapt v. 2.3 (52). Subsequently, quality read filtering and trimming was 5 

performed with FaQCs v. 2.08 (58), with the following parameters: -q 20 -min_L 30 -n 3. After 

trimming and filtering steps total number of reads were, in average, 31 million. Trimmed reads 

were then aligned to the reference genome of S. cerevisiae EC1118 (EnsemblFungi: annotation 

number GCA_000218975.1) using STAR v. 2.5.2a (59). On average, 85% of reads uniquely 

mapped to an annotated feature in the reference genome. Only uniquely mapped reads were then 10 

used to generate the gene level count tables with HTSeq v. 0.9.1(60). Statistical analysis was 

performed with R v. 3.6.1 (61). Differential expression analysis, including multiple testing 

correction and independent filtering, was performed with Bioconductor package: DESeq2 v. 1.12.0 

(62). False discovery rate (FDR) was calculated with fdrtool v. 1.2.15 (63) using the raw p-values 

returned by DESeq2. Genes with a FDR < 0.05 and log2 fold change >1 or <-1 were considered 15 

as significantly differentially expressed. Unless specified, all packages were used with default 

parameters. 

The RNA-sequencing data has been deposited to ArrayExpress database 

(https://www.ebi.ac.uk/arrayexpress/) with accession E-MTAB-10019. 

 20 

Proteomics sample preparation and data analysis 

For the extraction of total proteome 10 mL of each culture were transferred into ice-cold 15 mL 

Falcon® tubes which were centrifuged immediately at 3000 rpm for 3 min at 4 oC (Eppendorf 
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centrifuge). The supernatant from the centrifugation was discarded and the cell pellets were 

washed once with 1 mL of cold PBS buffer. The washed pellets were snapped frozen with liquid 

nitrogen and stored at -80 oC. For the extraction, the cell pellets were lysed with 0.1% RapiGest 

(Waters) in 100 mM ammonium bicarbonate, followed by mechanical disruption with 3 rounds of 

sonication (1 cycle: 10 sec sonication and 10 sec rest on ice per round). Sonication was followed 5 

by 2 cycles of bead beating (200 µL glass beads, 400 nm acid washed, Sigma), each cycle lasting 

20 sec at 4 Mz/sec with 1 min cooling intervals between the cycles.  

Reduction of disulphide bridges in cysteine containing proteins was performed with dithiothreitol 

(56 °C, 30 min, 10 mM in 50 mM HEPES, pH 8.5). Reduced cysteines were alkylated with 2-

chloroacetamide (room temperature, in the dark, 30 min, 20 mM in 50 mM HEPES, pH 8.5). 10 

Samples were prepared using the SP3 protocol (64) and trypsin (sequencing grade, Promega) was 

added in an enzyme to protein ratio 1:50 for overnight digestion at 37 °C. Peptides were labelled 

TMT10plex (65) Isobaric Label Reagent (ThermoFisher) according the manufacturer’s 

instructions. For further sample clean up an OASIS® HLB µElution Plate (Waters) was used. 

Offline high pH reverse phase fractionation was carried out on an Agilent 1200 Infinity high-15 

performance liquid chromatography system, equipped with a Gemini C18 column (3 µm, 110 Å, 

100 x 1.0 mm, Phenomenex), (66), resulting in 12 fractions. 

After fragmentation, the peptides were separated using an UltiMate 3000 RSLC nano LC system 

(Dionex) fitted with a trapping cartridge (µ-Precolumn C18 PepMap 100, 5µm, 300 µm i.d. x 5 

mm, 100 Å) and an analytical column (nanoEase™ M/Z HSS T3 column 75 µm x 250 mm C18, 20 

1.8 µm, 100 Å, Waters). Trapping was carried out with a constant flow of trapping solution (0.05% 

trifluoroacetic acid in water) at 30 µL/min onto the trapping column for 6 min. Subsequently, 

peptides were eluted via the analytical column running solvent A (0.1% [v/v] formic acid in water) 
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with a constant flow of 0.3 µL/min, with increasing percentage of solvent B (0.1% [v/v] formic 

acid in acetonitrile) from 2% to 4% in 4 min, from 4% to 8% in 2 min, then 8% to 28% for a further 

37 min, in another 9 min. from 28%-40%, and finally 40%-80% for 3 min followed by re-

equilibration back to 2% B in 5 min. The outlet of the analytical column was coupled directly to 

an Orbitrap QExactive™ plus Mass Spectrometer (Thermo) using the Nanospray Flex™ ion 5 

source in positive ion mode. 

