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Abstract 16 

Across diverse microbiotas, species abundances vary in time with distinctive statistical 17 

behaviors that appear to generalize across hosts, but the origins and implications of these 18 

patterns remain unclear. Here, we show that many of these patterns can be quantitatively 19 

recapitulated by a simple class of resource-competition models, in which the metabolic 20 

capabilities of different species are randomly drawn from a common statistical ensemble. 21 

Our coarse-grained model parametrizes the intrinsic consumer-resource properties of a 22 

community using a small number of macroscopic parameters, including the total number 23 

of resources, typical resource fluctuations over time, and the average overlap in resource-24 

consumption profiles across species. We elucidate how variation in these parameters 25 

affects various time series statistics, enabling macroscopic parameter estimation and 26 

comparison across wide-ranging microbiotas, including the human gut, saliva, and 27 

vagina, as well as mouse gut and rice. The successful recapitulation of time series 28 

statistics across microbiotas suggests that resource competition generally acts as a 29 

dominant driver of community dynamics. Our work unifies numerous time series patterns 30 

under one model, clarifies their origins, and provides a framework to infer macroscopic 31 

parameters of resource competition from longitudinal studies of microbial communities.  32 
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Introduction 33 

Microbial communities are ubiquitous across our planet, and strongly affect host and 34 

environmental health1,2. Predictive models for microbial community dynamics would 35 

accelerate efforts to engineer microbial communities for societal benefits. A well-studied 36 

class is consumer-resource (CR) models, wherein species growth is determined by the 37 

consumption of environmental resources3. CR models capture a core set of interactions 38 

among members of a community based on their competition for nutrients, and have 39 

demonstrated the capacity to recapitulate important properties of microbial communities 40 

such as diversity and stability4,5, despite neglecting potential interaction mechanisms 41 

beyond resource competition. Model parameters such as resource consumption rates are 42 

beginning to be uncovered in the context of in vitro experiments6,7. However, a systematic 43 

connection between CR models and complex in vivo systems is lacking. 44 

 45 

A common strategy for interrogating in vivo microbiotas is longitudinal sampling followed 46 

by 16S amplicon or metagenomic sequencing, thereby generating a relative abundance 47 

time series. Analyses of longitudinal data have shown that species abundances fluctuate 48 

around stable, host-specific values in healthy humans8-10. Recently, it was discovered that 49 

such time series exhibit distinctive statistical signatures, sometimes referred to as 50 

macroecological dynamics11-14. For example, in human and mouse gut microbiotas, the 51 

variance versus mean abundance over time scales across species as a power law, 52 

recapitulating the empirical Taylor’s law observed in many ecosystems15. Taylor’s law 53 

and other statistical behaviors encode properties of the community and its environment; 54 

for example, deviations from Taylor’s law can highlight species that are transient 55 

invaders11. More broadly, the relative contributions of intrinsic versus environmental 56 

processes can be distinguished by modeling time series using autoregressive models 57 

whose output values depend linearly on values at previous times and external noise16. 58 

Abundance time series can be correlated to environmental metadata such as diet to 59 

generate hypotheses about how environmental perturbations affect community 60 

composition10. Time series analyses can also identify transitions between distinct 61 

ecological states17. Some statistical behaviors can be recapitulated by phenomenological 62 

models, such as a non-interacting, constrained random walk in abundances12 or a 63 
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generalized Lotka-Volterra model with colored noise13. Similarly, ecological models 64 

describing the birth, immigration, and death of species have been used to analyze the 65 

distributions of abundance changes and abundance-prevalence relationships18. 66 

Nonetheless, the origins of and relationships among many of the statistical behaviors 67 

exhibited by host-associated microbiotas remain unclear. 68 

 69 

Here we show that many of the observed statistical behaviors can be quantitatively 70 

recapitulated by a simple resource competition model, in which species abundance 71 

fluctuations arise solely from external fluctuations in resource levels. The resource 72 

consumption network of such a community will typically depend on thousands of 73 

underlying parameters. We sought to overcome this combinatorial complexity by adopting 74 

a coarse-grained approach, in which resources describe effective groupings of 75 

metabolites or niches, and model parameters are randomly drawn from a common 76 

statistical ensemble. We show that this simple model generates statistics that 77 

quantitatively match those observed in experimental time series across wide-ranging 78 

microbiotas, allowing us to infer the macroscopic, ensemble-level parameters of resource 79 

competition that can recapitulate their observed dynamics. Our work provides a 80 

systematic connection between complex microbiotas and the coarse-grained resource 81 

competition underlying their dynamics, with broad importance for engineering 82 

communities relevant to human health and to agriculture.  83 
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Results 84 

 85 

A coarse-grained consumer-resource model under fluctuating environments 86 

To determine whether environmental resource fluctuations alone could reproduce 87 

experimentally observed time series statistics, we considered a minimal consumer 88 

resource (CR) model in which 𝑁consumers compete for 𝑀 resources via instantaneous 89 

growth dynamics described by 90 

𝑑𝑋𝑖

𝑑𝑡
= 𝑋𝑖 ∑𝑅𝑖𝑗𝑌𝑗

𝑀

𝑗=1

, 91 

𝑑𝑌𝑗

𝑑𝑡
= −𝑌𝑗 ∑𝑅𝑖𝑗𝑋𝑖

𝑁

𝑖=1

. (1) 92 

Here, 𝑋𝑖 denotes the abundance of consumer 𝑖, 𝑌𝑗 the amount of resource 𝑗, and 𝑅𝑖𝑗 the 93 

consumption rate of resource 𝑗 by consumer 𝑖. The resources in this model are defined 94 

at a coarse-grained level, such that individual resources could represent effective groups 95 

of metabolites or niches. We assumed that the resource consumption rates 𝑅𝑖𝑗  were 96 

independent of the external environment and constant over time, thereby specifying the 97 

intrinsic ecological properties of the community with a collection of 𝑁 × 𝑀 parameters. 98 

 99 

To simplify this vast parameter space, we conjectured that the macroecological features 100 

of our experimental time series might be captured by a typical community consumption 101 

profile drawn from a larger statistical ensemble. Specifically, we considered an ensemble 102 

in which each 𝑅𝑖𝑗 was randomly selected from a uniform distribution between 0 and 𝑅max. 103 

