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Abstract 6 

During periods of rest, hippocampal place cells feature bursts of activity called sharp-wave ripples (SWRs). 7 
Heuristic approaches to their analysis have revealed that a small fraction of SWRs appear to “simulate” 8 
trajectories through the environment—called awake hippocampal replay—while the functional role of a 9 
majority of these SWRs remains unclear. Applying a novel probabilistic approach to characterize the spatio-10 
temporal dynamics embedded in SWRs, we instead show that almost all SWRs of foraging rodents simulate 11 
such trajectories through the environment. Furthermore, these trajectories feature momentum, that is, 12 
inertia in their velocities, that mirrors the animals’ natural movement. This stands in contrast to replay 13 
events during sleep which seem to follow Brownian motion without such momentum. Lastly, interpreting the 14 
replay trajectories in the context of navigational planning revealed that similar past analyses were biased by 15 
the heuristic SWR sub-selection. Overall, our approach provides a more complete characterization of the 16 
spatio-temporal dynamics within SWRs, highlights qualitative differences between sleep and awake replay, 17 
and ought to support future, more detailed, and less biased analysis of the role of awake replay in 18 
navigational planning.  19 
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Introduction 20 

Planning through mental simulations, or the anticipation of future action-outcome sequences, is a powerful 21 
mechanism for improving action selection (Sutton and Barto, 1998). Strikingly, rodents performing spatial 22 
navigation tasks appear to perform such mental simulations (Buzsáki, 2015; Carr et al., 2011). While the 23 
animal is moving, hippocampal place cells exhibit spatially localized firing patterns, such that a population of 24 
place cells represents the animal’s current location in the environment (O’Keefe and Dostrovsky, 1971; Fig. 25 
1a/b). During a fraction of sharp-wave ripples (SWRs), which are population bursts of activity associated 26 
with brief pauses in the animal’s movement, these place cells appear to shift to generating “simulated” 27 
trajectories through the environment (Davidson et al., 2009; Diba and Buzsáki, 2007; Tingley and Peyrache, 28 
2020; Fig. 1a-c). These “awake hippocampal replay events” have been proposed to support a range of 29 
computational functions, such as memory storage (Wilson et al., 1994), recall (Gillespie et al., 2021; Shin et 30 
al., 2019; Xu et al., 2019), and planning (Jadhav et al., 2012; Pfeiffer and Foster, 2013; Singer et al., 2013). 31 
However, determining the precise computational function of these events has been challenging (Joo and 32 
Frank, 2018; Mattar and Daw, 2018), and it remains unclear why they constitute only a small fraction of 33 
SWRs (Tingley and Peyrache, 2020). A critical foundation for assessing the computational role of SWRs is 34 
a comprehensive and systematic characterization of the spatio-temporal dynamics of the trajectories they 35 
encode, and how these dynamics relate to natural movement in the environment. 36 
 Two main challenges have hampered a systematic characterization of the spatio-temporal dynamics 37 
of replay events. First, most studies of hippocampal replay are performed in 1D maze environments, which 38 
greatly constrains the possible set of observed dynamics to linear trajectories. This obscures subtle task-39 
specific details in the trajectories’ dynamics, and makes it hard to identify certain features in the underlying 40 
trajectories, such as their relation to natural movement (Stella et al., 2019). Second, established methods 41 
for identifying replay trajectories within SWRs use heuristics whose implicit assumptions cause them to only 42 
identify a subset of especially salient trajectories (Tingley and Peyrache, 2020). Commonly, they declare 43 
SWRs as replay events only if the position sequence decoded by maximum likelihood satisfies a restrictive 44 
set of criteria. For example, trajectories might need to be linear trajectories in 1D environments (Davidson et 45 
al., 2009; Diba and Buzsáki, 2007), or have minimum start-to-end, and maximum consecutive position 46 
distances in 2D environments (Pfeiffer and Foster, 2013, 2015). Particularly in 2D environments, which 47 
more closely resemble the rodents’ natural habitat, this leads to discarding over two-thirds of SWRs as non-48 
trajectory events (Pfeiffer and Foster, 2015; Stella et al., 2019). Does this imply that the discarded SWRs in 49 
fact do not encode trajectories but instead signal other events, or that these SWRs just do not conform to 50 
the assumed classification criteria? Further, if the discarded SWRs indeed encode trajectories, to which 51 
degree is their characterization and subsequent analysis biased by discarding them? 52 

To address these questions, we move away from traditional heuristics of replay event classification 53 
and instead take a probabilistic modeling approach. This approach rests on defining explicit, dynamical 54 
models for trajectories as continuous sequences of position, and compares them to alternative models of 55 
non-continuous position sequences. Applied to neural tetrode recordings of rats foraging in an open-field 56 
area (Pfeiffer and Foster, 2013), our approach revealed that almost all of the observed SWRs encode 57 
spatial trajectories. Furthermore, these trajectories appeared to feature movement dynamics with 58 
momentum, that is, with inertia on their velocities. Thus, they feature dynamics beyond simple Brownian 59 
motion, and comparable to how rodents actually move through the environment. This has several 60 
consequences. First, the finding that almost all SWRs encode trajectories reveals that simulating spatial 61 
trajectories is, in fact, a dominant function of SWRs. Second, the finding of momentum embedded in these 62 
trajectories implies that the mechanism generating these events needs to include a notion of velocity, 63 
suggesting the potential inclusion of multiple brain networks (see Discussion). Third, finding consistent 64 
momentum stands in contrast to similar replay events during sleep, which appear to lack such momentum 65 
and instead follow simpler Brownian motion (Stella et al., 2019). Thus, awake and sleep replay events might 66 
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differ in both their engaged neural mechanisms and their functional role. Fourth, almost all SWRs encoding 67 
trajectories implies that previous work analyzing these trajectories might have been biased by discarding 68 
the majority of them — as we will demonstrate in the context of navigational planning further below. Lastly, 69 
our approach is generally less sensitive to noise than the established heuristics, and thus should lead to 70 
cleaner, less biased, decoded trajectories that can inform further work on their role in navigational planning. 71 

While previous work has applied probabilistic methods to the analysis of replay events, it has done 72 
so in a different context. Location decoding from place cell population activity at isolated time points, for 73 
example, commonly relies on maximum likelihood approaches (Johnson and Redish, 2007; Zhang et al., 74 
1998). Other past studies have applied probabilistic methods to identifying replay events, but did not model 75 
the spatial dynamics of the trajectories (Linderman et al., 2016; Maboudi et al., 2018). Recent work 76 
(Denovellis et al., 2020) used a related probabilistic formulation of the position sequence encoded within an 77 
SWR, but restricted itself to W-maze environments, and did not distinguish between diffusion and 78 
momentum dynamics. We instead perform a systematic characterization of the spatial dynamics of replay 79 
trajectories in unconstrained 2D environments, and use a rich class of considered dynamics models for 80 
such environments that yields novel insights into the dynamics underlying SWRs.   81 

Results 82 

State-space models characterize the spatio-temporal structure of SWRs 83 

We analyzed the spatio-temporal structure of SWRs in the dataset of Pfeiffer and Foster (2013, 84 
2015), which consists of tetrode recordings from hippocampal CA1 collected while rats foraged around a 2m 85 
x 2m open field environment for hidden food reward (Fig. 1a/b). The rats’ ability to freely roam an open field, 86 
unconstrained by the topology of a maze, was essential to our main objective of characterizing the replay 87 
events’ spatio-temporal structure. Each session consists of 80-263 single units from recording sessions of 88 
37-66 minutes (n=8 sessions, 4 rats for 2 sessions each). For our analysis we used the 2956 sharp-wave 89 
ripples (SWRs; Fig. 1b) that Pfeiffer and Foster (2015) identified by their ripple-band power of the local-field 90 
potential (mean ± SD = 372 ± 42 SWRs per session, see Methods).  91 
 We used Bayesian model comparison applied to state-space models to distinguish between different 92 
spatio-temporal dynamics encoded by each SWR. Our state-space models assume that the place cell 93 
activity sequence underlying each SWR encodes a sequence of positions (i.e., the latent state sequence) in 94 
the open field environment, and allow us to distinguish different dynamics of these position sequences from 95 
recorded spike data (Fig. 1c). Their two components are (i) a spiking model that determines, for each latent 96 
position in the environment, the resulting place cell activity encoding this position, and (ii) a dynamics 97 
model, describing the presumed dynamical structure of each sequence of latent positions. We represent the 98 
latent position zt at each time point t by discretizing the environment into a 50 x 50 grid (4cm x 4cm bins). 99 
We do not have access to the underlying true sequence of positions over time, z1:T=z1,...,zT, (assuming here 100 
a sequence of length T) but instead observe the sequence of recorded spikes, x1:T=x1,...,xT, where xt 101 
denotes the vector of spike counts emitted by each place cell in the tth time bin. As in previous work 102 
(Davidson et al., 2009; Pfeiffer and Foster, 2015), we assume that place cell activity encodes latent position 103 
during SWRs as they do during periods of active movement. Thus, we estimated each cell i’s place field fi(z) 104 
from its spiking activity during movement, and in turn assumed that the observed spikes during SWRs were, 105 
for some latent position z, generated by draws from a Poisson distribution, independent across cells, with 106 
spike rate fi(z) for place cell i (see Methods).  107 
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 108 
 109 

