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Abstract:   65 

Microglia have fundamental roles in health and disease, however effects of age, sex and 66 

genetic factors on human microglia have not been fully explored. We applied bulk and single 67 

cell approaches to comprehensively characterize human microglia transcriptomes and their 68 

associations with age, sex and APOE. We identified a novel microglial signature, 69 

characterized its expression in bulk data from 1,306 brain samples across 6 regions and in 70 

single cell microglia transcriptome. We discovered microglial co-expression network 71 

modules associated with age, sex and APOE-ε4 that are enriched for lipid and carbohydrate 72 

metabolism genes. Integrated analyses of modules with single cell transcriptomes revealed 73 

significant overlap between age-associated module genes and both pro-inflammatory and 74 

disease-associated microglial clusters. These modules and clusters harbor known 75 

neurodegenerative disease genes including APOE, PLCG2 and BIN1. These data represent 76 

a well-characterized human microglial transcriptome resource; and highlight age, sex and 77 

APOE-related microglial immunometabolism perturbations with potential relevance in 78 

neurodegeneration.  79 

80 
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Introduction 81 

Microglia are the resident macrophages of the central nervous system (CNS), responsible 82 

for clearance of cellular debris and pathological protein aggregates. In the healthy brain they 83 

exist in a resting state and can be induced to a reactive state in response to changes in the 84 

CNS microenvironment, such as inflammation and neuronal damage1. They are fundamental 85 

to maintaining brain homeostasis during development, aging and disease, therefore 86 

microglial dysfunction could ultimately lead to neurodegeneration2. Microglia are integral to 87 

the pathophysiology of neurodegenerative diseases, including Alzheimer’s disease (AD) and 88 

multiple sclerosis, with chronic inflammation implicated as a contributing factor3-5. 89 

Fresh human brain tissue studies are imperative to the characterization of the microglial 90 

transcriptome in health and disease; however, accessibility is limited. Although single nuclei 91 

studies using frozen tissue provide an easier alternative, recent studies have demonstrated 92 

limitations in  detecting substantial populations of less abundant cell types6,7. Additionally, it 93 

was recently reported that many microglial activation genes are expressed in the cytosol and 94 

therefore are likely to be missed by single nuclei RNA sequencing (snRNAseq)8. Recent 95 

single cell studies aiming to characterize microglial gene expression using fresh tissue have 96 

highlighted the heterogeneity in microglial phenotypes9-11. This has revealed that phenotypic 97 

changes are not binary but rather a spectrum of states in which microglia can simultaneously 98 

co-exist during transition from resting to more reactive states. Additionally, these different 99 

subsets could have specialized functions in brain homeostasis and dysfunction. Thus, it is 100 

increasingly important to characterize these heterogeneous subpopulations to understand 101 

their roles in health and disease. This could also help facilitate the design of novel 102 

therapeutic approaches to target specific subpopulations of cells and modulate their activity2.  103 

Microglial expression has been shown to be affected by aging12,13, however few studies have 104 

investigated the effects of sex and genetic factors on human microglia. Sex differences in 105 

microglia have been previously reported in mice, with females being predisposed to 106 

harboring more activated microglia than males14-16. APOE, a lipoprotein of which the ε4 allele 107 
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(APOE-ε4) is a major risk factor for AD and also implicated in other neurodegenerative 108 

diseases17, is upregulated in disease-associated microglia (DAM) in mice and humans, but 109 

downregulated in astrocyte and oligodendrocyte subpopulations4,6,18,19. In microglia and 110 

neurons, APOE interacts with LDL receptors to facilitate endocytosis of cholesterol and 111 

phospholipids and modulate lipid homeostasis in the brain20. Such studies provide growing 112 

support for cell type-specific functions of APOE, however, its effects on microglia remain to 113 

be fully elucidated. Thereby identifying age, sex and APOE-associated pathways in 114 

microglia will provide greater insight into the functions of specific microglial subsets in 115 

relation to these risk factors. Inter-individual variability and diversity in functional states 116 

makes targeting specific microglial subsets in disease challenging for modulating these 117 

cells2. Identifying the mechanisms regulating microglial homeostasis and activation can allow 118 

us to manipulate these cells for therapeutic purposes.  119 

In this study, we leveraged both bulk and single cell approaches to provide a comprehensive 120 

characterization of the adult human microglial transcriptome. We obtained fresh 121 

intraoperative neurosurgical brain tissue and isolated an enriched population of microglial 122 

cells to investigate transcriptional changes associated with age, sex and APOE-ε4 in bulk 123 

microglia and further explored these in single microglial cells. Our findings support age-, sex- 124 

and APOE-related microglial transcriptome changes involving lipid and carbohydrate 125 

metabolic pathways and implicate microglial immunometabolism perturbations relevant to 126 

neurodegenerative diseases.  127 

128 
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Methods 129 

Patient Samples 130 

Fresh human brain tissue was obtained from patients undergoing neurosurgical procedures 131 

for epilepsy or tumor resection. Tissues determined to be grossly unaffected by the primary 132 

disease process were utilized for the present study (Supplementary Figure 1). Patient 133 

samples were transported from the operating room to the laboratory in 1X DPBS 134 

(Thermofisher; 14287080) for processing within 1-2 hours of resection. Human tissue was 135 

collected with informed consent prior to surgery and all procedures were approved by the 136 

