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ABSTRACT 

 

Esophageal adenocarcinoma (EAC), a highly aggressive cancer with limited therapeutic options, 

often arises in the backdrop of a molecularly-complex esophageal metaplasia disorder, Barrett’s 

Esophagus (BE). Using transcriptomics and systems biology analyses of treatment-naïve 

malignant/pre-malignant biopsy tissues, we found Eph receptor B2 (EphB2) tyrosine kinase 

signaling to be frequently hyperactivated during early stages of EAC development, and across the 

BE-EAC continuum. Functional studies revealed EphB2 to be an upstream post-translational 

regulator of c-MYC activity and as a key molecular dependency in BE/EAC. Single-cell 

transcriptomics in a porcine esophageal 3D spheroid model showed enhanced EphB2 and MYC 

activity to be significantly associated with BE-like cell fate. shRNA-based knockdown of EphB2 

or small molecule inhibitors of MEK, that modulate MYC protein stability, proved effective in 

suppressing EAC tumor growth in vivo. These findings point to EphB2-MYC axis as an early 

promoter of EAC and a novel therapeutic vulnerability in this increasingly-prevalent esophageal 

malignancy.  

 

 

STATEMENT OF SIGNIFICANCE 

We identify EphB2 signaling as a potential master regulator and early promoter of esophageal 

adenocarcinoma, and the proto-oncogene MYC as a key downstream effector of EphB2 function. 

Targeting the EphB2-MYC axis could be a promising therapeutic strategy for these often 

refractory and lethal EAC tumors. 
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INTRODUCTION 

Barrett’s esophagus (BE) is a clinical condition wherein the esophageal squamous epithelia (SQ) 

is replaced by intestinal-type columnar epithelia, often in response to mucosal injury from chronic 

gastrointestinal reflux disease (GERD) (1). Importantly, patients with BE are at an increased risk 

for developing esophageal adenocarcinoma (EAC), a lethal malignancy with increasing incidence 

rates even in younger populations within the U.S. (2,3). Moreover, the vast majority of EAC cases 

are refractory to standard of care treatments (4), and targeted therapies are virtually non-existent 

(4,5), resulting in a dismal 5-year survival (3,5). Despite the significance of BE and associated 

neoplasia, advancements in the clinical management of this disease have been stymied due to 

incomplete understanding of unifying mechanisms driving the onset and progression of BE 

pathogenesis.  

Herein, we performed integrative genome-scale analyses of transcriptomic profiles derived 

from treatment-naïve pre-malignant and malignant biopsy tissues, followed by pharmacogenetic 

studies, identifying EphB2-MYC as a key signaling axis in BE pathogenesis, with potential 

therapeutic implications.  

 

RESULTS 

EphB2 signaling is hyperactivated in the vast majority of BEs and EACs 

In order to identify early drivers of BE/EAC, we employed a systems biology framework, InFlo 

(6,7), to analyze RNA sequencing (RNASeq) data derived from a discovery cohort (8) consisting 

of 49 pre-treatment EACs, 18 Non-Dysplastic Stable Barrett’s Metaplasia (NDSBM) and 11 

normal esophageal squamous tissues (nSQ) (Supplementary Table S1). Besides known 

alterations in BE-associated pathways (See Methods), we found Eph Receptor B2 (EphB2) 
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Tyrosine Kinase signaling to be hyperactivated in 88% of EAC and 100% of NDSBM samples as 

compared to nSQ (Fig. 1A). Consistent with this, we found EphB2 signaling components 

including, EphB ligands (EFNB1 and EFNB2) and EPHB2 receptor as being significantly induced 

in NDSBM and EAC lesions, in comparison to nSQ (Fig. 1B).  