To model the sparsity of resource competition within the community, each 𝑅𝑖𝑗 was set to 104 

zero with probability 𝑆 (Fig. 1A). This ensemble approach allows us to represent arbitrarily 105 

large communities with a small number of global parameters, 𝑆 and 𝑅max. Crucially, our 106 

ensemble assumes that there are no direct tradeoffs in resource use4,5,19, such that the 107 

maximum growth rate of each individual is strongly correlated to the total number of 108 

resources it can consume. 109 

 110 
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We simulated the resource competition dynamics in Eq. 1 using a serial dilution scheme20 111 

to mimic the punctuated turnover of gut microbiotas due to multiple feedings and 112 

defecations between sampling times. During a sampling interval 𝑇, each dilution cycle 113 

was seeded with an initial amount of each resource, 𝑌𝑗,0(𝑇), and Eq. 1 was simulated until 114 

all resources were depleted (𝑑𝑌𝑗/𝑑𝑡 = 0 for all 𝑗). The entire community was then diluted 115 

by a factor 𝐷 and resources were replenished to their initial amounts 𝑌𝑗,0(𝑇) (Fig. 1B). To 116 

mimic the effects of internal or external reservoirs of species that could potentially 117 

compete for local resources21, we initialized the first dilution cycle of each sampling 118 

interval by assuming that 𝑁 consumers were present at equal abundance. Additional 119 

dilution cycles were then performed until an approximate ecological steady state was 120 

reached (Fig. 1B, Methods). Consumer abundances at sampling time 𝑇 were defined by 121 

this approximate ecological steady state. For most of the relevant parameter regimes we 122 

considered, this approximate steady state was reached within a reasonable number of 123 

generations (5-6 dilutions or ~40 generations for 𝐷 = 200). Our results did not depend on 124 

the precise composition of the reservoir (Fig. S1A), although they can strongly depend on 125 

the existence and the relative size of a reservoir (Fig. S1B). We discuss the implications 126 

of this finding in the Discussion. 127 

 128 

Under the assumptions of this model, any temporal variation in consumer abundances 129 

must arise through external fluctuations in the initial resource levels 𝑌𝑗,0(𝑇). To model 130 

these fluctuations, we assumed that the initial resource levels undergo a biased random 131 

walk around their average values 𝑌�̅�:  132 

𝑌𝑗,0(𝑇) = |𝑌𝑗,0(𝑇 − 1) − 𝑘(𝑌𝑗,0(𝑇 − 1) − 𝑌�̅�) + 𝜎𝑌�̅�𝜉𝑗(𝑇)|, 133 

where 𝜉𝑗(𝑇) is a normally distributed random variable with zero mean and unit variance, 134 

𝜎 determines the magnitude of resource fluctuations, and 𝑘 is the strength of a restoring 135 

force that ensures the same resource environment on average over time (Fig. 1A). If 𝑘 =136 

0, there is no restoring force and hence 𝑌𝑗,0(𝑇) performs an unbiased random walk; if 𝑘 =137 

1, 𝑌𝑗,0(𝑇) fluctuates about its set point 𝑌�̅� independent of its value at previous sampling 138 

time. As above, we used an ensemble approach to model the set points 𝑌�̅�, and assumed 139 

that each was independently drawn from a uniform distribution between 0 and 𝑌max. This 140 
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model yields a sequence of fluctuating resource amounts 𝑌𝑗,0(𝑇), and a corresponding 141 

time series of consumer relative abundances 𝑥𝑖(𝑇) = 𝑋𝑖(𝑇)/∑ 𝑋𝑘𝑘 (𝑇) (Fig. 1C). 142 

 143 

The statistical properties of these time series are primarily determined by 5 global 144 

parameters: the total number of consumers in the reservoir 𝑁, the number of resources 145 

in the environment 𝑀, the sparsity of the resource consumption matrix 𝑆, and the resource 146 

fluctuation parameters 𝜎  and 𝑘 . The absolute magnitudes of 𝑅max  and 𝑌max  are not 147 

important for our purposes since they do not affect the predictions of consumer relative 148 

abundances. The precise value of the dilution factor and steady-state threshold did not 149 

substantially affect time series statistics, as long as a realistic number of generations 150 

elapsed between sampling times (Fig. S2). We extracted 𝑁 from experimental data as 151 

the number of consumers that were present for at least one sampling time point, leaving 152 

only 4 free ensemble-level parameters. Previous studies have shown that the metabolic 153 

capabilities of bacterial species are more similar within families than between them6,22,23, 154 

thus we assumed that each consumer grouping 𝑖  within our model represents a 155 

taxonomic family, and combined abundances of empirical operational taxonomic units 156 

(OTUs) or amplicon sequencing variants24 (ASVs) at the family level for analysis 157 

(Methods). Given the typical limits of detection of 16S amplicon sequencing data sets, 158 

consumers whose relative abundance was < 10−4 were set to zero abundance in both 159 

simulations and experimental data, and the abundances of the remaining consumers 160 

were normalized to a sum of one. 161 

 162 

An example simulation using the parameters (𝑁,𝑀, 𝑆, 𝜎, 𝑘) = (50, 30, 0.1, 0.2, 0.8)  is 163 

shown in Fig. 1. This particular set of parameters produces relative abundance time series 164 

with highly similar statistical behaviors as in experiments involving daily sampling of 165 

human stool (Fig. 1D). Given these successes, we next systematically analyze the time 166 

series statistics generated by our model across parameter space, and compare against 167 

experimental behaviors to estimate model parameters for wide-ranging microbiotas. 168 

 169 

Model reproduces the statistics of human gut microbiota time series 170 
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To test whether our model can recapitulate all major features of experimental time series, 171 

we first focused on a data set of daily sampling of the gut microbiota from a human 172 

subject9 (Fig. 2). These data were previously shown11 to exhibit several distinctive 173 

statistical behaviors: 1) the variance 𝜎𝑥𝑖

2  of family 𝑖 over the sampling period scaled as a 174 

power law with its mean 〈𝑥𝑖〉  (Fig. 2B,F); 2) the log10(abundance change) Δ𝑙𝑖(𝑇) =175 

log10(𝑥𝑖(𝑇 + 1)/𝑥𝑖(𝑇)), pooled over all families and across all sampling times, was well 176 

fit by an exponential distribution with standard deviation 𝜎Δ𝑙  (Fig. 2B,G); and 3) the 177 

distributions of residence times 𝑡res  and return times 𝑡ret  (the durations of sustained 178 

presence and absence, respectively) pooled over all families were well fit by power laws 179 

with an exponential cutoff (Fig. 2D,K). Through an exhaustive search of parameter space, 180 

we found that our model could reproduce all of these behaviors (Fig. 2F,G,K). In addition, 181 

several other important statistics were reproduced without any additional fitting: 1) the 182 

distribution of richness 𝛼(𝑇), the number of consumers present at sampling time 𝑇 (Fig. 183 

