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Abstract

The study of microbial communities and their interactions has attracted the interest of
the scientific community, because of their potential for applications in biotechnology,
ecology and medicine. The complexity of interspecies interactions, which are key for the
macroscopic behavior of microbial communities, cannot be studied easily experimentally.
For this reason, the modeling of microbial communities has begun to leverage the
knowledge of established constraint-based methods, which have long been used for
studying and analyzing the microbial metabolism of individual species based on
genome-scale metabolic reconstructions of microorganisms. A main problem of
genome-scale metabolic reconstructions is that they usually contain metabolic gaps due
to genome misannotations and unknown enzyme functions. This problem is traditionally
solved by using gap-filling algorithms that add biochemical reactions from external
databases to the metabolic reconstruction, in order to restore model growth. However,
gap-filling algorithms could evolve by taking into account metabolic interactions among
species that coexist in microbial communities. In this work, a gap-filling method that
resolves metabolic gaps at the community level was developed. The efficacy of the
algorithm was tested by analyzing its ability to resolve metabolic gaps on a synthetic
community of auxotrophic Escherichia coli strains. Subsequently, the algorithm was
applied to resolve metabolic gaps and predict metabolic interactions in a community of
Bifidobacterium adolescentis and Faecalibacterium prausnitzii, two species present in the
human gut microbiota, and in an experimentally studied community of Dehalobacter
and Bacteroidales species of the ACT-3 community. The community gap-filling method
can facilitate the improvement of metabolic models and the identification of metabolic
interactions that are difficult to identify experimentally in microbial communities.

Author summary

Microbes compose the most abundant form of life on our planet and they are almost
never found in isolation, as they live in close association with one another and with
other organisms. The metabolic capacity of individual microbial species dictates their
ways of interaction with other species as well as with their environment. The metabolic
interactions among microorganisms have been recognised as the driving force for the
emergence of the properties of microbial communities. For this reason, understanding
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the effect of microbial metabolism on interspecies metabolic interactions is detrimental
for the study of microbial communities. This study can be benefited by metabolic
modeling and the insights offered by constraint-based methods which have been
developed for interrogating metabolic models. In this paper, we present an algorithm
that predicts cooperative and competitive metabolic interactions between species, while
it resolves metabolic gaps in their metabolic models in a computationally efficient way.
We use our community gap-filling algorithm to study microbial communities with
interesting environmental and health-related applications.

Introduction 1

Microorganisms form the most abundant group of living organisms on our planet. In 2

nature microorganisms do not live in isolation, but in close association with one another, 3

forming microbial communities. The value of microbial communities for biotechnology, 4

the environment and human health has been profound due to their potential for use in 5

industrial bioprocesses for the production of valuable chemicals [1], their role in 6

biogeochemical cycles [2], and their effects on human health through the human 7

microbiome [3]. 8

The study of microbiomes has been extensively limited to the taxonomic 9

classification of species and their correlation with different phenotypes. However, such 10

correlations do not offer any mechanistic explanation on how the interactions among 11

microbes and their environment form the observed phenotypes of the ecosystem [4]. A 12

way to elucidate metabolic interactions in microbial communities comes from the use of 13

a set of mathematical and computational techniques, called constraint-based methods, 14

that make use of genome-scale metabolic models [5, 6]. Constraint-based methods have 15

been used extensively for the study of the metabolic functions of individual 16

microorganisms as well as for strain design in metabolic engineering [7]. In the context 17

of microbial communities, methods like SteadyCom [8], OptCom [9], d-OptCom [10], 18

DMMM (Dynamic Multispecies Metabolic Modeling ) [11], and COMETS 19

(Computation Of Microbial Ecosystems in Time and Space) [12] give the opportunity to 20

evaluate growth rates and metabolic interactions of community members under various 21

conditions. 22

Genome-scale metabolic models (GSMMs) can be reconstructed automatically from 23

isolated genomes or pangenomes of specific organisms with a variety of tools [13], like 24