Fig. 1. State-space models for characterizing the spatio-temporal structure of SWRs. 110 
a. Rats foraged in a 2m x 2m open-field arena for food hidden in wells (shaded gray circles). The blue trace illustrates a schematic 111 
behavioral trajectory of the rat.  112 
b. Representative sample from data recording. Top trace shows the velocity of the animal, with an initial period in which it is moving 113 
(blue shading), followed by a period in which the rat is not moving (gray shading). The raster plot shows associated spiking activity 114 
for each cell, i, over time t. SWRs occur within the period in which the rat is not moving (orange shading = example SWR).  115 
c. Schematic of assumed relationship between the putative simulated trajectory, z1:T, encoded by the example SWR (left panel, zx/zy 116 
= encoded x/y position) and the recorded spikes, x1:T (right panel, SWR from b expanded in time; color gradient from yellow to 117 
purple indicates time). The spike generation model (middle panel) uses the place fields (4 example cells; top-right number = max. 118 
firing rate (spikes/s)) estimated from spiking data during movement to predict spike counts for each spatial position during SWRs.  119 
d. Considered dynamics models for characterizing the spatio-temporal structure encoded by an SWR. Dynamics models are 120 
grouped into trajectory models, which assume a continuously evolving trajectory, and non-trajectory models, which do not. We show 121 
for each dynamics model, M, a schematic depicting the assumed dynamics (top row), three example simulated trajectories 122 
generated from the dynamics of the model (middle row), and the underlying graphical model showing the statistical relationship of 123 
the variables involved (bottom row; see Methods for detailed description).  124 
 125 

We then define a set of candidate dynamics models that describe the hypothesized spatio-temporal 126 
structure of how the latent position, zt, evolves through time and space (Fig. 1d). Each dynamics model M is 127 
fully described by the probability p(z1:T|M), that it assigns to a specific position sequence z1:T. The models 128 
differ in the probability they assign to a sequence, with the highest probability assigned to position 129 
sequences that are most compatible with the model’s assumed dynamics. To capture a reasonable range of 130 
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potential spatio-temporal dynamics of position sequences, we defined five models that each make different 131 
assumptions about these dynamics (Fig. 1d). This is equivalent to defining a set of Hidden Markov Models 132 
with different priors on the transition function (Fig. 1d, bottom row). The first model describes a random walk 133 
through space — a one-step Markov model in which the position at any time point depends only on the 134 
previous position. Its dynamics generate trajectories that resemble Brownian motion through the 135 
environment, so we refer to this model as the diffusion model. Notably, its trajectories lack momentum and 136 
so, unlike natural movement, do not follow smooth movement through space (Fig. 1d, middle row). This is 137 
rectified by our diffusion with momentum model, whose sequence of velocities, v1:T=v1,...,vT (i.e., 138 
consecutive position changes), rather than positions, performs a continuous random walk. The position 139 
sequences associated with both models form continuously evolving trajectories, such that we will refer to 140 
them collectively as trajectory models.  141 

To distinguish SWRs that encode trajectories from those that do not, we defined three additional 142 
models that do not hypothesize temporal continuity of the encoded position sequences. The first, stationary 143 
model, assumes that the latent position remains constant over time within a single SWR. The second, 144 
stationary Gaussian model relaxes this rather stringent assumption by allowing the latent position to be 145 
drawn at each point in time from a Gaussian with mean and variance that remain fixed within individual 146 
SWRs, but can vary across them. Lastly, the third, random model assumes that the latent positions are 147 
drawn independently across time within each SWR, and uniformly on the discretized environment. As none 148 
of these alternative models assumed the position encoded by SWRs to evolve along a continuous 149 
trajectory, we refer to them collectively as non-trajectory models. 150 

We applied model comparison separately to each SWR (Fig. 2). That is, we did not assume all 151 
SWRs to encode the same latent state dynamics, but instead asked for each SWR in the dataset separately 152 
how likely each model was to have generated the recorded sequence of spikes. To apply the model 153 
comparison, we chose to bin observed spikes into non-overlapping time bins of 3ms, but found comparable 154 
results for other choices of the time bin size (Fig. S1). Combining the spike generation model with the 155 
different dynamics models, and averaging over all possible latent position sequences, allowed us to 156 
compute the likelihood p(x1:T|M) of observing the given spike sequence for each dynamics model (see 157 
Methods). Assuming each dynamics model is a-priori equally likely, and applying Bayes’ rule to this 158 
likelihood, in turn provides a posterior distribution, p(M|x1:T), of how likely each of the dynamics models is for 159 
this particular SWR (see Methods). This posterior both tells us which model described the spiking data best 160 
— the model with the highest likelihood p(x1:T|M) — and also gives us a measure of relative certainty across 161 
the dynamics models (Fig. 2b). Importantly, this procedure implicitly penalized more complex dynamics 162 
models (MacKay, 1995). For example, the latent position sequence arising from a stationary model would 163 
also be compatible with a stationary Gaussian model with a small variance. However, the higher complexity 164 
of the latter makes our model comparison prefer the former, if compatible with the observed spike 165 
sequence. 166 

 167 
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 168 
Fig. 2. State-space models reveal the spatio-temporal dynamics within individual SWRs. 169 
The shown examples were chosen to illustrate different types of latent dynamics, most of which remained unclassified by the 170 
traditional method for analyzing replay events. 171 
a. Heatmaps visualize the decoded position under each dynamics model by p(zt|x1:T, M), summed over all time, t=1...T, for 172 
visualization. They illustrate how our approach combines the uncertain position information encoded by place cells with the 173 
stochastic position dynamics assumed by the different models. Each column shows the decoded position under one dynamics 174 
model, and each row is a representative SWR. 175 
b. The relative likelihood of each model to generate the recorded spikes within the SWRs shown in a. 176 
c. Comparison to the traditional method for replay classification (Pfeiffer and Foster, 2015): the heatmap visualizes decoded 177 
posterior position and extracted trajectory using the traditional method for trajectory classification for each SWR. The green line 178 
indicates the extracted trajectory that is subjected to classification criteria, and the label under the heatmap indicates if the SWR 179 
was classified as a trajectory.  180 

Most awake SWRs feature trajectories with momentum 181 

Applying our model comparison to all SWRs across all sessions confirmed that almost all (92.8%, 182 
see Fig. S2) SWRs that were classified as trajectories by Pfeiffer and Foster (2015) using the previous, 183 
heuristic approach (which we refer to as the traditional method in the following) were best described by one 184 
of our trajectory models. For example, the traditional method classified SWR 15 in Fig. 2 as a replay event, 185 
and was best-fit by our momentum model. However, we also found many previously unclassified SWRs to 186 
be best described by one of our trajectory models. For example, SWRs 23 and 282 in Fig. 2 are best 187 
described by the momentum and diffusion models, respectively, though they failed the previous 188 
classification criteria due to a too small start-to-end distance of the extracted trajectory. Indeed, the 189 
traditional method only classified 23.7% of the 2956 SWRs as trajectories, which we will refer to as 190 
previously classified trajectories (see Methods). Furthermore, few SWRs were best described by one of the 191 
non-trajectory models, as, for example, the stationary model for SWR 131. 192 
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 193 
Fig. 3. The vast majority of SWRs feature trajectories with momentum. 194 
a. Inferred distribution of dynamics models underlying the observed SWRs (mean ± SEM across sessions), computed by random 195 
effects model comparison (see main text). 196 
b. Comparison of our method to the traditional method, grouping the diffusion and momentum dynamics models into trajectory 197 
models, and the remaining models into non-trajectory models (mean ± SEM across sessions; gray dots = individual sessions). 198 
c. Confusion matrix summarizing model recovery results on simulated data. Each row shows the inferred distribution of dynamics 199 
models, p(M | all simulated SWRs Xsim), given the set of simulated spiking data generated under a different dynamics model M. 200 
d. Cumulative histogram of deviance explained for all SWRs by the best-fit model (pink line) and the random model (gray line). 0% 201 
deviance explained = predicting same avg. spike firing rate across all neurons/SWRs, 100% deviance explained = predicts correct 202 
spike count in each time bin.  203 
 204 

We next asked how likely each dynamics model was on average to have generated individual SWRs 205 
within each session. We inferred this distribution over dynamics model by random effects model comparison 206 
(Penny et al., 2010). In contrast to the more standard fixed effects Bayesian model comparison that 207 
assumes all SWRs to follow the same dynamics model and infers the most likely one, random effects model 208 
comparison assumes SWRs to be drawn from a distribution over dynamics models, making it less prone to 209 
outliers in per-SWR model likelihoods p(x1:T|M) (Stephan et al., 2009; Fig. S3). Across sessions, random 210 
effects analysis (Fig. 3a) revealed that 83.6% ± 3.8% (mean ± SEM across sessions) of SWRs are 211 
generated by dynamics containing momentum (exceedance probability of momentum model ≈ 1 for all 212 
sessions; exceedance probability = probability that momentum model is more likely than all other models), 213 
suggesting that these SWRs include a notion of velocity in the dynamics underlying the position evolution. 214 
Additionally, 7.1% ± 2.4% of SWRs are generated by diffusion dynamics without momentum. The remaining 215 
9.3% ± 2.2% are consistent with non-trajectory dynamics (stationary: 3.8% ± 0.8%, stationary gaussian: 216 
2.8% ± 0.8%, random: 2.8% ± 0.8%). Overall, this implies that 90.7% ± 2.2% of SWR were identified to 217 
encode trajectories, and thus contain temporal structure (Fig. 3b). This stands in stark contrast to the 22.8% 218 
± 8.4% of SWRs that are classified as replay events by the traditional method (Fig. 3b).  219 