2A,E), 2) the distribution of the restoring slopes  𝑠𝑖  of the linear regression of Δ𝑙𝑖(𝑇) 184 

against 𝑙𝑖(𝑇) ≡ log10(𝑥𝑖(𝑇)) across all 𝑇 (Fig. 2C,H), 3) the distribution of prevalences 𝑝𝑖, 185 

the fraction of sampling times for which family 𝑖 is present (Fig. 2A,I); 4) the relationship 186 

between 𝑝𝑖 and 〈𝑥𝑖〉 (Fig. 2J); and 5) the rank distribution of mean abundance 〈𝑥𝑖〉 (Fig. 187 

2L). Therefore, with only 4 parameters, our model was able to simultaneously capture at 188 

least 8 statistical behaviors in a microbiota time series, each of which may capture 189 

biologically relevant features of the community. 190 

 191 

Systematic characterization of the effects of consumer-resource dynamics on time 192 

series statistics 193 

Since our model can reproduce the observed statistics in gut microbiota time series, we 194 

sought to determine how these statistics would respond to changes in model parameters, 195 

and thus how experimental measurements constrain the ensemble parameters across 196 

various data sets. To do so, we simulated our model across all relevant regions of 197 

parameter space. 𝑆 and 𝑘 were varied across their entire ranges, while 𝑀 and 𝜎 were 198 

varied across relevant regions outside of which the model clearly disagreed with the 199 

observed data. For each set of parameters, each time series statistic was averaged 200 

across random instances of 𝑅𝑖𝑗 and 𝑌𝑗,0(𝑇) drawn from the same statistical ensemble. For 201 
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each statistic 𝑧, its global susceptibility 𝐶(𝑧, 𝑤) to parameter 𝑤  was calculated as the 202 

change in 𝑧 when 𝑤 is varied, averaged over all other parameters and normalized by the 203 

standard deviation of 𝑧 across the entire parameter space. Due to the normalization, 204 

𝐶(𝑧, 𝑤) varies approximately between -3 and 3, where a magnitude close to 3 indicates 205 

that almost all the variance of 𝑧 is due to changing 𝑤. 206 

 207 

By clustering and ranking susceptibilities, we identified four statistics with |𝐶(𝑧, 𝑤)| > 2 208 

that were largely determined by one of each of the four model parameters (Fig. 3, S3): 209 

mean richness 〈𝛼〉, the power-law exponent 𝛽 of 𝜎𝑥𝑖

2  versus 〈𝑥𝑖〉, the standard deviation in 210 

log10(abundance change) 𝜎Δ𝑙, and the mean restoring slope 〈𝑠〉 were almost exclusively 211 

susceptible to variations in 𝑀, 𝑆, 𝜎, and 𝑘, respectively. Similar results were also obtained 212 

for local versions of the susceptibility, in which individual parameters were varied around 213 

the best fit values for the human gut microbiota in Fig. 2 (Fig. S4). Susceptibilities broadly 214 

illustrate how various time series statistics are affected by coarse-grained parameters of 215 

resource competition; we further investigate some specific examples in the next section. 216 

 217 

The exclusive susceptibilities of these four statistics suggest that they can serve as 218 

informative metrics for estimating model parameters. Therefore, we estimated model 219 

parameters by minimizing the sum of errors between model predictions and experimental 220 

measurements of these four statistics, and obtained estimation bounds by determining 221 

parameter variations that would increase model error by 5% of the mean error across all 222 

parameter space. As we will show, the resulting bounds are small relative to the 223 

differences among distinct microbiotas, indicating that meaningful conclusions can be 224 

drawn from the best-fit values of the ensemble-level parameters of resource competition. 225 

In summary, the 4 model parameters were fit to 4 summary statistics, mean richness 〈𝛼〉, 226 

variance-mean scaling exponent 𝛽, standard deviation of abundance change 𝜎Δ𝑙 , and 227 

mean restoring slope 〈𝑠〉 (Fig. 2E-H, respectively). The shape of their corresponding 228 

distributions and scalings, as well as at least 4 other statistics, are all parameter-free 229 

predictions (Fig. 2I-L), providing support for our model. 230 

 231 

Origins of distinctive statistical behaviors in species abundance time series 232 
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To understand the mechanisms that underlie the susceptibilities of various time series 233 

statistics to model parameters, we investigated their origins within our model, focusing on 234 

how they constrain the parameters. 235 

 236 

The average richness 〈𝛼〉 is a fundamental descriptor of community diversity. Within our 237 

model, 〈𝛼〉 is largely determined by and increases with increasing resource number  𝑀 238 

(𝐶(𝛼,𝑁/𝑀) = −2.6 ), as expected for CR dynamics. The sparsity of resource use 𝑆 239 

impacts the power-law exponent 𝛽 between 𝜎𝑥𝑖

2  and 〈𝑥𝑖〉 (𝐶(𝛽, 𝑆) = −2.0). The effect of 𝑆 240 

on 𝛽 can be partially understood as follows. When sparsity is high (𝑆 ≈ 1), consumers 241 

consume distinct sets of resources with little competition from other consumers, and the 242 

variation in the number of utilized resources can be large relative to the average value 243 

𝑀(1 − 𝑆). In this case, both 𝜎𝑥𝑖

2  and 〈𝑥𝑖〉 scale with the number of resources consumed, 244 

and hence 𝛽 ≈ 1. By contrast, when sparsity is low (𝑆 ≈ 0), all consumers consume all 245 

resources and hence the numbers of resources consumed are the same among 246 

consumers. To better understand this limit, we simulated a no-competition model in which 247 

all consumers consume distinct sets of the same number of resources. For large number 248 

of resources, these simulations predicted that 𝛽 ≈ 1.5, in agreement with our model for 249 