ModelSEED [14] and Kbase [15], that create gene - protein - reaction (GPR) 25

associations. However, genomes are often fragmented and contain misannotated 26

genes [16], while the databases with information about enzyme functions and 27

biochemical reactions used in the reconstruction process are not highly curated [13]. 28

These problems lead to the creation of models with metabolic gaps, mass and charge 29

imbalances and thermodynamic infeasibilities. Metabolic gaps are solved with the use of 30

gap-filling methods, which are an indispensable part of the reconstruction process of 31

organism-specific metabolic models [17]. The first published gap-filling algorithm was 32

GapFill [18–20], which was formulated as a Mixed Integer Linear Programming (MILP) 33

problem that identified dead-end metabolites and added reactions from the MetaCyc 34

database [21] in the metabolic network. Some platforms for metabolic network 35

reconstruction and curation, like gapseq [22] and AMMEDEUS [23], make use of more 36

computationally efficient gap-filling algorithms formulated as Linear Programming (LP) 37

problems. Other methods [24–26], including gapseq [22] and CarveMe [27], take into 38

account genomic or taxonomic information in order to decide which biochemical 39

reactions to add to the metabolic network. Other notable methods are OMNI [28] and 40

GrowMatch [29], that try to maximize the consistency of the model with experimentally 41

observed fluxes and growth rates respectively, while OptFill [30] is a method formulated 42
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to simultaneously solve metabolic gaps and thermodynamically infeasible cycles. 43

Overall, most of the gap-filling methods to date are constraint-based methods that 44

resolve metabolic gaps by adding biochemical reactions from a reference database, like 45

ModelSEED [31], MetaCyc [21], KEGG [32], or BiGG [33], to the metabolic 46

reconstruction of a specific organism. 47

Curated GSMMs of individual organisms can be combined in order to create a 48

community model. However, GSMMs of organisms that naturally live in complex 49

microbial communities, cannot be easily curated individually, and they often do not 50

realistically represent the organism’s metabolic potential after the gap-filling process is 51

completed. This problem is mainly created because of the restricted amount of 52

physiological information that can be collected experimentally for members of complex 53

microbial communities. Microorganisms cannot be easily cultivated individually due to 54

their complex metabolic interdependencies with other community members. This lack of 55

physiological information is especially acute in the case of metagenomes from the 56

environment or from enrichments. In this paper, we propose a gap-filling algorithm that 57

resolves metabolic gaps in microbial communities, while considering metabolic 58

interactions in the community. The proposed community gap-filling method combines 59

incomplete metabolic reconstructions of microorganisms that are known to coexist in 60

microbial communities and permits them to interact metabolically during the gap-filling 61

process. Therefore, community gap-filling can be a useful method not only for resolving 62

metabolic gaps of GSMMs, but also for predicting non-intuitive metabolic 63

interdependencies in microbial communities. Our algorithm also takes advantage of a 64

formulation that ensures decreased solution times for the community gap-filling problem. 65

Considering the unexplored metabolic potential of many natural microbial communities, 66

as well as the difficulty to produce highly-curated metabolic reconstructions for 67

microorganisms, we believe that this method will benefit the study of complex microbial 68

communities. 69

The described community gap-filling method was applied to three independent case 70

studies that demonstrate its ability to restore growth in metabolic models and predict 71

both cooperative and competitive metabolic interactions between them by adding the 72

minimum possible number of biochemical reactions from a reference database to the 73

models. The three case studies involve a community of two Escherichia coli strains 74

created for testing purposes, and the more complex communities of Bifidobacterium 75

adolescentis with Faecalibacterium prausnitzii, and Dehalobacter with Bacteroidales 76

species, which have interesting applications. 77

First, we demonstrate that our method successfully restores growth in a synthetic 78

community comprised of two auxotrophic Escherichia coli strains: an obligatory glucose 79

consumer and an obligatory acetate consumer. This community represents the 80

well-known phenomenon of acetate cross-feeding that emerges among E. coli strains 81

which grow in homogeneous environments containing glucose as the sole carbon 82

source [34,35]. 83

The community gap-filling method was also used to study the codependent growth of 84