Mayo Clinic Institutional Review Board and are HIPAA compliant.  137 

Tissue Dissociation 138 

Tissue was dissected to remove necrotic tissue, white matter and excess vascular tissue, to 139 

retain only cortical grey matter. The remaining tissue was cut into sagittal slices and weighed 140 

before being processed using the Adult Brain Dissociation Kit (Miltenyi; 130-107-677) as per 141 

the manufacturer’s protocol. Debris removal (Miltenyi; 130-109-398) and red blood cell lysis 142 

(Miltenyi; 130-094-183) were also performed. All procedures were carried out on ice. The 143 

resulting homogenate was filtered through a 70µm filter before proceeding.  144 

Magnetic-Activated Cell Sorting (MACS) 145 

The cell suspension was incubated with anti-CD11b microbeads (Miltenyi; 130-049-601 146 

clone M1/70) for 15 minutes according to manufacturer’s recommendation. This was then 147 

washed with PB buffer (0.5% BSA, 1X PBS Ca2+/Mg2+ free pH 7.4) and filtered through a 148 

70µm cell strainer before being applied to a large separation column (Miltenyi; 130-042-401) 149 

in a QuadroMACS separator magnet (Miltenyi; 130-090-976). The CD11b+ fraction was 150 

collected and resuspended in sterile filtered FACS staining buffer (1X PBS Ca2+/Mg2+ free, 151 

0.5% BSA, 2% FBS, 3mM EDTA) for antibody staining.  152 

Fluorescence-Activated Cell Sorting (FACS) 153 
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The CD11b+ fraction was incubated in Human TruStain FcX blocking solution (1:20, 154 

Biolegend; 422302) at room temperature for 10 minutes. Subsequently, cells were stained 155 

with anti-CD11b PE/Cy7 (1:100, Biolegend; 101206, M1/70) and anti-CD45 Alexa Fluor 647 156 

(1:100, Biolegend; 304056, HI30) antibodies for 30 minutes on ice. Following two washes 157 

with FACS staining buffer, SYTOX Green viability dye (1:1000, ThermoFisher; S7020) was 158 

added for an additional 20 minutes. Single cell suspensions were filtered through a 40µm 159 

cell strainer (Falcon; 352235) before sorting on a BD FACS Aria II (BD Biosciences). 160 

CD11b+/CD45intermediate/SYTOX green- cells were sorted directly into FACS staining buffer. An 161 

example of our FACS gating strategy is provided in Supplementary Figure S2a. 162 

RNA Isolation and Sequencing 163 

RNA from sorted microglial cells was isolated using the miRNeasy Serum/Plasma Kit 164 

(QIAGEN; 217184) and quantified on the Agilent BioAnalyzer 2100. cDNA libraries were 165 

generated using SMARTSeq2 v4 and Nextera Low Input Library Prep Kit. Samples were 166 

multiplexed and sequenced on the Illumina HiSeq 4000.   167 

RNA from frozen bulk tissue was isolated using Trizol and chloroform, followed by DNase 168 

and clean up using the RNeasy Kit (QIAGEN; 74106). Libraries were generated using the 169 

TruSeq Stranded mRNA Library Prep Kit. Samples were multiplexed and sequenced on the 170 

Illumina HiSeq 4000. Base-calling of all sequence data was performed using Illumina’s RTA 171 

v2.7.7. 172 

10X Single Cell 3’ v3 Library Preparation of Sorted Microglia 173 

Viability of MACS plus FACS sorted cells was assessed by Trypan blue (Gibco; 15250061) 174 

exclusion and cell density was determined using a hemocytometer prior to adjustment to 175 

target 4000-5000 cells. Cells were loaded onto a 10X Chromium chip and run on the 176 

GemCode Single Cell Instrument (10X Genomics) to generate single cell gel beads-in-177 

emulsion (GEMs). Single cell RNA-seq libraries were prepared using the Chromium Single 178 

Cell 3’ Gel Bead and Library Kit v2 and v3 (10X Genomics; 120237) and the Chromium i7 179 
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Multiplex Kit (10X Genomics; 120262) according to the manufacturer’s instructions. Quality 180 

of cDNA libraries was determined using a BioAnalyzer 2100 DNA High Sensitivity assay 181 

(Agilent; 5067-4626) prior to sequencing one per lane on an Illumina HiSeq 4000. 182 

Validation with Quantitative Real-Time PCR 183 

Total RNA was extracted from sorted cells using the miRNeasy Serum/Plasma Kit (QIAGEN; 184 

217184). Concentration and quality were assessed using the Agilent BioAnalyzer RNA 6000 185 

Pico Kit (Agilent; 5067-1514). RNA was normalized to 0.5ng/µl for cDNA synthesis using the 186 

SuperScript IV VILO Master Mix (ThermoFisher; 11756050). TaqMan PreAmp Master Mix 187 

(ThermoFisher; 4391128) was used to pre-amplify the cDNA, followed by TaqMan Universal 188 

PCR Master Mix (ThermoFisher; 4304437) with the following gene expression probes: MOG, 189 

AQP4, THY1, PTPRC, ITGAM, P2RY12, PECAM1, CD34, GAPDH (ThermoFisher; 190 

Hs01555268_m1, Hs00242342_m1, Hs00174816_m1, Hs04189704_m1, Hs00355885_m1, 191 

Hs00224470_m1, Hs01065279_m1, Hs02576480_m1, Hs99999905_m1). RT-qPCR was 192 

performed on a QuantStudio 7 Flex Real-Time PCR System (ThermoFisher) using a relative 193 

standard curve to quantify gene expression.  194 

Validation with Immunocytochemistry 195 

Cultured cells were fixed with 4% paraformaldehyde (PFA) overnight at 4°C and blocked 196 

with blocking solution (10% BSA, 5% normal goat serum and 0.1% Triton-X). Fixed cells 197 

were stained with anti-TMEM119 (1:100, Biolegend; 853302) extracellular primary antibody 198 

with Goat anti-mouse IgG secondary antibody conjugated to Alexa-488 (1:100, Abcam; 199 

ab150113). Nuclei were stained with 1µg/ml DAPI (1:1000, ThermoFisher; 62248) before 200 

mounting with AquaPoly Mount (Poly Sciences, 18606-20). Images were acquired with a 201 