Eph Receptor Tyrosine Kinases impact diverse cellular processes across tissue types (9), 

with potential therapeutic and biomarker potential (10,11). Nonetheless, their significance in the 

context of BE neoplasia remain poorly understood. We accordingly prioritized EphB2 signaling, 

a previously uncharacterized pathway in BE-EAC, for further studies. To first assess the generality 

of our findings, we performed qPCR-based expression assessments of EPHB2 in a large 

independent cohort (Supplementary Table S2) of treatment-naïve biopsy tissues (N=885), 

including, EAC, non-dysplastic Barrett’s metaplasia (NDBM), BM with high-grade dysplasia 

(BE-HGD), normal gastric (GAST) and normal esophageal squamous (nSQ) samples. Indeed, we 

found significant (P<0.0005) overexpression of EPHB2 in NDBE as well as in progressive 

disease-stages (HGD and EAC), compared to normal SQ tissues (Fig. 1C). Consistent with this, 

immunohistochemical analyses in primary, treatment-naïve, tissue sections confirmed the marked 

induction of EphB2 protein in NDBM, BE-HGD and EAC as compared to nSQ (Fig. 1D). 

Furthermore, Immunoblot analysis revealed markedly higher EphB2 protein expression in nearly 

all patient-derived BE/EAC cell line models, as compared to a normal esophageal SQ cell line 

(Fig. 1E); whereas EFNB1/B2 ligands were expressed in all cell lines (Fig. 1E). Of note, these 

patient-derived EAC cell lines include the distal esophagus adenocarcinomas (EAC: FLO-1, 

SKGT4, EsoAd1, OE33) and also gastro-esophageal junctional cancers (GEJ: OE19, Eso26).   
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BE/EAC cells exhibit significant growth dependency on EphB2 signaling  

We next explored the functional consequences of EphB2 signaling in well-characterized, patient-

derived EAC cell line models. Transient siRNA-based knockdown of EPHB2 (See Methods) 

impeded both long-term colony growth as well as short-term cell growth of EAC cells (Fig. 2A). 

Reprising the in vitro growth dependencies, shRNA-based stable knockdown of EPHB2 led to a 

marked reduction in the growth of EAC cells as tumor xenografts in vivo (Fig. 2B). To assess 

whether these dependencies are retained even at earlier stages of EAC development, we performed 

EPHB2 siRNA knockdown studies in pre-malignant BE cell line models. Similar to our 

observations in EACs, knockdown of EPHB2 suppressed cell viability of metaplastic as well as 

dysplastic BE cells (Supplementary Fig. S1). These findings, taken together with EphB2 

signaling assessments in primary tumor cohorts (Fig. 1), support EphB2 as contributing to and 

sustaining BE/EAC cell growth from the earliest metaplastic stage, through the later dysplastic 

and neoplastic stages of Barrett’s esophageal adenocarcinoma.  

 

EphB2 signaling regulates MYC and its associated transcriptional program in BE/EAC 

We next assessed for likely effector pathways of EphB2 signaling that potentially mediate EphB2 

phenotypic effects in BE/EAC (Fig. 2). Accordingly, we performed RNASeq profiling and InFlo-

based integrative analysis in representative EAC and BE cell lines, upon siRNA knockdown of 

EPHB2 (See Methods). Besides previously-implicated pathways in BE/EAC such as NF-κB/RelA 

and Wnt/β-catenin (Supplementary Fig. S2), we in particular found the c-MYC proto-oncogene 

and associated transcriptional program to be significantly and positively regulated by EphB2 (Fig. 

3A), uncovering a novel link between EphB2 and MYC. Interestingly, this regulation of MYC by 

EphB2 appeared to be at the post-translational level, as EPHB2 knockdown resulted in marked 
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reduction in the levels of MYC protein but not RNA across representative EAC and BE cell line 

models (Fig. 3A). To further test this association between EphB2 and MYC in primary lesions, we 

performed VIPER-based assessments of MYC transcriptional activity in our RNASeq dataset 

derived from BE and EAC tissue biopsies. Indeed, we observed a significantly higher MYC 

activity in EphB2-hyperactivated BE (P<0.0005) and EAC (P<0.005) samples, as compared to 

nSQ, despite no significant differences in MYC RNA expression between the tissue samples (Fig. 

3B). These findings strongly point to EphB2 as a key post-translational regulator of MYC activity, 

and uncover a EphB2-MYC regulatory axis in the BE-EAC disease context. 