To ensure that our method did not erroneously identify temporal structure where there was none, we 220 
generated simulated spiking data under the dynamics of each of our five models and checked how reliably 221 
our method could recover the model that we used to generate the data. To match the statistics of true data, 222 
we used parameters similar to those recovered from data, and generated spikes using the estimated place 223 
fields (see Methods). We then asked how often the simulated place cell activity is identified to be generated 224 
by the model of the true underlying dynamics rather than any of the other models (Fig. 3c). This revealed a 225 
reliable discrimination between trajectory and non-trajectory models (F-score=0.93), thus making the 226 
spurious detection of temporal structure unlikely. Within trajectory models, SWRs following momentum 227 
dynamics are more likely misclassified as diffusion (13.9%) than the reverse (7.4%). Thus, some of the 228 
SWRs we have identified as diffusion without momentum in our data might in fact feature momentum. 229 
Overall, this might have led to underestimating the fraction of SWRs featuring momentum dynamics.  230 

Lastly, we asked how much of the variance in spiking activity our best-fit model was able to capture. 231 
We found the best-fitting model for each SWR to explain a substantial fraction of this variance (deviance 232 
explained mean ± SD across all SWRs: 0.231 ± .07, Fig. 3d), significantly more than the random model 233 
(mean ± SD 0.13 ± .02 greater than random model, paired t-test t(2882)=339.5, two-sided p<1x10-6). Thus, 234 
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the identified latent dynamics structured the observed activity in a meaningful way. Taken together, our 235 
findings reveal that almost all SWRs contain dynamics with continuous spatial structure, and consequently 236 
should be included in the analysis and interpretation of the computational role of replay events. 237 

Neural activity during SWRs resembles neural activity during behavior  238 

If replay events are indeed involved in processing past, or planning for future, behavior, we 239 
speculate the position dynamics they encode to mimic those of real behavior. To test this, we compared the 240 
dynamics inferred from these replay events to dynamics inferred from place cell data of moving animals. We 241 
did so by applying our analysis to randomly selected snippets of place cell activity during periods of 242 
movement (Fig. 4a). For a fair comparison to replay events, we matched the distribution of distances 243 
traversed in these run snippets to the distribution of distances traversed within individual SWRs (see 244 
Methods, Fig. S4).   245 
 246 

 247 
Fig. 4. Place cell activity during behavior is also best described by momentum dynamics. 248 
a. Run snippets selected for model comparison analysis for an example session. The gray trace indicates the animal’s behavior 249 
throughout the entire example session. Each colored trace represents a selected run snippet (see Methods and Fig. S4). 250 
b. Inferred distribution of dynamics models underlying the generation of neural data during behavioral run snippets (teal). The same 251 
distribution is shown for SWRs (pink; same as Fig. 3a) for comparison.  252 
c. Examples of individual run snippets. Heatmaps as in Fig. 2a, with true trajectory overlaid (light blue line). 253 
d. The relative likelihood of each model to generate the recorded spikes within the example run snippets shown in a. 254 
 255 

Applying our random effects model comparison to place cell activity during movement yields a very 256 
similar distribution across dynamics models as for SWRs (Fig. 4b): most snippets appeared to feature 257 
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momentum dynamics, some diffusion dynamics, and few non-trajectory dynamics (mean ± SD diffusion: 258 
17.1% ± 4.4%, momentum: 71.8% ± 5.5%, stationary: 2.9% ± 0.7%, stationary gaussian: 5.5% ± 1.7%, 259 
random: 2.7% ± 0.7%; example run snippets in Fig. 4c/d). The close match to the dynamics model 260 
distribution recovered from SWRs indicates that the statistical structure of spiking activity during SWRs 261 
mirrors that during real movement. Given that the rats’ actual movement is known to feature momentum 262 
(Stella et al., 2019), it might appear surprising that the place cell activity associated with any of the run 263 
snippets appeared to feature non-momentum dynamics. However, it only confirms what we have already 264 
shown in simulations (Fig. 3c): the ambiguity inherent in limited and noisy spiking data causes our model 265 
comparison to mistake trajectories with momentum as only featuring diffusion, and rarely even as non-266 
trajectories. Thus, it is also bound to underestimate the proportion of SWRs with momentum dynamics — in 267 
particular for short SWRs with few spikes (Fig. S5). As a consequence, we expect an even larger majority of 268 
SWRs than estimated to contain spatial trajectories with momentum.  269 

Despite the good match in recovered model distributions across SWRs and run snippets, we 270 
observed quantitative differences in the underlying neural activity. SWRs are associated with bursts in 271 
population activity, and thus feature more spikes per second across neurons than in similar time periods 272 
while the animal is moving (Nádasdy et al., 1999; Fig. S6). Even after lengthening movement snippets to 273 
match the SWRs spike counts, the trajectories decoded from SWRs traverse further distances than those 274 
decoded during movement (Fig. S4). For the aforementioned model comparison, we further increased the 275 
movement snippet durations to achieve matching trajectory distance distributions. Overall, SWRs encoded 276 
trajectories with more spikes within the same time period, and traversed larger distances with the same 277 
number of spikes when compared to place cell activity during movement. 278 

Decoded trajectories confirm spatio-temporal momentum dynamics 279 

Recently, Stella et al. (2019) found that the reactivated trajectories in hippocampal replay during sleep 280 
followed Brownian diffusion dynamics, akin to our diffusion dynamics model without momentum. 281 
Specifically, they identified these dynamics by a power-law relationship between time elapsed and distance 282 
traveled with an exponent of 0.5 (Rudnick and Gaspari, 2004). Applying the same analysis to place cell 283 
activity during movement, they again found a power law relationship, but this time with an exponent greater 284 
than 0.5, inconsistent with Brownian diffusion. Hence, replay events during sleep do not seem to follow 285 
dynamics resembling natural movement. This stands in contrast to our finding that awake replay follows 286 
dynamics with momentum which resemble natural movement, pointing to a potential difference in the 287 
mechanism generating awake and sleep replay.  288 

To ensure that this discrepancy did not arise from the difference in applied methodology, we 289 
replicated our analysis using the method of Stella et al. (2019). First, for each SWR we inferred the most 290 
likely trajectory by the Viterbi algorithm. This approach takes temporal continuity of latent positions into 291 
account, and is thus more robust to decoding noise than the traditional approach of concatenating the most 292 
likely position across individual time bins (Fig. 5a/b, Methods). To avoid confounding our analysis with non-293 
trajectory SWRs, we only considered SWRs that are best described by one of the trajectory models (2600 294 
SWRs, 81.5% of total dataset; Fig. S3). Separately, we applied the same approach to infer trajectories from 295 
the neural data during movement, using the same run snippets we used for our model comparison analysis 296 
further above. The most likely position sequence aligned well with the marginal position estimates for SWRs 297 
(Fig. 5a), and with both the rat’s behavioral trajectory and the marginal position estimates for run snippets 298 
(Fig. 5b; see Fig. S7 for run snippet decoding accuracy).  299 
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 300 
Fig. 5. Trajectories decoded from awake SWRs and behavior are not consistent with Brownian motion. 301 
a. Example most likely trajectories (purple line) decoded from SWRs (see Methods), overlaid on a heatmap of the decoded 302 
positions under the diffusion dynamics model, summed over time (see Fig. 2a for details). 303 
b. Example most likely trajectories (solid teal line) decoded from neural activity of run snippets, overlaid on a heatmap of the 304 
decoded positions under the diffusion dynamics model. The decoded trajectory lines up well with the animal’s behavior trajectory 305 
(light blue dotted line). 306 
c. Log-log plot of time window index and mean distance from starting point for trajectories decoded from SWRs (purple) and 307 
behavior (teal) (mean ± SD across session). The average slope (α) of a linear regression fit to each session is provided in the figure 308 
legend. The linear fit’s slope significantly exceeded 0.5 for SWRs and run snippets for all sessions, but not for simulated diffusion 309 
(inset; SD error bars obscured by dots). 310 
 311 

Plotting the distance traveled within individual, inferred trajectories over elapsed time (Fig. 5c), we 312 
observed a power-law relationship between these quantities with an exponent significantly exceeding 0.5 for 313 
all sessions for both the trajectories decoded from run snippets as well as from SWRs (bootstrap, both one-314 
sided p<1x10-6, Fig. 5c inset). This above-0.5 exponent suggests trajectory dynamics with momentum, in 315 
line with our previous model comparison. For verification, the same coefficient computed from simulated 316 
trajectories with diffusion dynamics resulted in an exponent that was not significantly larger than 0.5 317 
(bootstrap, one-sided p=0.80). This confirms that, in contrast to replay events during sleep, awake replay 318 
events appear to encode trajectory dynamics with momentum, which hints at different mechanisms 319 
underlying replay events during sleep and wakefulness.  320 

Sub-selecting SWRs by heuristics biases the analysis of encoded trajectories 321 

Finally, we asked if sub-selecting SWRs according to the traditional classification criterion for replay 322 
events introduced biases in analyzing how replayed trajectories perform computations supporting 323 
navigational planning. In the analyzed dataset, the animals alternated between two trial types: 1) foraging 324 
for a food reward hidden in one of the 36 food wells at random (the “goal” well), and 2) returning to collect a 325 
food reward in a known “home” well that was consistent across trials within a session (see Fig 1a for well 326 
placements). This task structure allowed us to compare replay trajectories between these two types of goal-327 
directed actions: returning to the “home” well, whose location is known, or finding the “goal” well, whose 328 
location is not. Following Pfeiffer and Foster (2013), we group SWRs into “home events” and “away events” 329 
based on the current location of the animal — corresponding to being either at the home well, or elsewhere 330 
in the environment, respectively. In contrast to Pfeiffer and Foster (2013), who focused on the 23.7% of 331 
SWRs classified as replay events by the traditional method, we analyzed the majority of SWRs, namely 332 
those classified as best-fit by one of our trajectory models. 333 
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 334 
Fig. 6. Decoded trajectories of home events tend to be shorter and slower than of away events. 335 
a-d. Histogram (top row) and cumulative fraction (bottom row) of replay trajectory descriptive statistics split by home and away 336 
events depicting a. the duration, b. the total distance, c. the start-to-end distance, and d. the velocity, defined as total distance 337 
divided by duration. 338 
 339 