Zeiss LSM880 Confocal microscope using a Plan-Apochromat 20x magnification and 0.8 202 

objective at 1024 by 1024 pixels with a 0.5 microsecond pixel dwell time. 203 

Data Analysis 204 

Bulk Microglia RNA-seq Processing 205 
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The MAPR-Seq pipeline21 was used to align reads to human reference genome hg38 using 206 

STAR22 and count reads using featureCounts23. FastQC was used for quality control (QC) of 207 

raw sequence reads, and RSeQC was used for QC of mapped reads. Quality measures 208 

were examined including base calling quality, GC content, mapping statistics and sex check 209 

to ensure consistency between the recorded and inferred sex from expression of 210 

chromosome Y genes. Raw read counts were normalized using Conditional Quantile 211 

Normalization (CQN) to generate log2 scaled expression values via the Bioconductor 212 

package cqn, accounting for sequencing depth, gene length and GC content. Normalized 213 

CQN expression values were assessed using Principal components analysis (PCA) to 214 

identify and remove outliers, defined as greater than 4 standard deviations from the mean of 215 

the first two principal components. In addition, RPKM (reads per kilo bases per million) 216 

values were calculated. 217 

Identification of a Core Microglial Signature from Bulk Microglia Data 218 

To define a core microglial signature, we compared our bulk microglia data to AMP-AD bulk 219 

tissue transcriptome data from 7 different datasets representing 6 brain regions (Synapse 220 

ID: syn2580853); Mayo Clinic24 (cerebellum and superior temporal gyrus), Mount Sinai Brain 221 

Bank25 BM10 (frontal pole), BM22 (superior temporal gyrus), BM36 (parahippocampal 222 

gyrus), BM44 (inferior frontal gyrus) and Rush University Religious Order Study-Memory and 223 

Aging Project (ROS-MAP)26 (dorsolateral prefrontal cortex). Raw gene counts and metadata 224 

(see Acknowledgements) were obtained from the AMP-AD RNAseq Harmonization study 225 

which had performed alignment and processing of all datasets and brain regions through a 226 

consensus pipeline27. Samples were removed that had inconsistent sex between that 227 

indicated in metadata and that inferred from RNAseq expression; a RIN < 5; were identified 228 

as gene expression outliers based on principal component analysis (PCA) (> 4 standard 229 

deviation (SD) from mean PC1 or PC2), or missing metadata. In addition, duplicates (lowest 230 

read count sample removed) and those with rRNA (>5%) were removed from the MSBB 231 

datasets. Furthermore, samples not meeting neuropathological criteria as Alzheimer’s 232 
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disease (AD)28 or control were excluded. Raw read counts were normalized using 233 

Conditional Quantile Normalization (CQN). Log2 fold change and q-values between each 234 

bulk tissue brain region and the bulk microglia profiles were calculated for each gene via 235 

linear regression using log2(RPKM) without correction for covariates. Genes were filtered 236 

using a cutoff of 4-fold greater expression in bulk microglia compared to each bulk tissue 237 

region and q < 0.05. Genes that passed these criteria and were significant in comparisons 238 

with all 7 bulk brain datasets determined the microglial signature. These signature genes 239 

were assessed for GO term enrichment with biological pathways using MSigDB. REViGO29 240 

tree plots were generated in R using GO terms obtained from MSigDB. 241 

Weighted Gene Co-Expression Network Analysis 242 

The CQN normalized expression values from bulk microglia were input to R WGCNA30 243 

package v1.69. This analysis included 14,149 expressed genes, i.e. median(CQN) > 2. 244 

Modules were identified, their eigengenes were calculated and merged if correlation of 245 

eigengenes > 0.7. Genes in the 40 modules identified were tested for GO term enrichment 246 

via WGCNA. Module membership (MM) for each gene was calculated as the correlation 247 

between expression of each gene and its module eigengene. Genes with MM > 0.7 are 248 

considered the hub genes for the network. Gene co-expression network plots were 249 

generated in Cytoscape v3.8 (http://www.cytoscape.org/). Each module eigengene was 250 

tested for association with age, sex and APOE using Pearson correlation. Co-expression 251 

network genes were annotated if they were significantly associated (p < 0.05) with the tested 252 

trait.  253 

Over-Representation and Correlation Analyses 254 

Hypergeometric testing was performed in R to determine the enrichment of a select set of 255 

genes in previously reported signatures, bulk tissue expressed genes, WGCNA modules or 256 

10X single cell clusters. Correlation between bulk tissue and bulk microglial normalized CQN 257 

data was calculated using Spearman’s rank correlation. Concordant and discordantly 258 

correlated genes were determined using the upper and lower quartiles from each dataset.  259 
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Single Cell Data Analysis 260 

For single cell RNA samples, 10X Genomics Cell Ranger Single Cell Software Suite v3.1.031 261 

was used to demultiplex raw base call files generated from the sequencer into FASTQ files. 262 