Bifidobacterium adolescentis and Faecalibacterium prausnitzii, two well-known bacterial 85

members of the human gut microbiome, the most diverse group of microorganisms 86

found in the human body [36,37]. One of the main functions of the intestinal 87

microbiota is the anaerobic saccharolytic fermentation of complex carbohydrates such as 88

dietary fibers [38], which leads to the production of short chain fatty acids (SCFAs) like 89

acetate, propionate and butyrate. SCFAs are known for their various beneficial effects 90

on the mammalian gut and metabolism [39,40], and in particular butyrate is known for 91

its ability to function as an energy source for the epithelial cells of the gut and works 92

against oxidative stress and inflammation [41]. A major butyrate producer in the gut of 93

healthy adults is the bacterium Faecalibacterium prausnitzii [42, 43]. The presence of F. 94
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prausnitzii has been connected with anti-inflammatory effects in mice [44], while its 95

abundance is significantly decreased in some diseases of the gastrointestinal 96

tract [45–47]. For these reasons, it is believed to have the ability to function as a 97

probiotic and as a marker for inflammatory bowel diseases and colon cancer [48]. F. 98

prausnitzii has been identified as a commensal, strictly anaerobic bacterium of the 99

human gut that performs saccharolytic fermentation. It can utilize a variety of carbon 100

sources from glucose, fructose, and fructo-oligosaccharides to complex molecules such as 101

pectin and N-acetylglucosamine [49], and its typical fermentation products are butyrate, 102

formate, lactate, and acetate [50]. F. prausnitzii is known for developing both 103

competitive and syntrophic interactions with other species that live in the gut, as it 104

competes for common carbon sources, but also has the ability to consume acetate 105

produced by other species and convert it to butyrate. These interactions have been 106

observed in cocultures of F. prausnitzii with bacterial species of the genus 107

Bifidobacterium [51,52]. Bifidobacterial species belong to the phylum Actinobacteria, 108

and are commensal, obligate anaerobes of the human gut, that perform saccharolytic 109

fermentation. They can metabolize a variety of carbohydrates [53], and their most 110

common fermentation products are acetate, formate, lactate, succinate, and 111

ethanol [54–56]. The cogrowth of the species Faecalibacterium prausnitzii and 112

Bifidobacterium adolescentis has been studied both experimentally [57,58] and 113

computationally [59], and it has been shown that their metabolic interaction has the 114

potential to enhance butyrate production [57]. For the community of F. prausnitzii and 115

B. adolescentis, the community gap-filling method managed to predict metabolic 116

interactions and SCFA production that were previously reported [57]. 117

Finally, the community gap-filling method was used to replicate experimental results 118

for the interaction between Dehalobacter sp. CF and Bacteroidales sp. CF50, which are 119

the two main members of the ACT-3 community. The ACT-3 community is a microbial 120

community found in soils and underground waters that are usually contaminated with 121

chlorinated compounds. The study of this community has garnered scientific interest in 122

recent years, as it has the ability to degrade chlorinated environmental 123

pollutants [60–62]. The ACT-3 community is mainly composed of bacterial species that 124

belong in the genera Dehalobacter, with relative abundance up to 80%, Bacteroides, and 125

Clostridium [63]. The dechlorinating ability of the ACT-3 community mainly comes 126

from the ability of Dehalobacter species to perform dehalogenation, i.e., anaerobic 127

respiration with the use of chloroform or other chlorinated compounds as electron 128

acceptors [64–68]. In this study, we use our metabolic reconstructions for Dehalobacter 129

sp. CF and Bacteroidales sp. CF50, in order to simulate experimental results for the 130

cogrowth of the two most abundant species of the ACT-3 community [63] and improve 131

our models. 132

Materials and methods 133

The community gap-filling method 134

The general principle behind the proposed method is demonstrated in Fig 1. Our 135

algorithm creates a compartment for each organism of the simulated microbial 136

community, by combining the biochemical reactions of the organism’s metabolic model 137

with those that come from a reference database. In this study, we created a curated 138

database using the biochemical reactions available in BiGG [33]. While continuing to 139