𝑆 ≈ 0  (Fig. S5). Simulations of the no-competition model with varying numbers of 250 

resources consumed predicted values of 𝛽 between 1 and 1.5 (Fig. S5), suggesting that 251 

the effect of 𝑆 on 𝛽 can be partially attributed to differences in the number of resources 252 

consumed across consumers. Together, 𝛼 and 𝛽 constrain the parameters of resource 253 

competition 𝑀 and 𝑆. 254 

 255 

The distribution of Δ𝑙 describes the nature of abundance changes. As expected, the width 256 

of the distribution is largely determined by and increases with increasing 𝜎 (𝐶(𝜎Δ𝑙, 𝜎) =257 

2.6). For the gut microbiota data set in Fig. 2, the shape of the distribution was well fit by 258 

an exponential. Within our model, the shape of the distribution aggregated across all 259 

consumers is determined by 𝑁/𝑀 and the sparsity 𝑆, emerging from the mixture of each 260 

consumer’s individual distribution (Fig. S6). When 𝑁/𝑀 < 1 and the sparsity 𝑆 is low, 261 

individual distributions of Δ𝑙  are well fit by normal distributions, and pool together to 262 

generate another normal distribution. When 𝑁/𝑀 < 1 and sparsity 𝑆 is high, individual 263 
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distributions remain normal, but can pool together to generate a non-normal distribution 264 

that is well fit by an exponential (see also Ref. 25). By contrast, when 𝑁/𝑀 > 1, individual 265 

distributions can be well fit by an exponential, and can pool together to approximate 266 

another exponential. Simulations of the no-competition model considered above led to 267 

individual and aggregate distributions that were normal in all cases, indicating that 268 

resource competition is responsible for generating the non-normal distributions of Δ𝑙 in 269 

our model (Fig. S5). Although it is challenging to discern the shape of individual 270 

distributions in most experimental data sets given the limited numbers of samples, the 271 

shape of the aggregate distribution of Δ𝑙 informs the parameters of resource competition 272 

𝑀  and 𝑆 . In particular, an exponential distribution of Δ𝑙  suggests either significant 273 

resource competition in the form of 𝑁 > 𝑀, or substantial niche differentiation in the form 274 

of high 𝑆. Other statistics such as 𝛽 can help to distinguish between these two regimes. 275 

 276 

The distribution of restoring slopes 𝑠𝑖  describes the tendency with which consumers 277 

revert to their mean abundances following fluctuations. As expected, the mean 〈𝑠〉 is 278 

almost completely determined by 𝑘 , which describes the autocorrelation in resource 279 

levels (−〈𝑠〉 ≈ 𝑘 and 𝐶(〈𝑠〉, 𝑘) = −3.0). Together, the distributions of Δ𝑙 and 𝑠𝑖 constrain 280 

the parameters of external fluctuations 𝜎 and 𝑘. 281 

 282 

Within our model, resource fluctuations can lead to the temporary “extinction” of certain 283 

species when they drop below our detectability threshold 𝑥𝑖(𝑇) < 10−4. The distributions 284 

of residence and return times, 𝑡res and 𝑡ret, reflect the probabilities of extinction as well as 285 

correlations between sampling times. For all parameter sets explored, these distributions 286 

can be well fit by power laws, with an exponential cutoff to account for finite sampling in 287 

time11. As expected, the power-law slopes 𝜈res and 𝜈ret decrease (become more negative) 288 

with increasing 𝜎 or 𝑘, since increasing external noise or decreasing correlations in time 289 

increases the probability of fluctuating between existence and extinction for each 290 

consumer, thereby decreasing 𝜈res and 𝜈ret for all consumers. By contrast, 𝜈res and 𝜈ret 291 

change in opposite directions in response to variation in 𝑀. Increasing 𝑀 leads to a larger 292 

number of highly prevalent consumers, thereby increasing the mean and broadening the 293 

distribution of 𝑡res and decreasing the mean and narrowing the distribution of 𝑡ret. Since 294 
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the 4 ensemble-level parameters are already fixed by other statistics, the distributions of 295 

𝑡res , 𝑡ret , and 𝑝𝑖  are parameter-free predictions of our model. In other words, a 296 

macroscopic characterization of the effective resource competition and resource 297 

fluctuations is sufficient to predict the statistics of “extinction” dynamics, as well as the 298 

abundance rank distribution and the relationship between consumer abundance and 299 

prevalence. 300 

 301 

Having clarified the origins of several important time series statistics, we next investigated 302 

how they depend on model assumptions. First, we considered a non-interacting null 303 

model in which consumer abundances were drawn from independent normal distributions 304 

whose means and variances were fitted directly from the data. Even with a large number 305 

of free parameters, this null model was unable to capture some of the time series statistics 306 

reproduced by our resource competition model above, such as the distributions of 307 

residence and return times (Fig. S7). We reasoned that the discrepancies between 308 

experimental data and the null model could be due to the lack of interspecies interactions. 309 

To test this hypothesis, we examined the pairwise correlations between the abundances 310 

of pairs of consumers across sampling times. The measured distribution of pairwise 311 

correlations is much broader than the prediction of the non-interacting model, which is 312 

sharply peaked about zero as expected (Fig. 4). By contrast, the distribution of 313 

correlations predicted by our resource competition model was in much closer agreement 314 

with the experimental data without any additional fitting parameters (Fig. 4). These 315 

findings suggest that competitive interactions among consumers are required to capture 316 

important details of community dynamics. 317 

 318 

Second, since the distributions of Δ𝑙, 𝑡res, and 𝑡ret are dependent on correlations between 319 

sampling times, it was initially puzzling that their distributions in some data sets remained 320 

similar after shuffling sampling times, raising doubt as to what extent these statistics hold 321 

information about the underlying intrinsic dynamics26. Our results reconcile the apparent 322 

conundrum, since within our model richness 〈𝛼〉 and Taylor’s law exponent 𝛽  do not 323 

depend on correlations between sampling times and are also the statistics that are most 324 

informative about the intrinsic parameters 𝑀 and 𝑆 (Fig. 3). As a result, the shuffled time 325 
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series were well fit by our model, and yielded best fit values that were identical to those 326 

produced by the actual time series but with 𝑘 = 1, as expected due to the absence of 327 

correlation across sampling times (Fig. S8). Moreover, we found that many microbiotas 328 

yielded best fit values of 𝑘 close to 1, indicating low correlation across sampling times 329 