First, we compared decoded trajectories between these two trial types by a set of simple descriptive 340 
statistics, namely the duration, the total distance traveled, the start-to-end distance, and the average 341 
velocity of each of the trajectories (Fig. 6). These trajectory statistics varied considerably across trajectories, 342 
with many trajectories having shorter distances than the minimum distance used in common SWR 343 
classification criteria. Furthermore, replay trajectories at the home location had a significantly shorter 344 
duration (independent t-test; t(2352)=7.2, two-sided, Bonferroni corrected p<1x10-6), total distance 345 
(independent t-test; t(2352)=6.4, two-sided, Bonferroni corrected p<1x10-6), and start-to-end distance 346 
(independent t-test; t(2352)=7.3, two-sided, Bonferroni corrected p<1x10-6)  than replay trajectories 347 
elsewhere in the environment, and were also slightly, but significantly slower (independent t-test; 348 
t(2352)=2.7, two-sided, Bonferroni corrected p=0.020). These differences increased for a more restrictive 349 
definition of “away events” that only considered replay events while the animal was at the goal location (Fig. 350 
S8a), even after controlling for the difference in trajectory durations (Fig. S8b). However, they vanished for 351 
all but duration once we only considered the subset of trajectories extracted with the traditional method for 352 
trajectory classification (Fig. S9), and thus have eluded discovery so far. Lastly, the differences were not 353 
present in the rodents’ movement (Fig. S10), suggesting that they do not derive from the rodents’ behavior. 354 

Second, we revisited the main finding of Pfeiffer and Foster (2013) that replay events are predictive 355 
of the future path taken by the animal. Specifically, they found that replayed trajectories were somewhat 356 
predictive of future but not past paths for “home events”, that is, when the animal was at the home well. 357 
They were predictive of both future and past paths for “away events”, that is, when the animal was 358 
elsewhere in the area, but more strongly so for future paths. We replicated these effects for future paths 359 
when only considering the subset of previously classified SWRs, while decoding trajectories using our 360 
probabilistic model (Fig. 7b, green lines). Once we included all SWRs deemed as encoding trajectories, the 361 
effects remained for “away events” but vanished for “home events” (Fig. 7b, purple lines), and similar results 362 
were observed for the more restrictive definition of “away events” (Fig. S11). 363 

Though a detailed computational account of these findings is beyond the scope of our work, these 364 
results suggest that, preceding directed movement, SWRs simulate longer trajectories that more closely 365 
resemble the full future path of the animal. In contrast, preceding random foraging, they simulate shorter 366 
possible paths that do not necessarily predict immediate future behavior. 367 
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 368 
Fig. 7. Away events are more biased to the future path than home events. 369 
a. Alignment between replayed trajectories and the animal’s path was quantified as the angular distance between the decoded 370 
replay trajectory and the future (left) or past path (right) at a series of concentric circles expanding outward from the current location 371 
of the animal (Pfeiffer and Foster (2013), see Methods). Using a criterion that depends on distance but not velocity supports 372 
comparing replay and behavioral trajectories that evolve at different speeds. 373 
b. The plots show histograms of angular alignments, computed as described in a. A peak at zero indicates that the replayed 374 
trajectories are predictive of the animal’s taken path. The different plots show these alignments for “home events” (top) and “away 375 
events” (bottom), and for past (left) and future (bottom) paths, when including only previously classified SWRs (green; mean ± SD 376 
within each alignment bin) or all the SWRs we classified as encoding trajectories (purple; mean ± SD within each alignment bin). 377 
The dashed gray lines indicate alignment from shuffled events (see Methods).  378 

Discussion 379 

Applying a novel, probabilistic method to classify SWRs, we found that the large majority SWRs during 380 
exploration of a 2D environment contain temporally continuous spatial information. Furthermore, the 381 
encoded trajectories evolve under dynamics with momentum, similar to real movement through the 382 
environment. We showed this by using Bayesian model comparison to infer which of a set of five state-383 
space models, each making different explicit assumptions about the encoded position dynamics, is able to 384 
explain each SWR’s spike pattern. Our result stands in contrast to previous, heuristic approaches, which 385 
only identified the most salient trajectories, but left the role of the remaining SWRs unresolved (Foster and 386 
Wilson, 2006; Karlsson and Frank, 2009; Pfeiffer and Foster, 2015; Tingley and Peyrache, 2020). 387 
Observing that the replayed trajectories featured momentum further contrasts with previous work showing 388 
that trajectories replayed during sleep followed Brownian motion without momentum (Stella et al., 2019). 389 
Thus, awake replay might result from different underlying mechanisms and feature a different purpose. As 390 
discarding the majority of SWRs might have led to biases in follow-up analyses, we replicated the analyses 391 
of Pfeiffer and Foster (2013) on the full set of SWRs, and identified small, but significant, differences, as 392 
well as previously underappreciated heterogeneity of the embedded trajectories. More generally, our 393 
method promises a less biased analysis of hippocampal replay that we expect to aid future research on 394 
identifying the computational role of replay in planning and learning.  395 

Though our model comparison classifies a small fraction of SWRs as non-trajectories, even these 396 
might correspond to replay events. They might, for example, constitute replay of close-to-stationary 397 
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trajectories (Yu et al., 2017), are in turn best captured by our stationary (non-trajectory) model. Furthermore, 398 
some SWRs might replay trajectories in a different environment, like the rodent’s home cage (Karlsson and 399 
Frank, 2009). This implies a different mapping between place cell activity and encoded location, in which 400 
case the trajectory should appear random to the model (Leutgeb, 2004). The low prevalence of SWRs being 401 
classified as random suggests that such replays are rare or non-existent in the analyzed data. 402 

Observing that the trajectories underlying awake replay feature momentum leads to questions about 403 
the mechanisms that generate them. During movement, encoded trajectories are expected to feature 404 
momentum, as they mirror the animal’s natural movement (Figs. 4b & 5c). Absent such movement, the 405 
origin of momentum is less clear. Momentum could arise in at least two ways, both involving some notion of 406 
the animal’s velocity. Representing the immediately preceding location in addition to the current one would 407 
allow the next location to depend on both, such that the distance between current and next location to relate 408 
to that between preceding and current one, effectively implementing momentum. This is, in fact, how we 409 
implemented the momentum model in our model comparison approach (see Methods/SI). Alternatively, 410 
awake replays could engage consistent activity in areas representing the animal’s velocity (Kropff et al., 411 
2015) and heading direction (Taube, 2007), similar to when the animal is moving through the environment. 412 
These alternatives lead to different predictions about neural activity during replay events that can be 413 
distinguished experimentally. Furthermore, it would distinguish them from replay events during sleep, during 414 
which momentum is not observed, and might elucidate how these two types of replay events differ in terms 415 
of function. 416 

Decoding replayed trajectories with our model revealed subtle, task-specific details in the 417 
trajectories’ dynamics whose highly heterogeneous structure might have been underappreciated by past 418 
heuristic-driven analyses. In particular, we found replay events preceding random foraging to be shorter and 419 
slower than events preceding directed movement, a detail that is missed when only considering the subset 420 
of SWRs that meet the heuristic classification criteria. Additionally, we can interpret our trajectories in light 421 
of a recent theory by Mattar and Daw (2019), which suggests that replay trajectories reflect previous 422 
experience replayed to improve action selection, prioritized to balance propagating new information about 423 
reward with focusing on the most imminent locations in the environment. Thus, for the analyzed dataset, 424 
replay trajectories driven by consideration of imminent choices should predict future paths for “away 425 
events”, when the future goal location is known, but not for “home events”, when the future location is 426 
unknown. While in conflict with previous analysis of Pfeiffer and Foster (2013) that focused on the most 427 
salient replayed trajectories, we confirm these predictions once we include all events we identified as 428 
trajectories (Fig. 7b). However, we would furthermore expect replay trajectories at the home well to predict 429 
past paths, driven by propagation of reward, which we do not see. While we consider an interpretation of 430 
these details beyond the scope of our work, they are examples of the kinds of characteristics of replay 431 
events that would be useful to consider in further studies assessing the computational role of replay, but 432 
that might be missed without a systematic and unbiased characterization of their spatio-temporal structure. 433 
 Treating the identification of latent position dynamics as a probabilistic inference problem has 434 
several benefits. First of all, it allows use of the full posterior estimate of the position across time rather than 435 
relying on point estimates of the most likely position, which, due to noisy neural data, will be noisy and thus 436 
unreliable. Second, the models capture uncertainty in the encoded spatial pattern, which in turn is reflected 437 
in the relative certainty between possible underlying dynamics per SWR. Lastly, it provides a consistent and 438 
unbiased approach to focusing on the aspects of the dynamics of interest, by formulating a targeted set of 439 
models that differ in their explicit assumptions about the underlying dynamics, like diffusion with or without 440 
momentum. 441 

One of the limitations of our approach, shared to our knowledge by all work that decodes location 442 
from place cell activity, is that we assume neural activity of these cells for each location to be statistically 443 
independent of each other. Noise correlations modulate information, and for the considered population sizes 444 
could either boost or decrease it (Averbeck and Costa, 2017; Kohn et al., 2016). While data sparsity makes 445 
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it impossible to precisely quantify such correlations, we do not expect that taking them into account would 446 
qualitatively change our results. Furthermore, our model comparison approach is restricted to the five 447 
dynamics models we have considered, and trajectories that match neither dynamics model would 448 
erroneously be attributed to one of them. Given the high flexibility with which we formulated the dynamics 449 
models, we don’t expect this to have confounded our results. Nonetheless, an interesting avenue for future 450 
work could be to model the latent location sequence as a hierarchical Gaussian process, as in (Wu et al., 451 
2018), in which case structural assumptions are flexibly captured by the covariance matrix governing 452 
location evolution. This would allow for even greater flexibility in defining possible transition structures of 453 
interest. Lastly, we have focused on identifying the macrodynamics of replay trajectories, which does not 454 
capture previously identified fine scale dynamics within replay events in which the position “jumps” between 455 
successive positions (Pfeiffer and Foster, 2015).  456 