use the BiGG nomenclature, we removed all the biomass equations, reactions found only 140

in eukaryotic organisms, and reactions with mass imbalances. Then, the organism 141

compartments were allowed to exchange metabolites with one another and with their 142

environment through a common metabolite pool where extracellular compounds can 143
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accumulate or deplete. In this way, each organism can synthesize biomass only by using 144

its intracellular metabolites, and metabolites defined in the growth medium or produced 145

by the other organisms of the community. 146

Fig 1. Graphical representation of the community gap-filling method. The
metabolic reconstructions of two individual organisms (blue and orange respectively) are
allowed to exchange metabolites and interact with the environment through a common
metabolite pool (green). a) The algorithm adds biochemical reactions from a reference
database (dark purple) to the community model. b) The community gap-filling
algorithm is an MILP problem with the objective to add the minimum number of
database reactions to the community model in order to restore biomass production in
the individual metabolic models, while it satisfies some constrains for the reaction fluxes.
The fate of each database reaction is controlled by a binary variable, which takes the
value of 1 if the database reaction is added to the community model, and 0 otherwise.

As we can see in Fig 1, our community model consists of the organism compartments 147

and an exchange compartment which is the common metabolite pool. This community 148

model is used to formulate an MILP problem that predicts the minimum number of 149

reactions that need to be added from the reference database to the community model in 150

order to achieve a user-determined growth rate for the organisms that make up the 151

community. The mathematical formulation of our community gap-filling algorithm for a 152

microbial community of N organisms is: 153

minimize
∑
n∈N

∑
j∈Jn

Database

ynj (1)

subject to

∑
j∈Jn

Sn
ij v

n
j = 0, ∀ i ∈ In

lbnj ≤ vnj ≤ ubnj , ∀ j ∈ Jn
Model

ynj lbnj ≤ vnj ≤ ynj ubnj , ∀ j ∈ Jn
Database

vnBiomass ≥ vn, min
Biomass

ynj ∈ {0, 1}, ∀ j ∈ Jn
Database


∀ n ∈ N

(2)

(3)

(4)

(5)

(6)

− vcex(i) +
∑
n∈N

vnex(i) = 0, ∀ i ∈ Ic , (7)

where In and Jn represent the number of metabolites and reactions, respectively, in the 154

nth microorganism compartment, while Ic represents the exchanged metabolites in the 155

common metabolite pool. 156

Eq (1) is the objective function of the MILP problem which minimizes the total number 157

of biochemical reactions that are added from the database to the metabolic models of 158

the organisms composing the community. Eq (2) - Eq (7) are the constraints of the 159

optimization problem. Specifically, Eq (2) and Eq (7) show that the metabolite pools 160

belonging to each organism compartment and to the common exchange compartment 161

respectively, are at steady state. Eq (3) shows the constrained fluxes of the reactions 162

originally belonging to the organism models. The lower and upper bounds for the model 163

reactions are selected in order to represent the growth of the organism under the desired 164

conditions. Eq (5) represents the constraints for the fluxes through the biomass 165

reactions of the organism models. The minimum threshold for the growth rate of each 166
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organism is defined based on existing information for the growth of the microorganism 167

under the simulated conditions. Eq (4) implies that the fluxes of the reactions coming 168

from the database are constrained between a lower and an upper bound, but a binary 169

variable controls whether each database reaction will be added to the corresponding 170

model. The binary variables, which are also used in the objective function, are defined 171

in Eq (6). Each binary variable takes the value 1 if the database reaction is added to 172

the community model, and the value 0 otherwise. It is noted that all the reactions from 173

the database are initially considered reversible. Then, the minimum and maximum 174

possible fluxes for these reactions are calculated from Flux Variability Analysis 175

(FVA) [69] when the organism compartment is made. The FVA results are used as 176

constraints for the database reaction fluxes, which also gives the opportunity to remove 177

the reactions with both minimum and maximum flux zero. Using this approach, the 178

solution space and time of the final gap-filling problem is reduced. 179

The simulations were performed on a machine with two 22-core Intel® Xeon® Gold 180