Raw reads were aligned to human genome build GRCh38. Reads aligned to gene transcript 263 

locus were counted to generate raw UMI counts per gene per barcode for each sample. The 264 

raw UMI matrices were filtered to only keep barcodes with > 500 UMIs and those that were 265 

called a cell by Cell Ranger’s cell calling algorithm.  266 

Quality control, normalization, clustering and marker gene identification were performed with 267 

Seurat v332, followed by annotation of clusters using established cell type markers. We kept 268 

1) barcodes with > 10% of UMI mapped to mitochondrial genome; 2) barcodes with < 400 or 269 

> 8000 detected genes; 3) barcodes with < 500 or > 46,425 mapped UMIs; 4) genes that are 270 

detected in < 5 cells. These thresholds were determined by UMI or gene distribution to 271 

identify undetectable genes and outlier barcodes that may encode background, damaged or 272 

multiple cells. UMI counts of remaining cells and genes were normalized using 273 

NormalizeData function, which gave natural log transformed expression adjusted for total 274 

UMI counts in each cell. The top 2000 genes whose normalized expression varied the most 275 

across cells were identified through FindVariableFeatures function with default parameters. 276 

Using those genes, cells from 6 samples were integrated using functions 277 

FindIntegrationAnchors and IntegrateData with default parameters. Principal components 278 

(PCs) of the integrated and scaled data were computed; and the first 31 PCs, which 279 

accounted for > 95% variance, were used in clustering cells. Cell clustering was performed 280 

using FindNeighbors and FindClusters with default parameters. Marker genes were 281 

identified in each cluster using FindMarkers in Seurat. Marker genes on one cluster must 1) 282 

be present in > 20% cells in the cluster; 2) the log(fold change) between expression in the 283 

cluster and other clusters must be > 0.25; 3) the rank sum test p-value (Bonferroni-adjusted) 284 

between cells in the cluster and cells in other clusters < 0.05. 285 

286 
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Results 287 

To uncover microglial transcriptional profiles and their associations with age, sex and APOE, 288 

we performed microglial cell-type specific and single cell RNA sequencing (scRNAseq) 289 

studies in fresh human brain tissue. We isolated CD11b+ microglial cell populations from 290 

neurosurgical tissue unaffected by the primary disease process (Supplementary Figure S1) 291 

and obtained from 19 human donors for bulk microglia RNA sequencing (RNAseq) (Figure 292 

1a). Subsets of these and additional samples also underwent 10x scRNAseq (n=5) and bulk 293 

tissue RNAseq (n=9) (Supplementary Table S1). Validation of sorted microglia using qPCR 294 

showed the expected CD11b+/CD45intermediate/P2RY12+ microglial signature2 with no 295 

expression of other cell type markers, indicating that we isolated a highly enriched microglial 296 

population (Supplementary Figure S2).  297 

Identification of a core human microglial transcriptional signature   298 

To define a core human microglial signature, we calculated log2 fold change and q-values of 299 

differential expression for each gene between bulk microglia RNAseq data in our study and 300 

bulk brain RNAseq data from 7 AMP-AD datasets provided by Mayo Clinic24, Mount Sinai 301 

Brain Bank25 and Rush University Religious Orders Study and Memory and Aging Project 302 

(ROS-MAP)26 representing 6 brain regions from 515 human samples. Using a cutoff of 4-fold 303 

greater expression in our bulk microglia and a q-value threshold of 0.05, we identified 1,971 304 

genes (Supplementary Tables S2-4). These genes were expressed at significantly greater 305 

levels in our bulk microglial transcriptome data in comparison to each of the bulk brain 306 

transcriptome datasets. Therefore, we considered these 1,971 genes as the core microglial 307 

signature in our dataset. This signature comprises several known marker genes, with 12.7% 308 

of the genes being BRETIGEA33 microglial genes, suggesting that it also likely harbors novel 309 

microglial markers of interest. GO enrichment using MSigDB showed that this signature was 310 

enriched for genes involved in immune-related and inflammatory response pathways as 311 

would be expected, and leukocyte mediated immunity (Figure 1b).  312 
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To determine the ability of bulk brain tissue data to capture microglial genes, we assessed 313 

the expression levels of our microglial signature genes in each of the 7 AMP-AD bulk brain 314 

RNAseq datasets. Of the 1,971 microglial signature genes in our study, 37-47% were 315 

captured in these bulk brain datasets, with least numbers captured in MSSM superior 316 

temporal gyrus and most numbers in Mayo Clinic cerebellum (Supplementary Figure S3a-317 

b). Our microglial signature genes comprised 3.6-4.5% of the expressed bulk brain 318 

transcriptome, consistent with prior estimations6,34. We next compared bulk microglia 319 

RNAseq transcript levels to that obtained from bulk tissue RNAseq of neurosurgical fresh 320 

brain tissue samples. Bulk fresh brain tissue does not capture all microglial marker genes, 321 

as demonstrated by the low correlation between bulk tissue and bulk microglia data 322 

(Supplementary Figure S3c). This reiterates the need for complementary single cell type 323 

data to deconvolute cell type specific expression. We provide the list of microglial signature 324 

genes that are also expressed at high levels in bulk brain tissue data (Supplementary 325 

Table S5), which can serve as a validated resource for microglial signature gene markers in 326 

bulk RNAseq datasets.  327 

To determine how the microglial signature in this study compared to previously published 328 

signatures, we performed hypergeometric tests of overrepresentation with Galatro, et al. 12, 329 