(Fig. 5). Taken together, our results demonstrate that although external fluctuations in 330 

resource levels are responsible for generating species abundance variations, the intrinsic 331 

properties of resource competition determine the resulting scaling exponents of the 332 

statistical behaviors. 333 

 334 

Lastly, grouping time series at coarser taxonomic levels yielded similar qualitative 335 

statistical behaviors, which were also reproduced by our model (Fig. S9). Interestingly, 336 

the best fit value of 𝑆 was larger for coarser groupings, supporting the hypothesis that 337 

higher taxonomic groups have substantially differentiated metabolic capabilities. 338 

 339 

Taken together, our analyses demonstrate the complex relationships among time series 340 

statistics and highlight the unification of these statistics within our model using only a 341 

small number of biologically meaningful parameters. 342 

 343 

Time series statistics distinguish wide-ranging microbiotas 344 

Having developed a simple method to estimate model parameters, we applied this 345 

method to time series of wide-ranging microbial communities. In addition to microbiotas 346 

from the human and mouse gut9,10,27, we examined communities from the human 347 

vagina28, human saliva10, and in and around rice roots29. Their time series statistics varied 348 

broadly in value (Fig. 5A). Nevertheless, our model successfully reproduced the 349 

experimental statistics across all communities (Fig. S10-S15), suggesting that simple 350 

resource competition models can capture many of the macroscopic features of these 351 

microbiotas. 352 

 353 

The best fit parameters suggest that the effective resource competition dynamics occur 354 

in distinct regimes (Fig. 5B). Human gut microbiotas were best described by 𝑁 > 𝑀, 355 

suggesting that there are more species in the reservoir than resources in the environment, 356 
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by contrast to mouse gut microbiotas that were best described by 𝑁 < 𝑀. In terms of 357 

resource niche overlaps, human gut microbiotas were best fit with sparsity 𝑆 < 0.3, while 358 

mouse gut microbiotas were best fit with 𝑆 > 0.3, indicating that on average, pairs of 359 

bacterial families are more metabolically distinct in the mouse versus the human gut. 360 

 361 

Unlike gut microbiotas, a human saliva microbiota yielded best fit parameters 𝑁 ≈ 𝑀 and 362 

𝑆 ≈ 0.8, suggesting that this community has access to abundant resources and that each 363 

effective resource is competed for by a small fraction of the extant bacterial families. All 364 

vaginal microbiotas were best fit with 𝑆 < 0.1, suggesting intense resource competition. 365 

Interestingly, although vaginal microbiotas can be classified into several types based on 366 

the dominating species28, time series statistics among the different types (and hence their 367 

best fit parameters) were virtually indistinguishable (Fig. 5B, S12). 368 

 369 

Like vaginal microbiotas, microbial communities residing in the bulk soil around rice roots 370 

and in the associated rhizoplane and rhizosphere were well described by 𝑆 < 0.1. By 371 

contrast, the community in the associated endosphere was best described by 𝑆 ≈ 0.6, 372 

suggesting that resource competition is less fierce within plant roots than around them. 373 

However, we caution that the stable point of these plant-associated communities shifts 374 

over time29, which may affect time series statistics outside the scope of our model. 375 

 376 

In addition, inferences about the nature of environmental fluctuations can be made from 377 

the best fit values of 𝜎 and 𝑘 (Fig. 5B). Across all but two vaginal microbiota data sets, 378 

𝜎 ≈ 0.2 ± 0.1, indicating that changes in resource levels smaller than this magnitude will 379 

generate abundance changes that look like typical fluctuations. The best fit values of 𝑘 380 

varied between 0.5 and 1 across data sets, suggesting that the dynamics of microbial 381 

communities occur faster than or comparable to the typical sampling frequency of 382 

longitudinal studies. 383 

 384 

Inferences about intrinsic parameters of resource competition and external parameters of 385 

environmental fluctuations were also consistent with expectations for in vitro passaging 386 

of a complex community derived from humanized mice30. The resulting time series 387 
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statistics were best fit by the smallest value of 𝜎 among the data sets studied, indicating 388 

that the in vitro environment has low noise across sampling times; the nonzero 𝜎 389 

presumably arises from technical variations that result in effective noise in resource 390 

levels. The best fit value of 𝑀 was larger than the reservoir size 𝑁, suggesting that there 391 

are many distinct resources in the complex medium used for passaging and consistent 392 

with the ability of more diverse inocula to support more diverse in vitro communities30. 393 

The consistency of these results further supports the mechanistic picture provided by our 394 

modeling framework. Taken together, our model predicts ensemble-level parameters of 395 

resource competition and external parameters of environmental fluctuations for several 396 

widely studied microbial communities that can inform future mechanistic studies.  397 
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Discussion 398 

Here, we presented a coarse-grained CR model that generates species abundance time 399 

series from fluctuating environmental resources. We demonstrated that this model 400 

reproduces several important statistical behaviors, and how these observations constrain 401 

the parameters of resource competition within the model. Moreover, we successfully fitted 402 

the model to wide-ranging microbiotas, which allowed us to draw conclusions about their 403 

parameters of effective resource competition. In sum, our work provides a framework that 404 

unifies a plethora of time series statistics and exploits them to learn about the underlying 405 

community dynamics. 406 

 407 

An important and novel property of our model is its ability to reproduce many statistical 408 

behaviors across wide-ranging data sets with a minimal number of effective parameters. 409 

To what extent these effective parameters can be interpreted mechanistically should be 410 

an exciting avenue of future investigation. Although by no means exhaustive, our 411 

framework nevertheless addresses several pertinent questions regarding construction of 412 

useful models of microbiota dynamics. The success of our model in reproducing 413 

experimental time series statistics is consistent with bioinformatics-guided analyses of 414 

complex communities demonstrating that metabolic capability is a major determinant of 415 

community composition22,23. Our results also suggest that the contributions of a persistent 416 

reservoir of species are important for the dynamics of wide-ranging microbiotas21. Within 417 

our model, the lack of a reservoir renders poor consumers unable to recover to meaningful 418 

abundance within a sampling time even when resource fluctuations are in their favor, 419 

thereby distorting time series statistics. Further experimental work is required to ascertain 420 

the amount of growth and change that occurs during sampling time scales. 421 

 422 

In terms of intrinsic metabolic properties, our results provide a baseline expectation for 423 

the effective number of resources or available niches in the wide-ranging systems 424 

examined here, and to what extent they are competed for by extant consumers. In terms 425 

of environmental properties, our results provide a baseline expectation to help distinguish 426 

between typical fluctuations and large perturbations in resources. These expectations can 427 

aid in the engineering of complex microbiotas. 428 
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 429 