6238 @ 2.10GHz and 768GB of RAM, running CentOS 7. For the generation of the 181

results presented in this paper, the MILP problem was formulated and solved in 182

MATLAB 2017b with CPLEX Interactive Optimizer 12.8 and CobraToolbox 3, and 183

alternative solutions for the problem were calculated with an upper time limit of two 184

hours. The alternative solutions are used in each of the presented case studies in order 185

to identify reactions added to the metabolic models of the participating microorganisms 186

as well as metabolic interactions that appear more frequently in the solutions. 187

Sources of metabolic models 188

Core E. coli community 189

S1 Appendix explains how we used the E. coli core model from BiGG [70] for the 190

creation of two E. coli strains, one with the ability to use glucose as a substrate and 191

another with the ability to use only acetate excreted from the first strain. S1 Table and 192

S2 Table contain information about reactions that were deleted from the core model and 193

constraints for the exchange reactions that were implemented in order to create the 194

models of the E. coli glucose utilizer and the E. coli acetate utilizer respectively. In this 195

study, the selected lower bounds for the growth rates of the E. coli glucose utilizer and 196

the E. coli acetate utilizer, were 0.9 and 0.09 h-1, respectively, based on existing 197

information about acetate cross-feeding between E. coli strains [34,71,72]. 198

Bifidobacterium adolescentis and Faecalibacterium prausnitzii community 199

For our simulations, we downloaded the metabolic models for the strains 200

Bifidobacterium adolescentis ATCC 15703 and Faecalibacterium prausnitzii A2-165 from 201

the Virtual Metabolic Human Database [73]. The models are part of the AGORA 202

version 1.03 [74], a collection of metabolic reconstructions of 773 members of the human 203

gut microbiota. Both models are known to contain gaps in the pathways for the 204

biosynthesis of some amino acids and vitamin B, as well as in their central carbon 205

metabolism [73]. In this study we simulate the ability of the two models to use glucose 206

as a substrate and exchange acetate and amino acids under anaerobic conditions. The 207

applied constraints for the exchange reactions of the two models can be seen in S3 Table 208

and S4 Table respectively. The lower bounds for the growth rates of the B. adolescentis 209

ATCC 15703 and the F. prausnitzii A2-165, were set to 0.6 and 0.4 h-1, respectively. 210

The constraints used for the exchange reactions of the organic acids, the amino acids, 211

and the growth rates are based on experimental observations of B. adolescentis and F. 212

prausnitzii strains cogrowth [57], and the study of the metabolic potential of the strain 213

F. prausnitzii A2-165 [50]. 214
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ACT-3 community 215

For this case study, we reconstructed the metabolic models of the two most abundant 216

species of the ACT-3 community, Dehalobacter sp. CF and Bacteroidales sp. CF50. S2 217

Appendix contains information about the reconstruction process for the two models. We 218

allowed Dehalobacter sp. CF to consume chloroform and Bacteroidales sp. CF50 to 219

consume lactate, while the two models grow anaerobically in the same medium and are 220

allowed to exchange organic acids and amino acids. Based on the experimental study for 221

the coculture [63], after 18 days, the community consumes 0.5 mM of chloroform and 222

0.75 mM of lactate, while the total cell density is around 6·107 cells·mL-1, and the 223

relative abundance of the Dehalobacter in the community is 66% on average. This 224

information was used in order to calculate the uptake rates of chloroform and lactate by 225

the community as shown in S5 Table. The reaction constraints for the two models are 226

shown in S6 Table and S7 Table. For our simulations, we used 0.1 and 0.01 d-1 as lower 227

bounds for the growth rates of the Dehalobacter sp. CF and the Bacteroidales sp. 228