 

Activation of EphB2-MYC axis is an early event in BE pathogenesis  

Our findings of hyperactivated EphB2 signaling and MYC activity even in early metaplastic stages 

of the BE-EAC disease continuum (Figs. 1, 3B and Supplementary Fig. S1) provocatively 

suggested that EphB2-MYC axis may be an early mediator of BE pathogenesis. Since Eph 

signaling has previously been implicated in abnormal tissue injury and repair (12), processes that 

are highly relevant in the etiology of BE (13), we evaluated the EphB2-MYC axis in esophageal 

submucosal glands (ESMGs), a cluster of progenitor cells implicated in esophageal repair as well 

as BE development (13). In particular, given that abnormal repair following injury can drive 

ESMGs to differentiate into BE-like columnar rather than SQ-like epithelial cells (14), we 

employed a porcine-derived 3D culture model of ESMGs to first determine whether EphB2 

signaling is induced in early stages of transformative BE-like cell fate. We performed single-cell 

RNA sequencing (scRNASeq) in this 3D culture model, and subsequently employed a modified 

InFlo framework optimized for assessing differential signaling network activities in single-cells 

(See Methods). Strikingly, these analyses revealed significantly higher EphB2 activity in BE-like 
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(KRT7HighTP63Low), as compared to SQ-like (KRT7LowTP63High) spheroids, independent of cell-

cycle phase (Fig. 3C). Concomitant with this, we again observed significantly higher MYC 

transcriptional activity (P<0.005) with no difference in MYC RNA expression levels per se in BE-

like versus SQ-like cells, irrespective of cell-cycle phase (Fig. 3C). These findings strongly 

suggest that EphB2-MYC axis is an early modulator of cell fate in the etiology of BE.  

 

Small molecule inhibitors of MEK1 suppress MYC activity and impede EAC tumor growth in 

vivo  

Our studies thus far identify MYC as a key downstream effector of EphB2 signaling in BE-EAC 

development, provocatively suggesting the EphB2-MYC axis as a potential therapeutic 

vulnerability in this disease. Given that there are no clinically-approved inhibitors specifically 

against EphB2 or c-MYC, we explored for surrogate druggable-targets involved in upstream-

regulation of MYC activity. The MAPK signaling cascade emerged as a potential candidate given 

its known role in post-translationally regulating MYC stability and activity via ERK-mediated (Ser 

62) phosphorylation of MYC (15,16), and our finding of EphB2 modulating the activity of multiple 

components of the MAPK signaling cascade in BE/EAC cell lines (Supplementary Fig. S2). We 

accordingly evaluated the in vivo anti-tumor efficacy of a clinically-approved potent MEK1 

inhibitor (Cobimetinib) in pre-clinical tumor xenograft models. Sub-cutaneous tumor xenografts 

were established from the SKGT4 EAC cell line in immune-deficient (NCr-Foxn1nu nude) mice. 

Once tumors reached a minimum size of 50-60mm3, respective mice were randomized to either 

treatment with Cobimetinib or vehicle alone and followed longitudinally (see Methods). 

Strikingly, Cobimetinib treatment resulted in strong suppression and/or marked regression of both 

EAC-derived xenograft tumors in vivo, without any detectable adverse effects on mice or on their 
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body weights throughout the study duration (Fig. 4). Consistent with this, we found a marked 

reduction in the pharmacodynamic marker, p-ERK, and concomitant suppression of phospho-

MYC (S62) and total MYC protein in the tumors within a week of Cobimetinib treatment initiation 

in vivo (Fig. 4). These findings, taken together with our phenotypic and signaling assessments 

(Fig. 2 and 3), strongly suggest that targeting the EphB2-MYC axis can be a rational therapeutic 

strategy against this aggressive malignancy. 

 

DISCUSSION  

The alarming increase in the incidence of Barrett’s esophagus and esophageal adenocarcinoma 

(EAC) within the U.S., when coupled with the dismal survival rates for EAC on frontline 

chemoradiation therapy, and the limited avenues for targeted therapeutic interventions have 

exacerbated the need to decipher the molecular dependencies of this complex gastrointestinal 

disease. Here, we applied a systems biology framework to model signaling network activities using 

transcriptomic profiles of treatment-naïve primary patient samples, thus identifying 

hyperactivation of EphB2 signaling in both malignant as well as premalignant stages of the BE-

EAC disease continuum, a finding that was further confirmed in a large independent cohort of 

patient samples (Fig. 1).  