In general, our work demonstrates that it is feasible to reproduce time series statistics 430 

using consumer-resource models of microbiota dynamics, thereby generating 431 

mechanistic hypotheses for further investigation. In future work, more detailed 432 

hypotheses can be generated by investigating how time series statistics are affected by 433 

modifications to baseline CR dynamics, such as the incorporation of metabolic cross-434 

feeding6,31, functional differentiation from genomic analysis32-34, and physical variables 435 

such as pH35,36, temperature37, and osmolality38. In addition, recent studies have shown 436 

that evolution can substantially affect the dynamics of human gut microbiotas39-41. It will 437 

therefore be illuminating to incorporate evolutionary dynamics into CR models under 438 

fluctuating environments19. Such extended models can then be applied to probe the 439 

underlying mechanisms in microbiotas with urgent applications, including those in marine 440 

environments, wastewater treatment plants, and the guts of insect pests and livestock.  441 
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Methods 442 

 443 

Simulations of a CR model with fluctuating resource amounts 444 

Under a serial dilution scheme, an ecological steady state is reached when the dynamics 445 

in subsequent passages are identical, which is the case when all consumers are either 446 

extinct or have a growth ratio (the ratio of a consumer’s final and initial abundances within 447 

one passage) equal to the dilution factor 𝐷. Due to the slow path to extinction of some 448 

consumers, reaching an exact ecological steady state can require hundreds of passages, 449 

presumably more than realistically occurs between sampling times in the data sets 450 

examined here. We assumed instead that between sampling times an ecological steady 451 

state is only approximately reached, defined as the growth ratios of all species changing 452 

by less than a threshold fraction of 𝐷 between subsequent passages. Throughout this 453 

study, 𝐷 was set to 200 and the steady state threshold was 5%, under which a steady 454 

state was approximately reached in about 5 dilutions (Fig. 1B). In this manner, our model 455 

assigns a well-defined state of consumer abundances to each resource environment 456 

while ensuring that only a reasonable amount of change occurs between sampling times. 457 

Note that in human gut microbiotas, abundances can change by more than 1,000 fold 458 

between daily samplings, indicating that at least 10 generations elapsed between 459 

sampling times (Fig. 2B). The precise value of 𝐷 did not affect time series statistics, and 460 

steady state thresholds between 1% and 10% generated similar time series statistics (Fig. 461 

S2). We therefore expect our results to hold regardless of the precise values of these two 462 

parameters. Simulations were carried out in MATLAB, and all codes are freely available 463 

online at https://bitbucket.org/kchuanglab/consumer-resource-model-for-microbiota-464 

fluctuations/. 465 

 466 

Analysis of 16S amplicon sequencing data 467 

Raw 16S sequencing data from Refs. 10,28 were downloaded from SRA, and ASVs were 468 

extracted using DADA224 with default parameters. OTUs or ASVs from other studies were 469 

downloaded and analyzed in their available form.  470 
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Figure Legends 478 

 479 

 480 

Figure 1: A coarse-grained consumer-resource model with fluctuating resource 481 

amounts. 482 

A) In the consumer-resource model, 𝑋𝑖 denotes the abundance of consumer 𝑖 and 𝑌𝑗 483 

denotes the amount of coarse-grained resource 𝑗. The dynamics of the model are 484 

specified by consumption rates 𝑅𝑖𝑗  for 𝑁  consumers and 𝑀  resources. 𝑅𝑖𝑗  is 485 

drawn from a uniform distribution, and each 𝑅𝑖𝑗 is set to zero with probability 𝑆, the 486 

sparsity of resource competition. The initial resource amount 𝑌𝑗,0(𝑇)  at each 487 

sampling time 𝑇  fluctuates with noise strength 𝜎  and restoring force 𝑘 . 𝑁  is 488 

estimated from each data set, and the 4 free ensemble-level parameters are 489 

highlighted in red. 490 
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B) Shown are the dynamics of the model within one sampling time (𝑇 = 100, dashed 491 

gray box) for a subset of consumers and resources in a typical simulation. At each 492 

sampling time 𝑇, the model was simulated under a serial dilution scheme in which 493 

consumers (solid blue lines) grew until all resources (dotted green lines) were 494 

depleted, after which all consumer abundances were diluted by a fixed factor 𝐷 =495 

200 and resource amounts were replenished to 𝑌0(𝑇). Each sampling time was 496 

initiated from an external reservoir of consumers, with all consumers present at 497 

equal abundance. Dilutions were repeated until an approximate ecological steady 498 

state was reached in which the ratios of final to initial abundances of all consumers 499 

changed by less than 5% of 𝐷  between subsequent dilutions (Methods). The 500 

relative abundances at sampling time 𝑇  were obtained from the final species 501 

abundances at steady state. 502 

C) The model maps a set of fluctuating resource amounts 𝑌𝑗,0(𝑇) to a time series of 503 

species relative abundances 𝑥𝑖(𝑇)  that can be compared to experimental 504 

measurements. 505 

D) The simulated time series in (C) exhibits statistical behaviors that reproduce those 506 

found in experiments, including a power-law scaling between the abundance 507 

variance and mean over time of each species (left) and an approximately 508 

exponential distribution of abundance changes (right). Black lines denote the best 509 

linear fit (left) and the best fit exponential distribution (right). 510 

The example simulation shown in (A-D) was generated with  (𝑁,𝑀, 𝑆, 𝜎, 𝑘) =511 

(50, 30, 0.1, 0.2, 0.8).  512 
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 513 

Figure 2: A coarse-grained consumer-resource model with fluctuating resource 514 

amounts reproduces experimentally observed statistics in the abundance time 515 

series from a daily time series of a human gut microbiota. 516 

In all panels, blue points and bars denote experimental data analyzed and aggregated at 517 

the family level9. Red lines and shading denote best fit model predictions as the mean 518 

and standard deviation, respectively, across 20 random instances of the best fit 519 

ensemble-level parameters, (𝑁,𝑀, 𝑆, 𝜎, 𝑘) = (50, 30, 0.1, 0.2, 0.8).  520 

A-D) Illustrations of various time series statistics in (E-L). 521 

E) The distribution of richness 𝛼, the number of consumers present at a sampling 522 

time (A), and its mean 〈𝛼〉 are well fit by the model. 523 

F) The variance 𝜎𝑥𝑖

2  and mean 〈𝑥𝑖〉 over time (B) of each family’s abundance scale as 524 

a power law with exponent 𝛽 . Here, 𝛽 = 1.48  in experimental data and in 525 

simulations. 526 
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G) The distribution of log10(abundance change) Δ𝑙 (B) across all families is well fit by 527 

an exponential with standard deviation 𝜎Δ𝑙 . The gray line denotes the best fit 528 

exponential distribution, and is largely overlapping with the model prediction in red. 529 