CF50, respectively. All the constraints applied for the exchange reactions and the 229

growth rates are representing experimental data from the cogrowth of the Dehalobacter 230

and Bacteroidales species [63]. 231

Results 232

We used our community gap-filling method in order to add biochemical reactions to 233

metabolic models of organisms that contain incomplete pathways. Since the method 234

simulates the cogrowth of organisms that are known to coexist in microbial communities, 235

it is used for identifying both expected and unexpected metabolic interactions in the 236

community. In this paper, we tested the potential of the method on an artificial E. coli 237

community, and then, we applied it to two communities with significance for the health 238

of the human gut and for the bioremediation of soil and water, respectively. For each 239

microbial community, we discuss the best solution calculated by the algorithm, i.e. the 240

solution that adds the minimum number of biochemical reactions to the models, as well 241

as the patterns emerging from the best alternative solutions suggested by the algorithm. 242

The MATLAB files with all the solutions calculated by the community gap-filling for 243

each one of the studied microbial communities can be found in the Supplementary 244

Material. A summary of the characteristics of the used metabolic models before and 245

after the application of the community gap-filling can be seen in Table 1. The SBML 246

files of all the used models are available on our GitHub. 247

Table 1. Characteristics of the metabolic models used in the study before and after the application of the
community gap-filling method. The algorithm simulated the aerobic growth of a community of an E. coli glucose utilizer
and an E. coli acetate utilizer on glucose, the anaerobic growth of a community of the strains B. adolescentis ATCC 15703
and F. prausnitzii A2-165 on glucose, and the anaerobic growth of a community of the species Dehalobacter sp. CF and
Bacteroidales sp. CF50 on media with lactate and chloroform.

Model
Before community gap-filling After community gap-filling
metabolites reactions growth rate* metabolites reactions growth rate*

E. coli glucose utilizer 72 85 1.15 h-1 72 86 0.9 h-1

E. coli acetate utilizer 72 83 0 h-1 72 85 0.09 h-1

B. adolescentis ATCC 15703 991 1129 0 h-1 991 1134 0.6 h-1

F. prausnitzii A2-165 1047 1225 0 h-1 1055 1233 0.4 h-1

Dehalobacter sp. CF 978 1087 infeasible 978 1088 0.1 d-1

Bacteroidales sp. CF50 964 967 0 d-1 965 969 0.01 d-1

*in the community conditions
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Core E. coli community 248

In the beginning, we tested if our community gap-filling method can restore growth in 249

an artificial microbial community of an E. coli glucose utilizer and an E. coli acetate 250

utilizer strain, that is allowed to grow aerobically on glucose. Our community was made 251

after the deletion of 12 reactions from the original models of E. coli core metabolism 252

(Fig 2) as discussed in S1 Appendix. As expected, the community gap-filling algorithm, 253

instead of adding back all the knockouts that we made, suggested the addition of the 254

minimum possible number of reactions in the community in order to restore its function. 255

The first solution calculated by the algorithm suggested the addition of one reaction to 256

the E. coli glucose utilizer model and two reactions to the E. coli acetate utilizer model 257

(Fig 2). More specifically, the pyruvate oxidase (POX) reaction was added to the model 258

of the E. coli glucose utilizer to produce acetate from pyruvate. The additions to the 259

model of the E. coli acetate utilizer include citrate synthase (CS), which was one of the 260

initial knockouts, and fructose-6-phosphate utilizing phosphoketolase (PKETF), which 261

converts acetyl-phosphate to fructose-6-phosphate. Apart from the reactions that were 262

added from the database to the models, the community gap-filling algorithm suggested 263

the activation of reactions that were already present in the models, but did not carry 264

flux in the FBA solution of the original core model. More specifically, in order to 265

sustain growth in the glucose utilizer the reactions of 6-phosphogluconate dehydratase 266

(EDD) and 2-dehydro-3-deoxy-phosphogluconate aldolase (EDA) were activated to 267

produce pyruvate from gluconate 6-phosphate, while pyruvate dehydrogenase (PDH) 268

was also activated to convert pyruvate to acetyl-CoA. In the acetate utilizer the 269

preexisting reactions of acetyl-CoA synthetase (ACS) and acetate kinase (ACKr) were 270

activated in order to convert acetate to acetyl-CoA and acetyl-phosphate respectively, 271

and malic enzyme (ME1) converted malate to pyruvate. The fluxes for all the reactions 272

of the community, as well as a summative table of the reactions that were added from 273

the database to the community can be found in S8 Table. A post gap-filling FBA for 274

the two models shows that all the biomass precursors are replenished in both models. 275