Notably, EphB2 is a member of the largest subgroup of receptor tyrosine kinases that are 

known to functionally impact diverse cellular processes during development and tissue 

homoeostasis (9). While the effects of Eph receptor activities in cancer are complex and 

paradoxical, with both decreased/increased expression (17) as well as higher mutational frequency 

(18) being linked to cancer progression across tissue contexts, this is the first report implicating 

hyperactivation of EphB2 signaling in the context of BE pathogenesis and its subsequent 
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progression to EAC. Indeed, our observation of sustained activation of EphB2 signaling in primary 

patient lesions across the metaplasia-dysplasia-cancer stages of disease progression, when coupled 

with the striking growth suppression of BE/EAC cells upon EPHB2 knockdown (Fig. 2, 

Supplementary Fig. S1), strongly support activation of EphB2 signaling as an early promoter of 

BE-EAC. Intriguingly, these findings are in stark contrast to the reported tumor-suppressive role 

of EphB2 signaling in other gastrointestinal malignancies such as colorectal cancer, where EPHB2 

is lost during the adenoma-carcinoma transition, and over-expression of EPHB2 markedly 

suppresses colorectal cancer progression (19). These observations further underscore the distinct 

context-specific function of EphB2 signaling along the length of the gastrointestinal tract.   

 

Our functional studies in BE/EAC cell line models (Fig. 3A) and quantitative assessments in 

primary BE and EAC lesions (Fig. 1 and 3B) further reveal MYC as a key mediator of EphB2 

signaling. While EphB2 regulation of MYC has not been previously reported, prior studies indeed 

have implicated other Eph receptor family members as modulating MYC activity in diverse cancer 

contexts (20,21), intriguingly suggesting MYC as a critical downstream effector of Ephrin 

signaling in general. These findings have significant implications in the BE context given the likely 

role of MYC as an early promoter of BE pathogenesis. For example, a prior report in an 

organotypic culture model demonstrated that overexpression of MYC induces squamous to BE-

like columnar transition (22), findings that are in line with our observation of enhanced MYC 

activity in transformative columnar cells in the porcine ESMG spheroid model (Fig. 3C). 

Moreover, deoxycholate, a key bile acid in gastroesophageal refluxate and a risk factor for BE, is 

shown to induce MYC protein expression (23). These findings suggest that cell-intrinsic/extrinsic 

factors that induce and/or sustain MYC activity likely play a determinant role in BE pathogenesis, 
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and our study provocatively now connects this proto-oncogene to a potential master regulator, 

EphB2, in BE-EAC pathobiology.  

While further studies are indeed warranted to fully decipher the precise intermediary steps 

in EphB2 regulation of MYC protein stability, our studies nonetheless offer new druggable targets 

for this aggressive cancer. In this regard, our preclinical studies with a clinically-approved MEK1 

inhibitor, Cobimetinib, showed significant anti-tumor activity against EAC tumors, with 

concomitant inhibition of MYC activity, in vivo (Fig. 4). Moreover, given that Cobimetinib is 

already approved as an anti-cancer therapy in melanoma (24), our findings pave the way for rapid 

translational opportunities in EAC, a lethal cancer that has proven refractory to standard 

chemoradiation therapy. Since additional MEK inhibitors are in various phases of clinical 

development in other cancer contexts, our preclinical evaluations here provide a rationale for 

repurposing and evaluating MEK inhibitors in clinical trials as a potential targeted-therapeutic 

strategy in patients with EAC.  

In summary, our investigations identify the EphB2-MYC signaling axis as a key molecular 

dependency in Barrett’s esophagus and esophageal adenocarcinoma, and reveal a novel therapeutic 

vulnerability in this increasingly-prevalent and aggressive esophageal malignancy.  

 

METHODS 

Detailed methods are provided as Supplementary Methods.  

Patient samples 

A discovery set of treatment-naïve 18 Non-Dysplastic Stable Barrett’s Metaplasia (NDSBM), 55 

esophageal adenocarcinoma (EAC) and 11 paired normal esophageal squamous biopsy samples 

(nSQ) matching respective EACs was compiled for whole-transcriptome RNA sequencing 

(RNASeq) under an approved Institutional Review Board for Human Subjects Investigation 
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protocol, as previously described (8). We similarly compiled an independent validation cohort 

consisting of 210 EAC, 133 Non-Dysplastic Barrett’s Metaplasia (NDBM), 57 Barrett’s 

Metaplasia with high-grade dysplasia (BE-HGD), 24 normal gastric (GAST) samples, and 461 

normal squamous (nSQ) for qPCR-based validation studies.  