Gosselin, et al. 35 and Olah, et al. 13 studies. Significant overlap was observed across all 330 

datasets, with 350 genes common to all datasets (Figure 1c-d, Supplementary Table S4). 331 

This comprised several established microglial marker genes, including P2RY12, TMEM119 332 

and CX3CR1. The most significant overlap was shared with Gosselin, et al. 35 signature 333 

[OR=19.6 (17.0-Inf) p=3.8E-261], where 49.7% of their genes were also present in our 334 

signature, and 22% of ours in their signature. Gosselin, et al. 35 samples were also obtained 335 

from neurosurgical tissue resections like our cohort; and are unlike Galatro, et al. 12 and 336 

Olah, et al. 13 samples that were harvested during autopsy. Although there appears to be a 337 

common set of microglial genes consistent across signatures, each also harbors many 338 

unique genes, which could be due to study or individual specific differences.    339 
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Transcriptional profiling of microglia discovers co-expression networks and 340 

implicates lipid and carbohydrate metabolism pathways associated with age, sex and 341 

APOE  342 

We generated gene co-expression networks using WGCNA30 to reduce number of tests and 343 

increase power to detect genetic associations with age, sex and APOE. We identified 7 344 

modules with significant associations (Figure 2; Supplementary Figure S4; 345 

Supplementary Table S6). Modules ME14 and ME34 associated with age, however, in 346 

opposite directions. ME14 was enriched for genes involved in the lipid localization pathway 347 

that were upregulated with age (R=0.50, p=0.03) (Figure 2a-c). ME34, enriched for DNA 348 

endoreduplication genes, had negative association with both age (R=-0.55, p=0.01) and 349 

APOE-ε4 (R=-0.50, p=0.03), indicating that microglial transcripts involved in this pathway are 350 

downregulated with aging and in APOE-ε4 carriers (Figure 2a). Several other modules also 351 

associated with APOE-ε4, in either direction. The only module associated with sex was 352 

ME26, which was downregulated in females (R=-0.54, p=0.02), and enriched for genes 353 

involved in cholesterol absorption and lipid digestion. This module also had the most 354 

significant association with APOE, in the positive direction with presence of APOE-ε4 355 

(R=0.66, p=0.002) (Figure 2a,b,e). Of the APOE associated modules, ME23 had the second 356 

most significant association (R=-0.61, p=0.006) and was enriched for carbohydrate 357 

metabolism genes (Figure 2a,b,d). Given recent discoveries in microglial 358 

immunometabolism36-39, we focused on ME14, ME23 and ME26 that are enriched for lipid 359 

and carbohydrate metabolism genes.  360 

ME14 co-expression network (Figure 2c) hub genes NPC2, MSR1 and PLAU are also 361 

microglial signature genes in our study and known to be involved in microglial functions40-362 

44,45. Several disease-associated microglial (DAM) markers are also present in this network, 363 

including CD9, ARAP2 and MYO1E4,46,47 that are increased with aging, implicating activated 364 

microglial lipid localization pathways in aging (Figure 2f). Several genes in this module were 365 

also previously linked to neurodegeneration, including MYO1E48,49, CTSL50 and UNC5B51,52.  366 
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Our microglial signature (Supplementary Tables S2-S4) had significant overrepresentation 367 

of the age-associated ME14 genes (Supplementary Table S6) (OR=1.55 [95% CI=1.23-368 

INF], p=0.001), highlighting age-related increases in microglial signature genes. Galatro, et 369 

al. 12 and Olah, et al. 13 also reported age-related microglial signatures. Comparison of ME14 370 

genes revealed significant overlap with Olah, et al. 13 (OR=1.34 [95% CI=1.05-INF] p=0.03), 371 

but not with Galatro, et al. 12 microglial aging signature genes.  372 

ME26 cholesterol metabolism pathway genes exhibited reduced expression in males and 373 

were elevated in APOE-ε4 carriers (Figure 2a,b). This module contains known microglial 374 

genes LDLR, CD36 and CRIP1 (Figure 2e,f). Assessment of individual ME26 network 375 

genes revealed C17orf49, RP11-589P10.7 and MIR497HG to be the only microglial 376 

signature genes in this network to be associated with both sex and APOE (Figure 2e). Other 377 

microglial signature genes in ME26 associated with only sex or only APOE, suggesting that 378 

these traits may have independent effects on expression of some microglial genes. Several 379 

APOE-associated genes in ME26 were previously implicated in AD, including CASP753,54 380 

and LDLR55,56 (Figure 2f).  381 

Carbohydrate metabolism gene enriched module ME23 is downregulated in APOE-ε4 382 

carriers (Figure 2a,b,d). AD risk genes BIN157 and PLCG258 are present in this network, 383 

which have both been implicated in microglial dysfunction in neurodegeneration (Figure 2d).  384 

Single cell transcriptome reveals specific subtypes of microglia 385 

To uncover distinct microglial subtypes, a subset of sorted microglial samples from 386 

neurosurgical brain tissue underwent single cell expression profiling. We obtained 26,558 387 

cells from 5 unique individuals, including one individual who underwent epilepsy surgery and 388 

had samples from two brain regions (Supplementary Table S1). Analysis of the scRNAseq 389 

data from these samples revealed 13 distinct cell clusters which were annotated using 390 

established microglial marker genes from the literature4,6,9-11,47,59,60 (Figure 3a, 391 