However, both of the models grow at suboptimal rates compared to the original core 276

model (S1 Appendix and Table 1). For the glucose utilizer, the suboptimal growth rate 277

of 0.9 h-1 was due to the export of acetate that led to a reduction in resources directed 278

towards growth, whereas for the acetate utilizer the growth rate of 0.09 h-1 was caused 279

by the use of reduced acetate as the only substrate. 280

Fig 2. Graphical representation of the core E. coli community after the
application of the community gap-filling method. The central carbon
metabolism of an E. coli core model (blue rectangular: Glycolysis, pink square: Pentose
Phosphate Pathway, yellow circle: TCA cycle) was used in order to create two E. coli
strains: one that consumes glucose (left) and one that consumes acetate (right), after
the deletion of the reactions marked with red crosses. The best solution of the
community gap-filling algorithm predicted the addition of the reactions represented by
continuous blue arrows and the activation of the existing reactions represented by
dashed blue arrows, in order to restore biomass production in the two models. The
dashed black arrows show the exchange reactions for glucose and acetate in the
community. The metabolites in bold represent biomass precursors. The numbered
deleted reactions are: (1) PGM, (2) MALS, (3) SUCOAS, (4) PFL, (5) PTAr, (6)
GLCpts, (7) CS. The numbered added and activated reactions are: (1) POX, (2) CS, (3)
PKETF, (4) EDD and EDA, (5) PDH, (6) ACS, (7) ACKr, (8) ME1.

The fluxes from the ten best solutions calculated by the community gap-filling 281

algorithm for the exchange reactions of the community (S9 Table) show that all the 282

solutions predicted the ability of the E. coli glucose utilizer model to uptake glucose 283
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and produce acetate that is used by the E. coli acetate utilizer model for aerobic or 284

anaerobic growth. We can see that the acetate utilizing strain either shares oxygen with 285

the glucose utilizing strain or ends up growing anaerobically due to oxygen depletion by 286

the glucose utilizing strain in different solutions. Moreover, all the reactions that were 287

added from the database to the community in the ten best solutions (S10 Table), carry 288

realistic fluxes with values ranging from -10 to 15 mmol·gDW-1·h-1. 289

We further used our artificial E. coli community in order to estimate the 290

computational efficiency of our method. One major innovation of our community 291

gap-filling method is the use of FVA before the solution of the main MILP problem. 292

FVA is performed in order to identify the minimum and maximum fluxes that are 293

possible for every database reaction in each organism compartment of the community. 294

The fluxes calculated by FVA are used as constraints for the database reactions before 295

building the community model. As a result, the solution space of the community 296

gap-filling MILP problem is smaller and therefore, it can be solved faster. Many of the 297

gap-filling methods to date solve MILP problems, but have not made an effort to reduce 298

the solution space. From a computational perspective, the search of optimality can be 299

tedious for MILP problems, and it is known that smaller feasible solution spaces can 300

accelerate the solution of the optimization problem. Regarding the community 301

gap-filling algorithm, the solving time increases when bigger metabolic models and 302

databases are used and more importantly when the metabolic models of more organisms 303

are added to the problem. As we can see from S1 Fig, the solving time of the MILP 304

problem after the application of FVA is increasingly smaller as more organisms are 305

added in the community, compared to the problem that was formulated immediately 306

without the use of FVA. These results suggest that the FVA preprocessing step 307

improves the solution time up to 84% (from 28 min to 4.5 min) for a microbial 308

community of two organisms. 309

Bifidobacterium adolescentis and Faecalibacterium prausnitzii 310

community 311

In this case study, we applied the community gap-filling method to a community made 312

from the models of the strains Bifidobacterium adolescentis ATCC 15703 and 313

Faecalibacterium prausnitzii A2-165. The interaction between these two species has been 314

studied experimentally and is considered beneficial since it promotes the production of 315

the SCFA butyrate, which has antinflammatory effects in the gut [57]. Here, we 316

simulated the anaerobic cogrowth of B. adolescentis and F. prausnitzii with glucose as 317

the sole carbon source. None of the models can synthesize biomass in the simulated 318

conditions, and the two models are allowed to produce SCFAs and exchange amino 319

acids. The model of F. prausnitzii was permitted to either uptake or excrete acetate. 320