Our work identifies the dominant function of SWRs as simulating trajectories, and lays a principled 457 
foundation for future work examining the computational role of the replayed trajectories. Our finding that 458 
their spatio-temporal dynamics feature momentum informs the possible computational roles they could play. 459 
Specifically, this argues against awake replay events being generated by local Markovian dynamics based 460 
on location only, and instead suggest they emerge from network dynamics that incorporate a notion of 461 
velocity. Overall, the use of state-space models provides a principled method for analyzing the spatio-462 
temporal structure contained within sharp wave ripples that future work on their computational function and 463 
underlying mechanisms can build upon. 464 

Acknowledgements 465 

We thank Brad Pfeiffer and David Foster for sharing their data with us. Further, we would like to thank Matt 466 
Wilson, Sam Gershman, and members of the Drugowitsch lab for feedback on the work, and Anna 467 
Kutschireiter, Christopher Harvey, Johannes Bill, and John Vestola for comments on an early draft of this 468 
manuscript. The work was supported by a James S. McDonnell Foundation Scholar Award for 469 
Understanding Human Cognition (J.D., grant# 220020462) and a National Defense Science and 470 
Engineering Graduate Fellowship (E.K.). 471 
  472 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 16, 2021. ; https://doi.org/10.1101/2021.05.13.444067doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.13.444067
http://creativecommons.org/licenses/by-nc/4.0/


 16 

References 473 

Averbeck, B.B., and Costa, V.D. (2017). Motivational neural circuits underlying reinforcement learning. Nat. 474 
Neurosci. 20, 505–512. 475 

Bishop, C. (2006). Pattern Recognition and Machine Learning (New York: Springer-Verlag). 476 

Buzsáki, G. (2015). Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and 477 
planning: HIPPOCAMPAL SHARP WAVE-RIPPLE. Hippocampus 25, 1073–1188. 478 

Carr, M.F., Jadhav, S.P., and Frank, L.M. (2011). Hippocampal replay in the awake state: a potential 479 
substrate for memory consolidation and retrieval. Nat. Neurosci. 14, 147–153. 480 

Davidson, T.J., Kloosterman, F., and Wilson, M.A. (2009). Hippocampal Replay of Extended Experience. 481 
Neuron 63, 497–507. 482 

Denovellis, E.L., Gillespie, A.K., Coulter, M.E., Sosa, M., Chung, J.E., Eden, U.T., and Frank, L.M. (2020). 483 
Hippocampal replay of experience at real-world speeds (Neuroscience). 484 

Diba, K., and Buzsáki, G. (2007). Forward and reverse hippocampal place-cell sequences during ripples. 485 
Nat. Neurosci. 10, 1241–1242. 486 

Foster, D.J., and Wilson, M.A. (2006). Reverse replay of behavioural sequences in hippocampal place cells 487 
during the awake state. Nature 440, 680–683. 488 

Gillespie, A.K., Astudillo Maya, D.A., Denovellis, E.L., Liu, D.F., Kastner, D.B., Coulter, M.E., Roumis, D.K., 489 
Eden, U.T., and Frank, L.M. (2021). Hippocampal replay reflects specific past experiences rather than a 490 
plan for subsequent choice (Neuroscience). 491 

Jadhav, S.P., Kemere, C., German, P.W., and Frank, L.M. (2012). Awake Hippocampal Sharp-Wave 492 
Ripples Support Spatial Memory. Science 336, 1454–1458. 493 

Johnson, A., and Redish, A.D. (2007). Neural Ensembles in CA3 Transiently Encode Paths Forward of the 494 
Animal at a Decision Point. J. Neurosci. 27, 12176–12189. 495 

Joo, H.R., and Frank, L.M. (2018). The hippocampal sharp wave–ripple in memory retrieval for immediate 496 
use and consolidation. Nat. Rev. Neurosci. 19, 744–757. 497 

Karlsson, M.P., and Frank, L.M. (2009). Awake replay of remote experiences in the hippocampus. Nat. 498 
Neurosci. 12, 913–918. 499 

Kohn, A., Coen-Cagli, R., Kanitscheider, I., and Pouget, A. (2016). Correlations and Neuronal Population 500 
Information. Annu. Rev. Neurosci. 39, 237–256. 501 

Kropff, E., Carmichael, J.E., Moser, M.-B., and Moser, E.I. (2015). Speed cells in the medial entorhinal 502 
cortex. Nature 523, 419–424. 503 

Leutgeb, S. (2004). Distinct Ensemble Codes in Hippocampal Areas CA3 and CA1. Science 305, 1295–504 
1298. 505 

Linderman, S.W., Johnson, M.J., Wilson, M.A., and Chen, Z. (2016). A Bayesian nonparametric approach 506 
for uncovering rat hippocampal population codes during spatial navigation. J. Neurosci. Methods 263, 36–507 
47. 508 

Maboudi, K., Ackermann, E., de Jong, L.W., Pfeiffer, B.E., Foster, D., Diba, K., and Kemere, C. (2018). 509 
Uncovering temporal structure in hippocampal output patterns. ELife 7, e34467. 510 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 16, 2021. ; https://doi.org/10.1101/2021.05.13.444067doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.13.444067
http://creativecommons.org/licenses/by-nc/4.0/


 17 

MacKay, D.J.C. (1995). Information Theory, Inference, and Learning Algorithms. 511 

Mattar, M.G., and Daw, N.D. (2018). Prioritized memory access explains planning and hippocampal replay. 512 
Nat. Neurosci. 21, 1609–1617. 513 

Nádasdy, Z., Hirase, H., Czurkó, A., Csicsvari, J., and Buzsáki, G. (1999). Replay and time compression of 514 
recurring spike sequences in the hippocampus. J. Neurosci. 19, 9497–9507. 515 

O’Keefe, J., and Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit 516 
activity in the freely-moving rat. Brain Res. 34, 171–175. 517 

Penny, W.D., Stephan, K.E., Daunizeau, J., Rosa, M.J., Friston, K.J., Schofield, T.M., and Leff, A.P. (2010). 518 
Comparing Families of Dynamic Causal Models. PLoS Comput. Biol. 6, e1000709. 519 

Pfeiffer, B.E., and Foster, D.J. (2013). Hippocampal place-cell sequences depict future paths to 520 
remembered goals. Nature 497, 74–79. 521 

Pfeiffer, B.E., and Foster, D.J. (2015). Autoassociative dynamics in the generation of sequences of 522 
hippocampal place cells. Science 349, 180–183. 523 

Rudnick, J., and Gaspari, G. (2004). Elements of the Random Walk: An introduction for Advanced Students 524 
and Researchers (Cambridge University Press). 525 

Shin, J.D., Tang, W., and Jadhav, S.P. (2019). Dynamics of Awake Hippocampal-Prefrontal Replay for 526 
Spatial Learning and Memory-Guided Decision Making. Neuron 104, 1110-1125.e7. 527 

Singer, A.C., Carr, M.F., Karlsson, M.P., and Frank, L.M. (2013). Hippocampal SWR Activity Predicts 528 
Correct Decisions during the Initial Learning of an Alternation Task. Neuron 77, 1163–1173. 529 

Stella, F., Baracskay, P., O’Neill, J., and Csicsvari, J. (2019). Hippocampal Reactivation of Random 530 
Trajectories Resembling Brownian Diffusion. Neuron 102, 450-461.e7. 531 

Stephan, K.E., Penny, W.D., Daunizeau, J., Moran, R.J., and Friston, K.J. (2009). Bayesian model selection 532 
for group studies. NeuroImage 46, 1004–1017. 533 

Sutton, R.S., and Barto, A.G. (1998). Reinforcement learning: an introduction (Cambridge, Mass: MIT 534 
Press). 535 

Taube, J.S. (2007). The Head Direction Signal: Origins and Sensory-Motor Integration. Annu. Rev. 536 
Neurosci. 30, 181–207. 537 

Tingley, D., and Peyrache, A. (2020). On the methods for reactivation and replay analysis. Philos. Trans. R. 538 
Soc. B Biol. Sci. 375, 20190231. 539 

Wilson, M.A., McNaughton, B.L., and others (1994). Reactivation of hippocampal ensemble memories 540 
during sleep. Science 265, 676–679. 541 

Wu, A., Roy, N.G., Keeley, S., and Pillow, J.W. (2018). Gaussian process based nonlinear latent structure 542 
discovery in multivariate spike train data. Adv. Neural Inf. Process. Syst. 30, 3499–3508. 543 

Xu, H., Baracskay, P., O’Neill, J., and Csicsvari, J. (2019). Assembly Responses of Hippocampal CA1 544 
Place Cells Predict Learned Behavior in Goal-Directed Spatial Tasks on the Radial Eight-Arm Maze. 545 
Neuron 101, 119-132.e4. 546 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 16, 2021. ; https://doi.org/10.1101/2021.05.13.444067doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.13.444067
http://creativecommons.org/licenses/by-nc/4.0/


 18 

Yu, J.Y., Kay, K., Liu, D.F., Grossrubatscher, I., Loback, A., Sosa, M., Chung, J.E., Karlsson, M.P., Larkin, 547 
M.C., and Frank, L.M. (2017). Distinct hippocampal-cortical memory representations for experiences 548 
associated with movement versus immobility. ELife 6, e27621. 549 