Supplementary Table S7). Myeloid markers (AIF1, PTPRC, C1QA) were detected in all 392 

clusters except cluster 12 which expressed oligodendrocyte markers (PLP1, MBP, MOBP). 393 
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Cluster 9 expressed macrophage-specific markers (VCAN, FCN1, CRIP1, S100A8). These 394 

two clusters comprised only <3% of all cells, indicating that our sorted samples represent a 395 

very pure microglial population. Each myeloid cluster had cellular contributions from all 396 

samples, albeit with some variability in their proportions, likely due to intrinsic differences 397 

between individuals (Figure 3b, Supplementary Table S8). Samples from two brain regions 398 

obtained from the same individual undergoing epilepsy surgery revealed similar cellular 399 

contributions in each cluster (Supplementary Table S8). For these samples, the most 400 

marked difference was observed for macrophages (cluster 9) and homeostatic microglia 401 

(cluster 2), which had greater contributions from the mesiotemporal and anterior temporal 402 

regions, respectively. This could be due to the proximity of the mesiotemporal sample to the 403 

disease-affected region.   404 

We characterized the microglial clusters by their expression of established microglial 405 

subtype markers (Figure 3c, Supplementary Figure S5) and their most significant marker 406 

genes (Supplementary Figure S6). Homeostatic (TMEM119, P2RY12, CX3CR1)10,11,47,60, 407 

pro-inflammatory (CCL2, CCL4, EGR2)10,11 and DAM markers (APOE, C1QA, C1QB)4,9,11,18 408 

were observed in clusters 2, 1/6 and 10, respectively. Cluster marker genes are defined as 409 

those expressed in at least 70% of the cells in the cluster with log fold change > 0.6 and q < 410 

0.05 in comparison to all other clusters. Expression levels of the top marker genes per 411 

cluster are shown (Figure 3c; Supplementary Figure S6; Supplementary Table S9). Most 412 

of these markers are distinct to a single cluster, although some clusters appeared to have 413 

similarities in their marker expressions. To define the proximity of their transcriptional 414 

profiles, we performed hierarchical clustering of the microglial clusters (Figure 3d). We 415 

determined that the homeostatic microglia cluster 2 was transcriptionally closest to clusters 7 416 

and 11, which may represent subtypes of homeostatic microglia. Clusters 1 and 6 both 417 

expressed chemokines CCL2 and CCL4 representative of pro-inflammatory microglia, 418 

however cluster 6 was more closely related to DAM, whereas cluster 1 represented a more 419 

distinct microglial signature. Cluster 6 highly expressed interferon-related marker IFITM3 420 
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and ISG15, also observed in a cluster by Olah et al (2020)9, which they defined as an 421 

interferon response-enriched subset. These findings highlight different transcriptional profiles 422 

for the two pro-inflammatory microglial clusters that may represent distinct activated 423 

microglia subtypes. Cluster 3 highly expressed heat shock protein HSPA1A, an immediate 424 

early gene61 reportedly involved in antigen processing62 and exhibiting decreased gene 425 

expression in multiple sclerosis patients63,64. These proteins are involved in the stress 426 

response. Several were upregulated in this cluster, suggesting that this cluster may 427 

represent cells that underwent dissociation-induced stress11. Six of the clusters could not be 428 

annotated based on existing cell type markers. Clusters 5/8 and 0/4 were transcriptionally 429 

closest to one another (Figure 3d). Cluster 5 has distinct expression of immunoreactive 430 

marker CD163, which was not observed in other subsets except macrophages. Several HLA 431 

genes are also highly expressed in this cluster. Our findings highlight transcriptional profiles 432 

for known microglial clusters, describe the transcriptional proximity of these clusters and 433 

suggest that less well-defined clusters could potentially represent novel or intermediate 434 

transcriptional states of microglia.  435 

To determine whether the bulk microglial co-expression networks (Figure 2a,c-e, 436 

Supplementary Figure S4) were representative of microglial subtypes, we performed 437 

enrichment analyses of the module genes within the myeloid clusters with sufficient cell 438 

numbers (Figure 3e). Age-associated co-expression network ME14, implicated in lipid 439 

metabolism, was significantly enriched in pro-inflammatory (cluster 6) and DAM (cluster 10) 440 

clusters. Genes within module 28, which was significantly upregulated with APOE-ε4, had 441 

statistically significant enrichment in all clusters except cluster 7. There was no statistically 442 

significant enrichment for any of the other microglial modules that had significant age, sex or 443 

APOE associations, suggesting that these factors may have ubiquitous effects on most 444 

microglial subtypes. Some of the remaining microglial co-expression networks had distinct 445 

patterns of cluster enrichment (Supplementary Figure S7), suggesting that some but not all 446 

networks could be representative of distinct microglial subtypes.   447 

448 
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Discussion   449 

Given their critical functions in maintaining homeostasis in the central nervous system (CNS) 450 

in health and their multifaceted roles during neurological diseases2,3, understanding the 451 

biology of microglia and characterizing microglial subtypes is essential. Large scale studies 452 

in bulk brain tissue24-26 have been instrumental in establishing transcriptional profiles in 453 

health and neurodegenerative diseases. Although these studies yielded information on brain 454 

expression signatures and uncovered perturbed pathways and molecules implicated in 455 