H) The distribution of restoring slopes 𝑠𝑖 , defined based on the linear regression 530 

between the abundance change and the relative abundance for a species across 531 

time (C), is tightly distributed around a mean 〈𝑠〉 that reflects the environmental 532 

restoring force. 533 

Best fit values of model parameters were determined by minimizing errors in 〈𝛼〉, 𝛽, 534 

𝜎Δ𝑙, and 〈𝑠〉 (E-H, respectively). Using these values, our model also reproduced the 535 

distribution of prevalences (fraction of sampling times in which a consumer is present, 536 

D) (I), the relationship between prevalence and mean abundance (J), the distributions 537 

of residence and return times (durations of sustained presence or absence, 538 

respectively as illustrated in (D)) (K), and the rank distribution of abundances (L).  539 
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 540 

Figure 1: Macroscopic parameters of resource competition affect time series 541 

statistics in distinct manners. 542 

Shown are the changes in time series statistics (y-axis) in response to changes in model 543 

parameters (x-axis) for a comprehensive search across relevant regions of parameter 544 

space. Lines and shading show the mean and standard deviation of a statistic at the given 545 

parameter value across variations in all other parameters. Panels are highlighted in red 546 

when the corresponding susceptibility |𝐶(𝑧, 𝑤) > 2|, indicating that statistic 𝑧 is strongly 547 

affected by parameter 𝑤  regardless of the values of other parameters. Dashed lines 548 

highlight best fit parameter values to the experimental data in Fig. 2. Simulations were 549 
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carried out for 𝑁 = 50  across 𝑀 ∈ [10, 20, 30, 40, 50, 100, 150, 200, 250] , 𝑆 ∈ [0.1, 0.9] in 550 

0.1 increments, 𝜎 ∈ [0.05, 0.5] in 0.05 increments, and 𝑘 ∈ [0.1, 1] in 0.1 increments.  551 
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 552 

Figure 4: Correlations between abundances of consumer pairs were captured by 553 

the consumer-resource model, but not by a non-interacting null model. 554 

Shown in blue is the distribution of correlations between the abundances across sampling 555 

times of all consumer pairs for the experimental data in Fig. 2. Red line represents 556 

parameter-free model predictions as in Fig. 2, using the same best fit parameters; shading 557 

represents 1 standard deviation. Black dashed line shows predictions of a non-interacting 558 

null model in which consumer abundances were drawn from independent normal 559 

distributions whose mean and variance were extracted from data.   560 
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 561 

Figure 5: The statistics of wide-ranging microbiotas were captured by the coarse-562 

grained consumer-resource model in different regimes of resource competition 563 

and environmental fluctuations. 564 

Shown are time series statistics (A) and corresponding best fit model parameters (B) for 565 

human microbiotas from stool9,10 (blue circles), saliva10 (red square), and the vagina28 566 

(pink stars), gut microbiotas of mice under low-fat (green downward triangles) and high-567 

fat (green upward triangles) diets27, and plant microbiotas from the rice endosphere, 568 

rhizosphere, rhizoplane, and bulk soil29 (diamonds). 569 

A) Microbiota origin generally dictates the scaling exponent 𝛽 and the ratio between 570 

the reservoir size N (number of observed families throughout the time series) and 571 
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the richness 〈𝛼〉  (left), as well as the mean restoring slope 〈𝑠〉  and standard 572 

deviation of log10(abundance change) (right). Error bars denote 95% confidence 573 

intervals. 574 

B) Microbiota origin generally dictates the best fit parameters of resource 575 

competition, 𝑁/𝑀 and 𝑆 (left), and of environmental fluctuations, 𝜎 and 𝑘 (right). 576 

Error bars denote variation in the parameter that would increase model error (as 577 

interpolated between parameter values scanned) by 5% of the mean error across 578 

all parameter values scanned.  579 
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Supplemental figures 580 

 581 

 582 

Figure S2: Reservoir composition does not substantially affect time series 583 

statistics. 584 
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A) Depicted are mean model predictions using the parameter set in Fig. 1 and 2, with 585 

two definitions of the reservoir of consumers used to initialize the dynamics at each 586 

sampling time: a uniform reservoir in which all consumers are present at equal 587 

abundance (black), and a mean reservoir equal to the steady state composition 588 

given by the set point environment 𝑌�̅� initialized by a uniform reservoir (light brown). 589 

Most statistics were not substantially affected. The richness was lower when 590 

initializing with the mean reservoir, but the susceptibility of richness to model 591 

parameters is expected to remain qualitatively the same. 592 

B) Depicted are mean model predictions with varying reservoir fraction 𝑓, in which 593 

initial consumer abundances during sampling time 𝑇  were determined by a 594 

combination of the reservoir and the steady state at the previous sampling time, 595 

𝑓(1⃗ /𝑁) + (1 − 𝑓)(𝑥 (𝑇 − 1)). Many statistics were substantially affected by the 596 

value of 𝑓. Notably, the contribution from the previous steady state introduces 597 

autocorrelations, thereby increasing the mean restoring slope. Moreover, the 598 

absence of a reservoir substantially decreased richness since low-abundance 599 

consumers cannot grow enough even when resource levels fluctuate in their favor.  600 
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 601 

Figure S2: The dilution factor and steady state threshold do not substantially affect 602 

time series statistics. 603 

Depicted are time series statistics from one instance of the parameter set used in Figs. 1 604 

and 2, simulated using a dilution factor 𝐷 = 200 and a steady state threshold of 5% (solid 605 

black line), 𝐷 = 40  or 𝐷 = 1,000  (dotted gray lines), and a threshold of 1%  and 10% 606 

(dashed brown and orange lines, respectively).  607 
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 608 

Figure S3: Time series statistics are differentially susceptible to model parameters. 609 