Zhang, K., Ginzburg, I., McNaughton, B.L., and Sejnowski, T.J. (1998). Interpreting neuronal population 550 
activity by reconstruction: unified framework with application to hippocampal place cells. J. Neurophysiol. 551 
79, 1017–1044. 552 

 553 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 16, 2021. ; https://doi.org/10.1101/2021.05.13.444067doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.13.444067
http://creativecommons.org/licenses/by-nc/4.0/


Methods558

Experimental Details559

Behavioral Task and Data Acquisition560

The dataset used in this study has been described in detail previously in Pfeiffer & Foster (2013, 2015). All procedures561

were approved by the Johns Hopkins University Animal Care and Use Committee and followed US National Institutes of562

Health animal use guidelines.563

Briefly, four adult male Long-Evans rats were trained on a foraging task in a 2m x 2m open field environment, in564

which the animal foraged for food hidden in one of 36 wells, spaced evenly in a 6 well x 6 well grid. Neural recordings565

were obtained via a microdrive array containing 40 gold-plated tetrodes implanted in CA1 of dorsal hippocampus. Data566

was obtained from each rat for two days (a total of 8 sessions across rats). Individual units were identified by Pfeiffer567

and Foster (2015) by manual clustering based on the spike waveform peak amplitudes obtained from custom software568

(xclust2, Matt A. Wilson), and inhibitory units were excluded on the basis of spike width and mean firing rate.569

The animal’s position was determined by two distinctly colored, head-mounted LEDs, recorded at 60Hz by an over-570

head video system, and down-sampled to 30Hz before analysis. The animal’s speed was calculated as the distance571

between successive recorded positions over the recording resolution rate, and the data was split in to “moving” and “not572

moving” periods by a threshold of 5 cm/s on the running speed.573

During data collection, animals engaged in a foraging task that consisted of two alternating trial types: searching for574

food in a well that was in a different location across trials (the “goal” well), or a well that was consistent location across575

trials (“home” well). The goal well was in a random location on each trial, excluding the home well and the goal well from576

the previous trial. The home well was in a consistent location within each session, but changed across sessions.577

Estimating Place Fields578

Place fields were fit using spiking data from periods in which the rat was considered moving (see above). The animal’s579

position, z = [zx, zy], was binned into a 50 x 50 grid (4 cm x 4 cm bins), leading to 2,500 unique positions within the580

arena. For each cell, i, the corresponding place field fi(z) was defined as the maximum a-posteriori estimate assuming581

Poisson spiking, Pois(xt|fi(zt)), and a Gamma prior on the firing rate, Gam(fi(zt)|α, β), such that for each cell i and582

spatial bin, zt = k,583

fi(zt = k) =
1

β + Tk,runδt

Tk,run∑
t=1

xi,k,t + α− 1

 (1)

where Tk,run is the total number of time bins spent in spatial bin k, xi,k,t is the spike count x emitted by cell i in spatial584

bin k at time bin t, and δt is the time bin size (recording resolution of 30 Hz, such that, here δt = 1/30). A weak prior585

was used with parameter settings α = 1.01 and β = 0.01, such that the maximum a-priori firing rate is (α − 1)/β = 1586

spikes/s. After estimation, place fields fi(zt) were smoothed with a Gaussian kernel (4 cm standard deviation). A cell587

was considered a place cell if the peak of its tuning curve, maxz fi(z), exceeded 2 spikes/second. Only cells identified588

as place cells were used in further analysis.589

SWR Detection590

For our study, we used the set of SWRs identified in Pfeiffer and Foster (2015) based on features of the local field591

potential (LFP). As described previously, a representative electrode was chosen for each tetrode, the LFP for that tetrode592

was band-pass filtered between 150 and 250 Hz, and the absolute value Hilbert transform of the filtered signal was593

smoothed with a Gaussian kernel (12.5ms standard deviation). The average of this signal across all tetrodes was then594

used to identify SWRs as a local peak with an amplitude greater than 3 standard deviations above the mean, with start595

and end boundaries as the point when the signal crossed the mean. Only SWRs longer than 50ms and shorter than 2s596

that occurred when the rat was considered “not moving” were included for further analysis.597

Extracting Population Bursts from SWRs598

To ensure low firing-rate periods flanking the population activity burst of interest within an SWR did not impact our599

analysis, we sub-selected a time period of each SWR in which the average firing rate across all neurons was above 2600

spikes/s per neuron. Specifically, for each SWR, the spiking activity was binned using a 3ms time bin (unless stated601

otherwise, Fig. S1), and the “population burst” was defined as the period of time from the first upward-crossing to the602

last downward-crossing of the firing rate threshold within the SWR (Fig. S12a). Population bursts shorter than 30ms603

were excluded from the analysis (73 SWRs, or 2.5% of the 2956 total SWRs were excluded). This resulted in population604
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bursts that were shorter than the original SWRs, but had roughly the same number of spikes (Fig. S12b/c). Throughout605

all further analyses we only analyzed neural data within the extracted population burst, but referred to the extracted606

population bursts as SWRs, for simplicity.607

Description of State-Space Models used to Characterize SWRs608

All five state-space models that we use to distinguish between the spatio-temporal dynamics of the SWRs consist of two609

components: (i) a spike generation model, which is common across all models, and (ii) a dynamics model, which differed610

across models. The spike generation model, p(x1:T |z1:T ), describes how the latent position at each discretized time bin,611

z1:T = z1...zT for a sequence of length T , is assumed to generate spike trains, x1:T = x1...xT . Here, zt denotes the612

latent grid position at time t, and xt is a vector of spike counts across cells for the tth time bin of size δt (δt = 3ms unless613

stated otherwise, see Fig. S1). The dynamics model, p(z1:T |M) differs across models, M , and describes the probability614

of observing a specific position sequence z1:T for each of these models. Together, they result in the joint probability615

across spikes and latent positions for state-space model M to be given by616

p(x1:T , z1:T |M) = p(x1:T |z1:T )p(z1:T |M). (2)

Here, and in much of the below, the dynamics model is implicitly also conditional on the model-specific parameters, θM .617

We make this explicit whenever required for clarity.618

Spike Generation Model619

We assume the spike generation probabilities (that is, the HMM emission probabilities) p(x1:T |z1:T ) to factor across time,620

that is p(x1:T |z1:T ) =
∏T
t=1 p(xt|zt). Within each time bin, spikes are assumed to be drawn from a Poisson distribution,621

independent across cells, with rates determined by the place fields fit during movement (see Estimating Place Cells),622

that is623

p(xt|zt) =
N∏
i=1

Pois(xt,i|fi(zt)γspikeδt), (3)

where xt,i is the spike count of cell i in time bin index t, δt is the time bin size, and γspike is the spike count scaling624

factor (described below). This is equivalent to assuming that the spike sequence of each cell is drawn according to a625

time-discretized inhomogeneous Poisson process with instantaneous spike rate fi(zt)γspike that varies across positions626

zt, and thus time.627

We accounted for the increase in firing rate within SWRs as compared to movement by calculating a spike count628

scaling factor, γspike (as described in Fig. S6). Average firing rate was calculated for each unit as the total number of629

spikes emitted over the total duration within periods that the rat was either considered “moving”, f̃i,movement, or within630

population bursts, f̃i,popburst for each cell i. A linear regression was performed over the set of (f̃i,movement, f̃i,popburst631

pairs per session, and the average slope, or average population activity scaling, across all sessions, γspike = 2.9, was632

used as the spike count scaling factor.633

Dynamics Models634

Different dynamics models, M , are characterized by how the latent position evolves over time,635

p(z1:T |M) = p(z1|M)
T∏
t=2

p(zt|z1:t−1,M). (4)

We define five dynamics models: 1) diffusion - position evolves as a random walk, 2) diffusion with momentum - velocity
evolves as a random walk with decay (that is, an Ornstein-Uhlenbeck process), 3) stationary - position remains constant,
4) stationary Gaussian - position is at each time point drawn from a Gaussian with constant moments, 5) random -
position is at each time point drawn from a uniform distribution. Each of these models correspond to a first order Hidden
Markov Model, except for the momentum model, which corresponds to a second order Hidden Markov Model (Fig. 1d,
bottom row). In continuous time, the dynamics of latent position zj in the diffusion and momentum models is described
by

Diffusion:
dzj
dt

= σdηj,d(t), (5)

Momentum:
dzj
dt

= vj(t),
dvj
dt

= −λmvj(t) + σmηj,m(t), (6)
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where the processes are independent across spatial dimension j ∈ {x, y}, and η·,·(t) are Gaussian white noise pro-636

cesses. Here, σd is the diffusion coefficient of the diffusion model, and λm and σm are the decay and diffusion coeffi-637

cient, respectively, of the momentum model. As both model describe continuous spatial trajectories, we refer to them638

collectively as trajectory models.639

We implement these models in discrete time, where they are given by

Diffusion: p(zt|zt−1) = N (zt|zt−1, σ
2
dδtI), (7)

Momentum: p(zt|zt−1, zt−2) = N
(
zt|
(
1 + e−λmδt

)
zt−1 − e−λmδtzt−2,

σ2
mδt

2

2λm

(
1− e−2λmδt

)
I

)
, (8)

p (z2|z1) = N
(
z2|z1, σ2

m0δtI
)
. (9)

In the above, all normal distributions N (·) are bivariate normal distributions over both spatial dimensions with diagonal640

covariance matrices, and discretized and appropriately normalized over the spatial grid. The detailed derivation for the641

momentum model is provided in Supplementary Information. It results in a second-order Markov model, where the first642

step, p (z2|z1) is modeled separately as a diffusion with variance σ2
m0δt, which effectively implements a prior over the643

initial velocity, vj(0).644

The non-trajectory models are only specified in discrete time, and are given by

Stationary: p(zt|z1:t−1) = p(zt) = δzt,zs
, (10)