Alzheimer’s disease and other neurological disorders65-68, they are limited in their ability to 456 

provide cell-type specific transcriptional outcomes, especially for less abundant CNS cells 457 

such as microglia34. Analytic deconvolution approaches began to leverage these bulk tissue 458 

transcriptome datasets to estimate cell-type specific expression profiles33,34, but the accuracy 459 

of these methods relies on the availability of high quality single cell-type datasets. Such 460 

microglia-specific transcriptome datasets are gradually emerging9,12,13,35, although the 461 

numbers of unique samples assessed remain limited given the arduous nature of collecting 462 

fresh human brain tissue. Additionally, comparative assessment of bulk brain vs. single cell-463 

type bulk microglia vs. single-cell microglia studies are still rare9,69,70. To our knowledge there 464 

are no studies that evaluate human microglial transcriptome using all three approaches, as 465 

in our study. Further, investigations on effects of genetic and other factors on microglial 466 

transcriptional signatures in humans is likewise sparse, with the exception of age-related 467 

effects assessed in a few studies12,13,35. Finally, unlike in bulk tissue studies33,65-68, microglia-468 

specific co-expression networks, their molecular signatures and functional implications have 469 

not been evaluated.  470 

In this study, we sought to overcome these knowledge gaps by characterizing the 471 

transcriptome of sorted bulk and single-cell microglial populations isolated from fresh human 472 

brain tissue. We identified a robust microglial signature comprising 1,971 genes enriched for 473 

immune-related functions. These signature genes were selected due to their consistently 474 

higher expression levels in our sorted bulk microglial transcriptome in comparison to 7 475 
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different bulk brain tissue datasets from 6 different regions24-26. We also compared sorted 476 

bulk microglia to bulk fresh brain tissue and identified transcripts that are expressed in both. 477 

The microglial signature genes that are also reliably detected in bulk brain tissue represent a 478 

validated list of microglial markers that can be utilized in bulk brain tissue transcriptome 479 

analytic deconvolution studies33,34.  480 

Our microglial signature significantly overlapped with other signatures from bulk microglia 481 

previously reported by Galatro, et al. 12, Gosselin, et al. 35 and Olah et al.13, implicating a 482 

core set of genes consistently expressed in this cell type. However, there were additional 483 

genes unique to each signature, likely to be driven by factors such as patient demographics 484 

or study differences. Galatro, et al. 12 and Olah et al.13 both also reported age-related 485 

microglial expression signatures. We found significant overlap of our age-associated 486 

microglial gene expression module ME14 genes with the latter, which was also enriched for 487 

our microglial signature, This indicates that bulk microglial profiles can effectively capture 488 

genes affected by aging in microglia.  489 

We leveraged the co-expression network structure of sorted bulk microglia to further explore 490 

whether microglial subsets were associated with age, sex or APOE-ε4. To our knowledge 491 

sex-differences in microglial transcriptome were previously studied only in mice14-16, however 492 

APOE genotype-specific microglial interactions with amyloid plaques have been previously 493 

observed in mice15,71 and humans72. We identified two network modules associated with age, 494 

one with sex and six with APOE-ε4. We observed that two modules, ME14 that is positively 495 

associated with increased age; and ME26 that is positively associated with both APOE-ε4 496 

and female sex, were both enriched for lipid metabolism biological terms36-38. Module ME14 497 

included genes involved in lipid localization and storage pathways (PLIN2, IL6, LPL, MSR1, 498 

ENPP1, PPARG, PTPN2, SOAT1, IKBKE) and ME26 had lipid digestion/cholesterol 499 

transport pathway genes (CD36, LDLR). Both modules harbored known microglial genes 500 

(LDLR, CD36, CRIP1, NPC2, MSR1, PLAU) and those that are included in our microglial 501 

signature (PLIN2, IL6, MSR1, SOAT1, IKBKE, NPC2, PLAU).  502 
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Comparing the sorted bulk microglial network modules to scRNAseq microglial clusters, we 503 

determined that ME14 genes were significantly over-represented in pro-inflammatory cluster 504 

6 and disease-associated microglia (DAM) cluster 10. In our study, DAM cluster 10 included 505 

APOE, APOC1, ASAH1 and CTSD. Of these APOE17,37,73, APOC1 and ASAH174 are 506 

involved in lipid metabolism and neurodegenerative diseases. APOE4,5,18, APOC118 and 507 

CTSD4 were also signature genes in mouse models of neurodegenerative diseases4,5 or 508 

aging18. Our pro-inflammatory cluster 6 also included genes associated with mice microglial 509 

neurodegenerative (FTH14) or aging signatures (CCL418), as well as IFITM338, GOLGA438, 510 

previously shown to be upregulated in aging lipid droplet accumulating microglia38. Our 511 

findings that integrate human sorted bulk RNAseq and scRNAseq data, support a model 512 

where aging human microglia transition to a pro-inflammatory and disease-associated 513 

transcriptional profile which is also associated with perturbations in lipid metabolism in these 514 

cells.  515 

There is increasing evidence that tightly controlled lipid metabolism is essential to the 516 

functions of microglia during development and homeostatic functions of adulthood and may 517 

be disrupted in aging and disease36,37. The complex interactions between microglial lipid 518 

metabolism and its cellular functions rely on lipid sensing by microglial receptors such as 519 

CD36 and TREM2 and uptake of lipids, including LDL and APOE36,37. These interactions are 520 

necessary for microglia to become activated and perform functions including phagocytosis of 521 

myelin75 and misfolded proteins like amyloid ß76, cytokine release, migration and 522 

proliferation36,39. Studies primarily focused on in vitro and animal models suggest disruption 523 

of the microglial immunometabolism and assumption of a pro-inflammatory phenotype with 524 

aging18,38,77,78 and diseases including multiple sclerosis (MS) and Alzheimer’s disease4,5,79. 525 