28 time series statistics were clustered (A) and ranked (B) according to their 610 

susceptibilities to identify statistics that strongly constrain the values of key parameters.  611 
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 612 

Figure S4: Local susceptibilities behave similarly to their global counterparts. 613 

Shown are changes in time series statistics (y-axis) in response to changes in model 614 

parameters (x-axis) as in Fig. 3. Here, lines and shading show the mean and standard 615 

deviation of a statistic at the given parameter value with other parameters fixed to their 616 

best-fit values. Black dots denote the best-fit values.  617 
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 618 

Figure S5: The no-competition model provides an intuitive explanation of 619 

variations in the scaling exponent 𝜷 between 𝝈𝒙𝒊
𝟐  and 〈𝒙𝒊〉. 620 

A) In the no-competition model, each consumer consumes a disjoint set of resources.  621 

B) The mean and standard deviation of the number of resources consumed per 622 

consumer determine the scaling exponent 𝛽. Shown is the average value of 𝛽 over 623 

1,000 random instances of the no-competition model, across values of the mean 624 

number of resources consumed per consumer (y-axis) and the standard deviation 625 

in the number of resources consumed divided by the mean (x-axis). In this 626 

example, the model involved 10 consumers. At high variance in the number of 627 

resources consumed, 𝛽 → 1, whereas at low variance, 𝛽 varies between 1 and ≈628 

1.5 depending on the mean number of resources consumed. 629 

C) Aggregate (solid orange line) and individual (light orange lines) distributions of 630 

abundance changes are normal (grey dashed line) in the no-competition model. 631 

The distributions of abundance changes, normalized by their sample standard 632 

deviations, are shown for an example simulation with 7±1 resources per consumer.  633 
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 634 

Figure S6: Sparsity and the number of metabolites determine the shape of the 635 

distribution of abundance changes 𝑷(𝜟𝒍). 636 

A) Shown is the average goodness of fit (as determined by the p-value of the 637 

Kolmogorov-Smirnov test) of 𝑃(𝛥𝑙)  to an exponential (left) or a normal (right) 638 

distribution, for the distribution aggregated over all consumers (top) or the median 639 

value across the distributions of individual consumers (bottom). Larger values 640 

(blue) denote better fits. Green letters denote examples shown in (B). The other 641 

model parameters were fixed at (𝑁, 𝜎, 𝑘) = (50, 0.2, 0.8) as in Fig. 2. 642 

B) Shown are two different regimes that result in an exponential distribution of 643 

abundance changes. Example (a) demonstrates that when 𝑁/𝑀 > 1 , the 644 

aggregated distribution is better fit by an exponential (black dotted line) than by a 645 

normal distribution (top), and that the median of the individual distributions is also 646 

better fit by an exponential (bottom). Example (b) demonstrates that when 𝑁/𝑀 <647 

1 and 𝑆 is high, the aggregated distribution is still better fit by an exponential, but 648 

the median of the individual distributions is better fit by a normal distribution.  649 
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 650 

Figure S7: A non-interacting null model reproduced some, but not all, time series 651 

statistics. 652 

Shown are data from Ref. 9 as in Fig. 2 and comparisons to a non-interacting null model 653 

in which consumer abundances were drawn from independent normal distributions whose 654 

mean and variance were extracted from data. As a result of its many inputs, the null model 655 

was able to reproduce statistics such as the rank distribution of abundances, but was 656 

unable to reproduce the distributions of residence and return time, nor the distribution of 657 

pairwise correlations (Fig. 4).  658 
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 659 

Figure S8: Our mechanistic model is consistent with results obtained by shuffling 660 

time labels. 661 

Shown are the original data from Ref. 9 and the best fit model predictions as in Fig. 2 662 

(top), and the same data but with time labels shuffled (bottom). Only time series statistics 663 

that are affected by shuffling time labels are shown. Model predictions are based on the 664 

best fit parameters for the shuffled data, which were the same as for the original data 665 

except 𝑘 = 1 . Shuffling led to more negative restoring slopes, as expected from 666 

abolishing correlation between sampling times. The resulting mean restoring slope 667 

yielded a best fit value of 𝑘 = 1, which in turn predicted the distributions of residence and 668 

return times after shuffling.  669 
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 670 

Figure S9: Grouping at a lower-resolution taxonomic level results in similar time 671 

series statistics. 672 

Shown are data from Ref. 9 as in Fig. 2, but grouped and analyzed at the class instead of 673 

family level. The best fit model predictions are shown, with best fit parameters 674 

(𝑁,𝑀, 𝑆, 𝜎, 𝑘) = (20,30,0.4,0.2,0.6).  675 
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 676 

Figure S10: Our model reproduces experimentally observed time series statistics 677 

in human gut microbiotas. Shown are the same time series statistics as in Fig. 2 for 678 
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representative data sets (blue) from Ref. 9 (A) and Ref. 10 (B) and best fit model 679 

predictions (red).  680 
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 681 

Figure S11: Our model reproduces experimentally observed time series statistics 682 

in a human saliva microbiota. Shown are the same time series statistics as in Fig. 2 for 683 

an experimental data set (blue) from Ref. 10 and best fit model predictions (red).  684 
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 685 

Figure S12: Our model reproduces experimentally observed time series statistics 686 

in human vagina microbiotas. Shown are the same time series statistics as in Fig. 2 for 687 
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representative data sets (blue) of vaginal microbiotas with high diversity (A) and 688 

dominated by Lactobacillus iners (B) from Ref. 28 and best fit model predictions (red).  689 
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 690 

Figure S13: Our model reproduces experimentally observed time series statistics 691 

in mice gut microbiotas. Shown are the same time series statistics as in Fig. 2 for 692 
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representative data sets (blue) of mice fed a low-fat (A) and high-fat diet (B) from Ref. 27 693 

and best fit model predictions (red).  694 
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 695 

Figure S14: Our model reproduces experimentally observed time series statistics 696 

in rice microbiotas. Shown are the same time series statistics as in Fig. 2 for 697 
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representative data sets (blue) of the rhizoplane (A) and endosphere (B) from Ref. 29 and 698 

best fit model predictions (red).  699 
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 700 

Figure S15: Our model reproduces experimentally observed time series statistics 701 

in an in vitro-passaged complex community. Shown are the same time series statistics 702 

as in Fig. 2 for representative data (blue) from Ref. 30 and best fit model predictions (red). 703 

Note the lower value of s relative to other microbiotas.  704 
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