Estimation of signaling network activities in BE/EAC using the InFlo systems biology 

framework 

Whole-transcriptome RNA sequencing (RNASeq) on the discovery cohort of EAC, NDSBM and 

nSQ samples was performed as previously described (8), generating an average of 150 million 

paired-end reads per sample. Differential activation of genome-scale signaling networks in 

NDSBM versus nSQ, as well as EAC versus nSQ was conducted using a unique systems biology 

framework (InFlo) that we recently developed (6,7). Briefly, the normalized, log2-transformed 

FPKM values across the 78 RNASeq samples in our discovery cohort was processed using InFlo 

by first comparing each individual sample against the control set of 11 nSQ samples. Signaling 

network components that were significantly activated (InFlo Activity Index > 0; Wilcoxon P ≤ 

0.05) in >50% of both NDSBM as well as EAC as compared to nSQ samples were selected as 

being robust pathways activated in BE/EAC. 

Cell culture 

Human EAC cell lines were cultured in either Dulbecco’s minimal essential medium (FLO-1) or 

Roswell Park Memorial Institute medium (SKGT4, EsoAd1, OE19, OE33 and Eso26) 

supplemented with 10% fetal bovine serum. Non-dysplastic (CP-A) and dysplastic (CP-B, CP-C, 

CP-D) human BE cell lines were cultured as previously described by us (7). Cell lines were tested 

for authenticity using STR genotyping, and were screened periodically for mycoplasma 

contamination. 
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Generation of SKGT4 cells with stable knock-down of EPHB2 

SKGT4 cells were infected with either the SMARTvector nontargeting or EPHB2-targeting 

lentiviral shRNA Tet-On 3G Doxycyline (Dox)-inducible system. SKGT4 cells were passaged 48 

hours after infection and selected with 0.5 μg/mL puromycin for 2-3 weeks to obtain stable clones 

with nontargeting or EPHB2 shRNA. Stable clones were treated with 1µg/ml doxycycline for 48-

120 hours followed by assessment for efficient knockdown of EphB2 by immunoblotting.  

In vitro phenotypic assays 

Cell growth assessments were quantified following seeding using the IncuCyte ZOOM automated 

live cell kinetic imaging system (Essen BioScience), as previously described (7). Colony growth 

assessments were quantified as previously described (7). Cell viability assessments were 

performed using the CellTiter-Glo 2.0 Cell Viability Assay. Significant differences in cell 

viability/growth/clonogenicity between test versus control groups were estimated using a 

Student’s t-test assuming unequal variances.  

InFlo-based identification of effector pathways of EphB2 signaling  

EAC and dysplastic-BE cells were transfected for 48hrs with either siRNA directed against EPHB2 

or non-targeting/control siRNA, followed by genome-scale transcriptomic profiling. The resulting 

cell-line specific transcriptomic profiles were processed using InFlo by comparing the profiles of 

each of the siEPHB2-treated samples against the respective non-targeting controls. This resulted 

in the estimation of differential activities of signaling network components on a genome-scale, 

with negative values corresponding to lower activities and positive values corresponding to higher 

activities in siEPHB2-treated samples as compared to the respective non-targeting controls. 

Signaling network components that were significantly deregulated in the siEPHB2-treated samples 
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across both EAC (SKGT4) and dysplastic-BE (CP-D) cells EAC and BE cells were subsequently 

selected to identify consensus downstream mediators of EphB2 signaling. 

In vivo tumor xenograft growth assay 

Tumor xenograft growth assays were performed as previously described (7). Briefly, subcutaneous 

tumor xenografts were created by injecting either parental SKGT4 EAC cells or SKGT4 cells 

stably expressing either Dox-inducible EPHB2/Control shRNA constructs, suspended in 50% 

Geltrex, bilaterally (4x106 cells per flank) into the flanks of 4–5-week-old female athymic 

Crl:NU(NCr)-Foxn1nu mice. For shRNA xenograft studies, mice were switched to a 625 mg/kg 

doxycycline diet 24 hours after inoculation for the duration of the study. For MEK inhibitor 

studies, after the xenograft tumors reached a minimum size of 30mm3, the mice were randomized 

to be treated, via oral gavage, with either vehicle (0.5% Methylcellulose) or with vehicle 

containing 10 mg/kg of Cobimetinib, once daily. Tumor volumes were estimated 2-3 times weekly. 