Interestingly, microglial lipid droplet accumulation has been demonstrated under all these 526 

conditions36-38,75 and lipid droplet accumulating microglia in aging mice were shown to have a 527 

unique transcriptional state38. Our findings in sorted cells from fresh human brain tissue 528 

provide transcriptional evidence for immunometabolism changes and pro-inflammatory 529 
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phenotype with microglial aging, thereby contributing essential complementary data from 530 

humans for this cell type.   531 

Besides module ME14, we determined that ME26 is also enriched for lipid metabolism 532 

genes. ME26 module expression is higher in both APOE-ε4 and female sex, however we 533 

note that in our sorted bulk microglia RNAseq samples, there were no male APOE-ε4 534 

carriers. Therefore, the distinct influence of sex and APOE on the expression of this module 535 

remains to be established. APOE-ε4, a major risk factor for Alzheimer’s disease, has the 536 

lowest lipid binding efficiency compared with other APOE isoforms36. Increased cholesterol 537 

accumulation has been reported in both iPSC-driven astrocytes from APOE-ε4 carriers80 and 538 

also in Apoe-deficient microglia75. These findings collectively support a role for APOE-ε4 539 

associated microglial transcriptional changes and disrupted cholesterol metabolism. Using 540 

our sorted microglia RNAseq data, we identified five additional modules that associate with 541 

APOE-ε4, one in a positive direction (ME28) and four negatively (ME4, ME23, ME34, 542 

ME36). Of these, module ME23 had the second most significant APOE-ε4 association after 543 

ME26. Interestingly, ME23 was enriched for carbohydrate metabolism biological processes, 544 

which are also tightly regulated in microglia39. Module ME23 harbors known AD risk genes 545 

BIN1 and PLCG2, where the latter is a microglial gene that modulates signaling through 546 

TREM281 and also a hub gene in this module. ME23 genes BIN1, JUN and TGFBR2 were 547 

found to be reduced in a mouse microglial neurodegenerative phenotype gene signature5. 548 

These findings further demonstrate the consistency of our human microglial data with that 549 

from mouse models and supports perturbed microglial immunometabolism as a potential 550 

pathogenic mechanism in neurodegeneration. 551 

In addition to analyzing gene expression modules from sorted bulk microglia, we also 552 

identified microglial clusters from sorted microglial scRNAseq data. To our knowledge, there 553 

are only two prior publications of scRNAseq characterizations on human microglia9,10. 554 

Masuda et al.10 analyzed 1,602 microglia isolated from 5 control and 5 MS patient brains, 555 

compared their findings to those from mice demonstrating clusters that are common and 556 
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others that are species-specific. Olah et al. assessed 16,242 microglia from 17 individuals 557 

and characterized subclusters of microglia from patients with mild cognitive impairment, AD 558 

and epilepsy9. Our scRNAseq dataset is from 5 unique individuals comprising 26,558 cells, 559 

99.98% of which have myeloid markers. We identified microglial clusters that share 560 

characteristics of those previously reported in mice4 and humans9,72, such as DAM. We also 561 

uncovered clusters that could not be readily annotated, including cluster 7, characterized by 562 

high microglial expression of the astrocytic SLC1A3. Microglial expression of SLC1A3 was 563 

previously shown to occur in mice and humans especially in disease states82-84. We also 564 

leveraged these scRNAseq data to further characterize the sorted bulk microglial expression 565 

modules. Hence our microglial scRNAseq data contribute further to the emerging single cell 566 

landscape of this cell type. 567 

We acknowledge that our study has several limitations, primarily owing to the difficulty in 568 

obtaining high quality neurosurgical brain tissue, which leads to limited sample size and 569 

variability in tissue, diagnoses and patient demographics. Even though we have utilized 570 

control tissue surgically separated from disease tissue, the samples are from epilepsy and 571 

various brain tumor patients representing multiple diagnoses. Although we isolated microglia 572 

using an approach which should minimize activation, we cannot definitively rule out stress-573 

induced transcriptomic changes during isolation. Despite these caveats, we could identify 574 

microglial co-expression modules and subclusters with multiple features that are consistent 575 

with prior publications from model systems4,5,18,38. Our scRNAseq clusters have contributions 576 

from both tumor and epilepsy samples, suggesting that our findings are unlikely to be driven 577 

by any one diagnoses. 578 

In summary, our study on sorted bulk microglia RNAseq and scRNAseq from fresh brain 579 

tissue yield several key findings. We identify a microglial gene signature from sorted bulk 580 

microglia, characterize its expression in bulk brain RNAseq across 7 datasets comprising 6 581 

regions, in bulk fresh brain RNAseq and in microglial scRNAseq subtype clusters. This 582 

signature provides a well-characterized resource which can be utilized in analytic 583 
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deconvolution studies of bulk transcriptome data33,34. We uncovered microglial gene 584 

expression modules associated with age, sex and/or APOE-ε4. Modules with age and 585 

APOE-ε4 associated transcriptional changes implicate microglial lipid and carbohydrate 586 

metabolism perturbations and microglial activation. Microglial scRNAseq data highlight the 587 

transcriptional complexity of this cell type, reveal both known and novel cell types and 588 

demonstrate utility of this data in characterizing sorted bulk RNAseq data. These findings 589 

provide support for the emerging microglial immunometabolism36,39 pathway as a plausible 590 

therapeutic target in aging-related disorders; and provide a well-characterized human 591 

transcriptome resource for the research community on this cell type with central roles in 592 

health and disease1.   593 

594 
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