Gaussian: p(zt|z1:t−1) = p(zt) = N (zt|µ, σ2
gI), (11)

Random: p(zt|z1:t−1) = p(zt) = U(zt), (12)

for all t = 1, . . . , T , and where δzt,zs
is the Kronecker delta function that is one if zt = zs, and zero otherwise. The645

normal distributionN (zt|µ, σ2
gI) is, as before, a bivariate normal distribution over both spatial dimensions with a diagonal646

covariance matrix, and U(zt) = 1/K is the uniform distribution across all K = 2, 500 spatial bins. The non-trajectory647

models are specified by parameters zs for the stationary location, and µ and σ2
g for the Gaussian mean and variance,648

respectively. The non-trajectory and trajectory models relate to each other through their parameters: the standard649

deviation, σg varies the Gaussian model from the stationary model to the random model, and the momentum model with650

a large decay, λm, becomes equivalent to the diffusion model.651

The model parameters σd, σm, λm, σg, µg, and zs were fit over a grid and marginalized out for model comparison (see652

next section for details). σm0 in the momentum model, which is the standard deviation of the diffusion process on the first653

time step, p(z2|z1), was set a single pre-determined value of 10 m/s, representing a wide prior on the initial velocity of654

the trajectory. For all models a uniform prior was used for the initial position, p(z1|M) = U(z1) = 1/K, where K = 2, 500655

is the number of spatial bins.656

Marginalizing over Latent Position Sequences and Model Parameters657

For each SWR, we calculated the likelihood of observing the recorded sequence of spikes under each dynamics model,658

marginalizing over the sequence of latent positions,659

p(x1:T |M, θM ) =
∑
z1:T

p(x1:T , z1:T |M, θM ) =
∑
z1:T

p(x1|z1)p(z1|M)
T∏
t=2

p(xt|zt)p(zt|z1:t−1,M, θM ), (13)

where θM are the parameters of model M . This provides a relative comparison of how likely each model is to have660

generated the spiking data per SWR, for a fixed set of model parameters θM . For both the diffusion and momentum661

models, we used the forward pass of the forward-backward algorithm to calculate the data likelihood (Bishop, 2006).662

To compare models with different numbers of parameters, θM , we calculated the data likelihood p(x1:T |M, θM ) over663

a parameter grid and marginalized over these parameters,664

p(x1:T |M) =
∑
θM

(x1:T |M, θM )p(θM |M). (14)

For µ and zs we used a uniform grid across all spatial locations. For the remaining parameters, σd, σm, λm, and σg, we665

determined the prior in two steps. First, we evaluated the data likelihood, p(x1:T |M, θM ) over a uniform grid in log-space:666

30 bins from 2 to 100cm for σd, 30 bins from 40 to 400m/s for σm, 10 bins from 1 to 4000 for λm, and 30 bins 6 to667

200cm for σg. We chose this grid to ensure that most mass of the parameter likelihood p(x1:T |M, θM ) lies within this grid.668

Second, we found for each session and relevant model M the maximum likelihood parameter fits over the parameter669

grid, θ̂M,ML = argmaxθM p(x1:T |M, θM ), for each SWR, and used the distribution of θ̂M,ML’s across SWRs to fit an670

appropriate prior, p(θM |M). Specifically, for the standard deviation parameters in the diffusion, and Gaussian models, σg671
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and σd, we used an inverse Gamma distribution as the prior. For the Gaussian model, the mean µ was marginalized out672

before performing these fits. For the standard deviation and decay parameter in the momentum model, σm and λm, we673

fit a multivariate log-normal distribution as the prior. As mentioned before, we assumed a uniform prior over zs for the674

stationary model, such that no prior fitting was required.675

Computing Fraction Deviance Explained676

For each SWR, the model fit quality was quantified (Fig. 3d) as the fraction of deviance explained by the best fit model
compared to a null model, 1− Dmodel

Dnull
, where deviance is computed as:

Dmodel = 2(log p(x1:T |Msat)− log p(x1:T |M)) (15)
Dnull = 2(log p(x1:T |Msat)− log p(x1:T |Mnull) (16)

Both null model, Mnull, and saturated model Msat, assume spikes to be generated by draws from a Poisson distribution,677

independent across cells and time. They differ, however, in the assumed spike rates: the null model assumes this rate678

to equal the mean firing rate within population bursts across all neurons within all SWRs in a session at each time bin,679

while the saturated model assumes this rate to correspond to the observed spike count in each time bin. p(x1:T |M) was680

computed for each model M as described above. We computed deviance explained on one hand for the best-fit model681

for each SWR, and on the other hand for the random model, as comparison.682

Best-Fitting Models, and Fixed and Random Effects Model Comparison of Dynamics Models683

We inferred the distribution of dynamics models underlying the SWRs in a session by random effects analysis (Stephen684

et al., 2009). Random effects analysis assumes that the dynamics underlying individual SWRs is drawn from a fixed685

distribution p(M) over the five dynamics models for each session, and recovers this distribution, p(M |all SWRs) from the686

observed SWRs. It does so by using the likelihood distribution over models p(x(n)
1:Tn
|M) within each SWR n, and thus687

takes the uncertainty across models within each SWR into account.688

Specifically, random effects model comparison assumes a prior over models p(M |α) = rM , where rM is the proba-689

bility of an SWR being generated according to dynamics model M . Across models, the rM ’s form the vector r which has690

a Dirichlet prior Dir(r|α) with concentration parameters α. We set α to get a weak uniform distribution across models,691

equivalent to about 5% of data points (each element of α is set to 15 for analysis of real data, and 5 for simulated data).692

Based on this generative model, and given the set of all spiking data within a session, X = {x(n)
1:Tn
|n= 1, .., N} where693

x
(n)
1:Tn

is the spiking activity within SWR n and N is the total number of SWRs in the session, we compute the posterior694

p(M |X) using Gibbs sampling, as described in Penny et al. (2010).695

For comparison, we also calculate the inferred distribution of models using the more standard fixed effects analysis,696

which assumes each SWR is drawn from the same model. Here the likelihood of the spiking data across SWRs within697

a session, X, is calculated as p(X|M) =
∏N
n=1 p(x

(n)
1:Tn
|M), which we then invert using Bayes rule assuming a uniform698

prior on M to obtain the posterior distribution over models, p(M |X).699

For per-SWR analyses, each SWR was “classified” as the model M that had the highest (marginalized) log-likelihood,700

log p(x1:T |M). The fraction trajectory (non-trajectory) models is the fraction SWRs best described by the diffusion or701

momentum (stationary, Gaussian, or random) models.702

Model Recovery from Simulated Data703

For each model M , we simulated 100 position sequences in a 2D continuous space (2m x 2m) with a time bin size of704

δt =1ms, according to the dynamics of the respective model. For models with parameters, we drew these parameters for705

each trajectory from the prior, p(θM |M), fitted as described above. For all models, we generated neural activity from the706

simulated trajectory by binning the trajectory into the same 50 x 50 grid (with 4cm x 4cm bins) used for estimating place707

fields, and, for each place cell, drawing their activity within each time bin from a Poisson distribution with a rate given708

by the cell’s place field for the specific position in that time bin (Eq. 3) with γspike set to 2.9 (Fig. S6). For each set of709

trajectories generated for a fixed modelM , we applied the same Bayesian model comparison and random effects analysis710

to the simulated neural data, Xsim, as we describe above for the real neural data, resulting in an inferred distribution711

across models p(M |Xsim). Even through we simulated data in time steps of 1ms, for model recovery we used time bins712

of δt = 3ms, as for the real neural data. F-score (computed as the harmonic mean of the precision, TP/(TP+FP), and713

sensitivity, TP/(TP+FN), where TP=true positive rate, FP=false positive rate, and FN=false negative rate) was used to714

quantify our model recovery results. To quantify the reliability of distinguishing trajectory vs. non-trajectory dynamics, we715

assumed true/false corresponded to trajectory/non-trajectory, respectively, and to quantify the reliability of distinguishing716

momentum from diffusion dynamics we assumed that true/false corresponded to momentum/diffusion, respectively.717
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Extracting Maximum Likelihood Trajectories718

Maximum likelihood trajectories were extracted for all SWRs classified as a trajectory model using the Viterbi algorithm719

(Bishop, 2006). The Viterbi algorithm finds the sequence of positions that gives the highest data likelihood,720

ẑ1:T,ML = arg max
z1:t

[p(x1:T , z1:T )] = arg max
z1:t

[p(x1:T |z1:T )p(z1:T |M)] (17)

using the max-sum algorithm applied to our diffusion model, p(z1:T |M = diffusion) and spike generation model p(x1:T |z1:T ).721

We chose the diffusion model to take into account temporal continuity, but not bias the trajectories to contain momen-722

tum dynamics. The Viterbi algorithm is preferred to simply taking the maximum posterior estimate at each time bin,723