A two-sided Student’s t-test, assuming unequal variances, was used to determine significant 

differences in tumor volumes across comparisons. All animal procedures were approved by the 

Case Western Reserve University Institutional Animal Care and Use Committee and followed NIH 

guidelines.  

Single-cell RNA sequencing analyses in a porcine 3D ESMG spheroid model 

Porcine esophageal submucosal gland (ESMG) cultures were created as previously reported (14). 

For the single cell RNA sequencing, day 7 spheroids were collected from three pigs, representing 

a mix of two phenotypes: the solid squamous-like (SQ-like) spheroids and the hollow BE-like 

spheroids. A total of 2,677 single cells were recovered for single cell sequencing using the 10x 

Genomics Chromium System at the Duke Molecular Physiology Institute Molecular Genomics 

Core, followed by sequencing on an Illumina platform. The resulting paired-end reads were 
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demultiplexed and aligned to the porcine genome reference (Sus Scrofa 11.1.101), followed by 

gene expression quantification and normalization resulting in a total of 16,279 porcine genes 

being detected in this scRNAseq run, with a median of 5,169 genes detected per cell.  Graph-

based clustering of the cells using the normalized single-cell gene expression profiles identified 

single-cell clusters, which were then evaluated for expression levels of predefined marker genes 

of normal squamous epithelium (TP63) and Barrett’s Metaplasia (KRT7), thus identifying two 

major single-cell cluster groups belonging to either the SQ-like (TP63High & KRT7Low) or BE-

like (KRT7High & TP63Low) spheroids.  

Modeling EphB2 Signaling Activity in the porcine scRNASeq dataset  

We recently extended our InFlo framework to be applicable to assess the activity levels of 

signaling networks using single-cell RNA sequencing data. The scRNASeq-based InFlo 

framework (scInFlo) is designed to take as input normalized single-cell gene expression profiles 

and estimate signaling network activities in individual cells as compared to a specific control 

population of cells. Accordingly, scInFlo was employed to determine EphB2 signaling activity 

in KRT7High & TP63Low (BE-like) cells as compared to KRT7Low & TP63High (SQ-like) cells in 

the porcine scRNASeq dataset described above.  

Assessment of MYC transcriptional activity 

MYC activity levels in individual samples in the bulk RNASeq (human) datasets or individual 

cells in the porcine scRNASeq datasets was estimated using a statistical methodology designed to 

infer activity levels of transcription factors using relative expression levels of the transcription 

factor’s target genes (see Supplementary Methods). Of note, a total of 379 human MYC target 

genes or their porcine homologues were used to quantify MYC activity in individual samples/cells.  
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FIGURE LEGENDS: 

 

Figure 1. EphB2 signaling is hyperactivated in a majority of BE and EACs. 

A, Analysis of RNASeq data derived from normal esophageal squamous (nSQ), Non-Dysplastic 

Stable Barrett’s Metaplasia (NDSBM), and Esophageal Adenocarcinoma (EAC) using the InFlo 

systems biology framework identified hyperactivation of EphB2 signaling in the vast majority of 

NDSBM and EAC when compared to nSQ tissues. Plotted are the distributions of InFlo-derived 

EphB2 signaling activity levels for NDSBM (yellow) and EAC (light red) tissue samples. InFlo-

derived EphB2 activity levels are plotted along the X-axis, with activities associated with nSQ (-

2 to +2) denoted in grey, and hyperactivation (EphB2 High) corresponding to EphB2 Activity 

levels > 2. Pie-charts indicate the percentage of NDSBM (N = 18) and EAC (N = 49) samples 

exhibiting EphB2 hyperactivation (EphB2 High). B, Bar-graphs depict gene expression levels of 

EPHB2 receptor and its associated ligands (EFNB1, EFNB2 and EFNB3) in nSQ, NDSBM and 