The peptides were introduced into the QExactive plus via a Pico-Tip Emitter 360 µm OD x 20 µm 

ID; 10 µm tip (New Objective) and an applied spray voltage of 2.2 kV. The capillary temperature 

was set at 275 °C. Full mass scan was acquired with mass range 375-1200 m/z in profile mode 

with resolution of 70000. The filling time was set at maximum of 100 ms with a limitation of 3x106 10 

ions. Data dependent acquisition (DDA) was performed with the resolution of the Orbitrap set to 

17500, with a fill time of 50 ms and a limitation of 2x105 ions. A normalized collision energy of 

32 was applied. Dynamic exclusion time of 20 s was used. The peptide match algorithm was set 

to ‘preferred’ and charge exclusion ‘unassigned’, charge states 1, 5 - 8 were excluded. MS data 

was acquired in profile mode. 15 

The acquired data were processed using IsobarQuant (67) and Mascot v. 2.2.07. A Uniprot 

Saccharomyces cerevisiae proteome database (UP000002311) containing common contaminants 

and reversed sequences was used. The search parameters were the following: Carbamidomethyl 

(C) and TMT10 (K) (fixed modification), Acetyl (N-term), Oxidation (M) and TMT10 (N-term) 

(variable modifications). A mass error tolerance of 10 ppm was set for the full scan (MS1) and for 20 

MS/MS (MS2) spectra of 0.02 Da. Trypsin was selected as protease with an allowance of 

maximum two missed cleavages. A minimum peptide length of seven amino acids and at least two 

unique peptides were required for a protein identification. The false discovery rate on peptide and 
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protein level was set to 0.01. GO-process enrichments were determined using 

https://www.yeastgenome.org/goTermFinder with the metabolic enzymes annotated in S. 

cerevisiae consensus genome-scale metabolic model v. 7.6 (38, 68) at p-value 0.1. 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium 

via the PRIDE (69) partner repository with the dataset identifier PXD023171. 5 

 

Small scale fermentation of natural wine must (microvinification) for transcriptomics and 

proteomics analysis 

A single colony of the parental strain, two evolved isolates originating from the ethanol niche and 

two evolved isolates originating from the glycerol niche were grown overnight in 50 mL Falcon® 10 

tubes with 15 mL of YPD. The overnight grown cells were washed three times with PBS and 

diluted to an initial OD600 of 0.1 in 55 mL of natural white must from the 2017 harvest (see above). 

For the microvinification process, 50 mL Erlenmeyer flaks were used, filled to the maximum, in 

order to create microanaerobic conditions. Maintaining the anaerobic conditions meant that the 

growth could not be estimated based on changes in the optical density, but it was correlated with 15 

the observed weight loss, which occurs from the release of CO2, the end product of carbon 

metabolism. Release of CO2 is possible through a small needle which is pierced through rubber 

plugs, which in turn were sterilized and used to seal the Erlenmeyer flaks, while a small piece of 

gauge prevents anything from the environment to fall inside the flask through the needle. The 

growth stage of the cultures was estimated based on weight loss which correlates to the 20 

consumption of glucose and release of CO2 as suggested by Harsch et al. (2010). For this reason, 

the initial weight of the cultures was measured and followed once every day until no more weight 

loss was observed, at which point the cultures had entered stationary phase. After the establishment 
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of the growth kinetics with weight loss, same cultures as described above were prepared, weight 

loss was once again followed and the cells were harvested at mid exponential phase for RNA-

sequencing and proteomics analysis, as described at the previous sections. 

 

Data analysis and visualization 5 

Principal component analysis was performed using R v. 4.0.3 (71) and factoextra package v. 1.0.7 

(72). Data processing was performed using readr package v. 1.4.0 (73), dplyr package v. 1.0.2 

(74) and tidyr package v. 1.1.2 (75). For statistical plotting ggplot2 package v. 3.3.2 was used, the 

euler diagram was generated using eulerr package v. 6.1.0 (76), CNV heatmap was plotted using 

heatmap.2 function from gplots package v. 3.1.1 (57), and the color schemes were obtained from 10 

RColorBrewer package v. 1.1-2 (77), and ggsci package v. 2.9 (78). 

 

Supplementary information 

Table S1: EvolveX scores enumerated for selection niche suitability for adaptively evolving the 

target aromas 15 

Table S2: Flux bases and surrogate traits 

Table S3. Performance in wine must fermentations 

Table S4. Aneuploidy and LoH 

Table S5. Significantly differentially abundant metabolic enzymes in selection niche and in wine 

must fermentation and corresponding model predictions 20 

Table S6. Sample identifiers 
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