ẑt,ML = arg max p(zt|x1:T ), as the sequence of individually most likely positions does not imply that their sequence is724

the most likely.725

Traditional Method for Classifying SWRs726

To compare our analysis to the traditional method for replay classification, we used the set of SWRs classified as con-727

taining a trajectory in Pfeiffer and Foster (2015). For visualization purposes, we implemented the traditional method used728

for replay classification as described in Pfeiffer and Foster (2015) (Fig. 2c). Specifically, for each SWR we binned spiking729

activity using a sliding window of 20ms bins, advanced in increments of 5ms. Within each time bin we found the position730

estimate as the posterior mean associated with the spike likelihood, ẑt =
∑

z zp(z|xt) where p(z|xt) ∝ p(xt|z) and xt731

here denotes the sliding window-smoothed spike count. The trajectories plotted in Fig. 2c are extracted as the longest732

sequence of most likely position estimates for which position estimates across consecutive time bins are at most 50cm733

apart. Pfeiffer and Foster (2015) classified SWRs as encoding trajectories if consecutive decoded positions were less734

than 50cm apart, and had a start-to-end distance of at least 80cm.735

Analysis of Place Cell Activity During Movement736

To evaluate how the spatio-temporal dynamics of neural activity during SWRs compare to the spatio-temporal activity of737

place cells during movement, we applied our Bayesian model comparison analysis described above to snippets of neural738

activity during movement (Fig. 4). Run snippets were selected to approximately match the distribution of total distance739

traveled within the trajectories decoded from SWRs (see Extracting Maximum Likelihood Trajectories and Fig. S4).740

Specifically, we first determined a velocity scaling factor, γv that represented, on average, how much faster trajectories741

within SWRs evolved in comparison to real movement of the animal. For each session, we calculated the velocity of each742

replay trajectory (total distance/duration) and each run period (a continuous period of time within a session in which the743

animal was considered “moving” for at least 2s). We calculated the scaling factor between the mean replay trajectory744

velocity and mean run period velocity for each session, and defined the velocity scaling factor γv as the average of the745

scaling factors across all sessions. This procedure found that the velocity of replay trajectories was on average 19.7746

times higher than real movement.747

Next, we selected the run snippets. For each session, the duration distribution of run snippets was determined by748

up-scaling the duration of SWRs by the velocity scaling factor. We selected run snippets by randomly sampling a run749

period and then randomly sampling a start time within that run period, such that the entire duration of the run snippet fell750

within the run period. In order to match the distribution of sequence lengths T between SWRs and run snippets, we also751

up-scaled the time bin size used for run snippet analysis by the velocity scaling factor, to δt = 60ms (Fig. S4). We then752

applied the model comparison analysis to the neural data within the set of run snippets exactly as outlined above, except753

that in Eq. (3) we set γspike = 1 to reflect the fact that neural activity came from the same “movement” periods that were754

used to estimate place fields.755

Diffusion Coefficient Analysis756

Following Stella et al. (2019), we asked if the relationship between distance and time for replay trajectories could be757

described by a power law relationship of the form758 √
〈d(t)2〉 ∝ tα, (18)

where d is the distance between two points in time within a replay trajectory, and t is the time elapsed between those759

two time points. An α-value of 0.5 corresponds to Brownian motion, or a random walk, while deviations from 0.5 are760

inconsistent with Brownian motion. We evaluate if replay trajectories evolve according to Brownian motion by plotting761

the time-distance relationship in log-space, and use linear regression applied to this log-log plot to find the coefficient α,762

which corresponds to the slope of the log-log time-distance relationship. To avoid confounds, we restricted this analysis763
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to SWRs best-fit by a trajectory model (either the diffusion or momentum model). Replay trajectories were decoded from764

neural activity as described in “Extracting maximum likelihood trajectories”. For each replay trajectory within a session765

we found the squared distance d2j between all pairs of decoded positions separated by all multiples of the time bin used766

for trajectory decoding ∆t/δt, where ∆t is the time elapsed between decoded positions and δt is the decoding time bin.767

This resulted in a set of distance-time pairs, (d2j ,∆tj/δt), for each decoded position pair j across all trajectories within a768

session. We then found the mean distance, d̃2 for each multiple of the decoding time bin, fit a linear regression model per769

session to (log(
√
d̃2), log(∆t/δt)), which gave the estimate of coefficient α for that session as the slope of the regression.770

To assess if the coefficient α was significantly larger than 0.5, we generated 1000 bootstrap samples with replacement771

of sets of trajectories within a session and applied the same procedure to each session. We then computed the fraction772

of the bootstrap samples for which α was less than 0.5, which results in the p-values reported in the main text and Fig. 5.773

We applied this same analysis across sessions to trajectories decoded from neural activity during run snippets (the same774

run snippets selected for the model comparison analysis on movement data), as well as to the set of 100 trajectories775

simulated under diffusion dynamics (as described in Model Recovery from Simulated Data). We chose to visualize the776

distance-time relationship in terms of number of time bins, rather than time elapsed so that SWRs and run snippets could777

be visualized at the same scale.778

Splitting SWRs into “Home” and “Away” Events779

SWRs were split into “home” and “away” events according to the current location of the animal at SWR onset: a “home”780

event if the animal is less than 5cm from the home well, and an “away” event if the animal is elsewhere in the environment.781

In Fig. S8, and Fig. S11 “away” event is redefined as if the animal is less than 5cm from the goal well, rather than782

anywhere in the environment other than within 5cm of the home well.783

Analysis of Correlation Between Replay Trajectories and Behavior784

To quantify the correlation between replay trajectories and behavior, we implemented the method described in Pfeiffer785

and Foster (2013). Replay trajectories were extracted from SWRs as described in “Extracting maximum likelihood tra-786

jectories”. The future/past path of the animal was defined as the immediate future/past path of the animal for either787

10s after/before the SWR or until a direct distance of 75cm from the current location of the animal during the SWR was788

reached, whichever threshold gives the greater direct distance. To calculate the correlation between the replay trajectory789

and the behavioral path, the angular distance between the replay trajectory and behavioral trajectory was found at a se-790

ries of progressively larger radii from the current location of the animal during the SWR. Specifically, the crossing points791

between the behavioral trajectory and the replay trajectory with a circle centered on current location of the animal was792

found for each radius, and the angular distance between these two crossing points was calculated (as visualized in Fig.793

7a). The minimum radius was 5 cm, increased in increments of 3 cm until either 75 cm or the end of the replay trajectory794

was reached. For each session, a histogram of angular displacements was calculated using all crossings across SWRs795

within the session, with SWRs split into “home” and “away” events as described in “Splitting SWRs into “home” and796

“away” events”. This analysis was applied separately to either all SWRs classified as a trajectory model or all SWRs797

previously classified by the traditional method. Chance correlation was found by 2000 shuffles in which a behavioral path798

and SWR was selected at random from any session, the behavioral path was shifted to the current location of the animal799

during the SWR, and the angular distance was calculated using the same method described above.800

Figure Details801

Figure 1. Panel b shading visualizes “moving” and “not moving” periods as described in Behavioral Task and Data802

Acquisition, and the example place fields in panel c were computed using the place field data from “moving” periods803

as described in Estimating Place Fields. The spike generation model in panel c and the dynamics models in panel d804

are described in the Spike Generation Model and Dynamics Models sections. The graphical models in d describe the805

statistical relationship between variables in each dynamics model, whose details are given in Dynamics Models.806

Figure 2. The heatmaps in panel a were computed from the marginal decoded position per time bin p(zt|x1:T ,M) for807

each dynamics model described in Description of State-Space Models. For the diffusion and momentum models, the808

marginal decoded positions were found by the forward-backward algorithm (Bishop, 2006). The other, non-trajectory,809

models had a simpler form that supported a simpler computation of the position estimates. We normalized these posi-810

tion estimate separately for each time bin, p(z̃t|x1:T ,M) = p(zt|x1:T ,M)/
∑

zt
p(zt|x1:T ,M), summed them over time811

p(z̃1:T |x1:T ,M) =
∑T
t=1 p(z̃t|x1:T ,M), and plotted this sum. While the sum is no longer a real probability distribution,812

it is nonetheless useful for visualization. In panel b, the distribution over models per SWR was computed as described813
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in Marginalizing over Latent Position Sequences and Model Parameters. In panel c, the heatmaps were computed by814

obtaining the decoded position per time bin p(zt|xt) as calculated by the traditional method described in Traditional815

Method for Classifying SWRs, then normalized, summed, and plotted as described for panel a. The trajectory plotted is816

as described in Traditional Method for Classifying SWRs.817

Figure 3. The distribution over models in panel a was inferred by random effects analysis as explained in Best-Fitting818

Models, and Fixed and Random Effects Model Comparison of Dynamics Models, the comparison to the traditional method819

as described in Traditional Method for Classifying SWRs, the simulated data model recovery as described in Model820

Recovery from Simulated Data, and the deviance explained as described in Computing Fraction Deviance Explained.821

Figure 4. The run snippets visualized in panel a were selected as described in Analysis of Place Cell Activity During822

Movement for example session 1 (rat 1, day 1). The distribution over models was computed by random effects analysis as823

described in Best-Fitting Models, and Fixed and Random Effects Model Comparison of Dynamics Models. The example824

run snippets decoded positions are visualized following the same procedure outlined for Figure 2a (above), and the825

distribution over models per-run snippet was computed as described in Marginalizing over Latent Position Sequences826

and Model Parameters.827

Figure 5. The heatmaps in panels a and b are computed as described for Figure 2a (above). For panel c, the time-828

distance relationship, estimated diffusion coefficient in panel, and bootstrap significance testing (inset) are described in829

Diffusion Coefficient Analysis.830

Figure 6. The data presented here agglomerates SWRs best fit by a trajectory model, as described in Best-Fitting831

Models, and Fixed and Random Effects Model Comparison of Dynamics Models, across all sessions, and splits SWRs832

into “home” and “away” events as described in Splitting SWRs into “Home” and “Away” Events.833

Figure 7. “Trajectory model” SWRs are selected as described in Best-Fitting Models, and Fixed and Random Effects834

Model Comparison of Dynamics Models, “previously classified” SWRs are selected as described in Traditional Method835

for Classifying SWRs, and SWRs are split into “home” and “away” events as described in Splitting SWRs into “Home” and836

“Away” Events. The angular distance was quantified as described in Analysis of Correlation Between Replay Trajectories837

and Behavior.838
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