EAC primary tissues included in the discovery RNASeq cohort. Y-axis shows the expression 

levels in log2FPKM units within each tissue-type detailing the median ± interquartile range of the 

expression. *** (P < 0.0005) indicates statistical significance of differences in gene expression 

between NDSBM/EAC versus nSQ, estimated using a Student’s t-test assuming unequal 

variances.  C, qPCR analyses of EPHB2 gene expression in an independent cohort of treatment-

naïve primary biopsy tissues consisting of EAC, non-dysplastic Barrett’s metaplasia with no 

longitudinal follow-up (NDBM), Barrett’s esophagus with high grade dysplasia (BE-HGD), as 

compared to nSQ. Normal gastric (GAST) samples were used as additional controls. Y-axis shows 

the fold-changes in EPHB2 gene expression across samples, relative to the median expression in 

SQ cases. Horizontal lines within each tissue-type indicate the median ± interquartile range of 

fold-changes in expression. *** (P < 0.0005) indicates statistical significance of differences in 
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gene expression between NDBM/BE-HGD/EAC versus nSQ, estimated using a Student’s t-test 

assuming unequal variances. D, Representative Immunohistochemistry images in FFPE tissue 

sections demonstrating marked increase in EphB2 protein expression in NDBM, BE-HGD and 

EAC lesions, as compared to nSQ (Scale bar, 100µm). E, Western blot images depicting protein 

levels of EphB2 and its ligands (EFNB1/B2), with β-actin as a loading control, across distinct EAC 

(FLO-1, SKGT4, EsoAd1, OE19, OE33, Eso26), BE-Dysplasia (CP-B, CP-C, CP-D), BM (CP-A) 

and normal SQ (EPC2) cell lines, demonstrating marked increase in EphB2 protein expression in 

near-all BE/EAC cell lines as compared to normal SQ.  Of note, while FLO-1, SKGT4, EsoAd1 

and OE33 lines were derived from esophageal adenocarcinomas in the distal esophagus, OE19 and 

Eso26 were derived from gastro-esophageal junctional cancers.   
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Figure 2. EAC cell growth is dependent on EphB2 signaling.  

A, Assessment of long-term EAC cell colony growth (left) and short-term IncuCyte-based growth 

assessments (right) upon siRNA-based EPHB2 knockdown in representative EAC cell lines 

(SKGT4, OE33). On top are Western blot images depicting EphB2 protein expression 48hrs 

following treatment with either siRNA targeting EPHB2 (EPHB2 siRNA) or non-targeting control 

(Control siRNA). Shown on the left are representative images and bar-graphs of EAC cell colony 

numbers 10-14 days following siRNA treatment, expressed as a fraction of colony counts (CFA-

FC) observed in respective cells treated with Control siRNA. Also shown are IncuCyte-based 

growth assessments over time (X-axis) of EAC cells depicting average fold-change in cell 

confluency values normalized to time zero (Cell confluency-FC), following either EPHB2 siRNA 

or non-targeting Control siRNA treatment. All data are plotted as mean ± SEM, obtained from 

three independent experiments. ** (P < 0.005) and *** (P < 0.0005) indicate significant 

differences in growth assessments at the final timepoint estimated using a Student’s t-test assuming 

unequal variances. B, Assessment of in vitro clonogenicity and in vivo xenograft growth of SKGT4 

(EAC) cells expressing either Doxycycline-inducible EPHB2-targeting or Control shRNA 

constructs. On the left are shown representative images and bar-graphs of colony growth in SKGT4 

cells harboring either EPHB2 shRNA or Control shRNA after 14 days of Doxycycline (Dox) 

treatment. Western blot images depict EphB2 protein expression 48hrs following Dox-treatment. 

Shown on the right are tumor growth kinetics of SKGT4 cells, expressing either Control or EPHB2 

shRNA, in immune-deficient mice fed with Dox-diet (See Methods). Y-axis depicts tumor volume 

in mm3 over time (X-axis) in respective SKGT4 xenografts. Data are plotted as mean ± SEM 

estimated using at least 20 established xenograft tumors at day zero in respective arms. *** (P < 

0.0005) indicates significant differences in tumor volume at the final time-point between 
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respective groups, estimated using a Student’s t-test assuming unequal variances. Western blot 

images depict EphB2 protein expression in representative tumor xenografts harvested after one 

week following Dox-treatment. Also shown are assessments of body weight of mice at the 

beginning and at the end of the study showing no marked differences in body weights of mice in 

either arm over the study duration. At the bottom are shown photographic images of harvested 

tumors from mice at the final time-point in both the EPHB2 shRNA and Control shRNA arms.  
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Figure 3. EphB2 signaling modulates MYC transcriptional activity in BE/EAC.  

A, InFlo-based analysis of whole transcriptome RNASeq performed on EAC (SKGT4) and 

dysplastic-BE (CP-D) cells following siRNA-based knockdown of EPHB2 confirmed significant 

downregulation of EphB2 signaling upon treatment with EPHB2 siRNA when compared to non-

targeting Control siRNA (top). InFlo revealed a marked reduction in the activities of MYC protein 

complexes and their associated transcriptional targets (middle) upon EPHB2 KD in both EAC/BE 

cells. Note the reduction (green) in activity of genes known to be transcriptionally activated by 

MYC, with a concomitant increase (red) in activity of genes known to be transcriptionally 

repressed by MYC. Shown at the bottom are images of qPCR products on agarose gel depicting 

EPHB2 and MYC RNA expression, and Western blot images depicting EphB2 and MYC protein 

levels upon EPHB2 and Control siRNA treatments in both SKGT4 and CP-D cells. Note the 

marked reduction in the levels of MYC protein but not RNA expression upon EPHB2 knockdown 

even in OE33 (EAC) and CP-A (metaplastic BE) cells. B2M and β-actin were used as loading 

controls for qPCR and Western blots, respectively.  B, Bar-graphs depicting MYC transcriptional 

activity assessments (top) using the VIPER framework (See Methods) and MYC gene expression 

levels (bottom) in nSQ, NDSBM and EAC primary tissues included in our discovery RNASeq 

cohort (See Fig. 1A). C, UMAP plots (top) of single-cell RNA sequencing (scRNASeq) data 

generated from the porcine ESMG 3D culture model showing two distinct cellular clusters. 

Individual cells are colored according to their KRT7 (left) and TP63 (right) gene expression, thus 

classifying them into an SQ-like (KRT7Low & TP63High) and BE-like (KRT7High & TP63Low) 

population. The cell cycle phase of individual cells are denoted as circles (G1 phase) or triangles 

(G2M or S phase). The density plots (blue) denote distributions of InFlo-derived EphB2 signaling 

activities (X-axis) in BE-like KRT7High & TP63Low cells belonging to either the G1 (top) or G2M/S 
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(bottom) phases, as compared to respective SQ-like manifolds (red dotted line) defined by 

KRT7Low & TP63High cells of the same cell phase. Bar graphs denote MYC activity and MYC 

expression level comparisons between BE-Like versus SQ-Like cells within the G1 (left) and 

G2M/S (right) populations, respectively. All data are plotted as mean ± SEM, with ** (P < 0.005) 

and *** (P < 0.0005) indicating statistical significance of differences estimated using a Student’s 

t-test assuming unequal variances. 
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Figure 4. MEK inhibition suppresses MYC activity and EAC tumor growth in vivo.  

Assessment of tumor xenograft growth (left) of SKGT4 EAC cells in immune-deficient mice 

treated with COBI, as compared to vehicle control treatments. Y-axis depicts tumor volume in 

mm3 over time (X-axis) in EAC xenografts. Data are plotted as mean ± SEM estimated using at 

least 10 established xenograft tumors at day zero in respective arms per EAC cell line. *** (P < 

0.0005) indicates significant differences in tumor volume at the final time-point between 

respective groups, estimated using a Student’s t-test assuming unequal variances. Western blot 

images (right) depicting protein levels of pharmacodynamic marker, p-ERK, and p-MYC/total 

MYC in representative tumor xenografts harvested after 1 week of treatment with either COBI or 

vehicle control. Note marked reduction of p-ERK, p-MYC, total MYC in COBI treated tumor 

xenografts as compared to vehicle. Bar graphs depict body weight assessments of COBI and 

vehicle treated mice at the beginning and at the end of the study. Photographic images (bottom) of 

harvested tumors from mice demonstrating the differences in tumor size in COBI versus vehicle 

treated mice at the final time-point. 
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