The community gap-filling algorithm restored community growth by predicting both 321

competitive and cooperative metabolic interactions and adding database reactions to 322

the models. The first calculated solution added five reactions to the model of B. 323

adolescentis ATCC 15703 and eight reactions to the model of F. prausnitzii A2-165 324

(Table 2 and S11 Table). The reactions added to the models of B. adolescentis and F. 325

prausnitzii participated in the biosynthesis of cofactors and amino acids necessary for 326

growth. The first solution predicted that B. adolescentis and F. prausnitzii share the 327

available glucose from the community medium, while F. prausnitzii uses part of the 328

acetate exported from B. adolescentis (Fig 3). Moreover, both models export CO2, B. 329

adolescentis exports lactate and formate in addition to acetate, and F. prausnitzii 330

exports butyrate, lactate and formate (Fig 3). This correlates with experimental 331

observations [57]. Interestingly the model of B. adolescentis ATCC 15703 uses the bifid 332

shunt pathway, which is centered around the key enzyme frutose-6-phosphate 333
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erythrose-4-phosphate-lyase (F6PE4PL) in our model. The bifid shunt pathway is 334

unique in Bifidobacteria species that commonly use it for the efficient conversion of 335

carbohydrates, like glucose, to acetate and lactate [54, 55]. The biosynthesis of butyrate 336

from the model of F. prausnitzii A2-165 happens through the reaction of 337

butyryl-CoA:acetate CoA-transferase (BTCOAACCOAT) that converts acetate to 338

butyrate. Beyond the expected behavior of the community regarding the use of carbon 339

and energy sources, and the production of SCFAs, the best solution also predicts the 340

exchange of numerous amino acids between the two community members (Fig 3). After 341

adding the reactions suggested by the community gap-filling algorithm, FBA for the two 342

models shows that the growth is restored, with growth rates of 0.6 h-1 and 0.4 h-1 under 343

the simulated conditions, for the models of B. adolescentis and F. prausnitzii 344

respectively. 345

Table 2. Reactions added from the database to the community model according to the best solution
calculated by the community gap-filling algorithm. The reactions (1) - (5) are added to the metabolic model of B.
adolescentis ATCC 15703, while the reactions (1) and (6) - (12) are added to F. prausnitzii A2-165.

Reaction Formula Reaction (BiGG ID)

(1) 2 H+[c] + SO4
2-[c] → H2S[c] + 2 O2[c] H2SO

(2) L-Homocysteine[c] + 5-Methyltetrahydrofolate[c] → L-Methionine[c] + THF[c] METS 1
(3) CMP[c] + PPi[c] + H+[c] → CTP[c] + H2O[c] NTPP4
(4) 3-Carboxy-4-methyl-2-oxopentanoate[c] + H+[c] → 4-Methyl-2-oxopentanoate[c] + CO2[c] OMCDC

(5)
L-Glutamate[c] + PLP[c] + Pi[c] + H+[c] + 3 H2O[c] →

L-Glutamine[c] + D-Ribulose-5-phosphate[c] + Dihydroxyacetone phosphate[c]
PDBL 3

(6) SAM[c] + 2-Octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol[c] → SAH[c] + UQ8[c] + H+[c] ABAH

(7)
trans-Octaprenyl-diphosphate[c] + 4-Hydroxybenzoate[c] →

3-Octaprenyl-4-hydroxybenzoate[c] + PPi[c]
HBZOPT

(8)
SAM[c] + 2-Octaprenyl-6-hydroxyphenol[c] →

SAH[c] + 2-Octaprenyl-6-methoxyphenol[c] + H+[c]
OHPHM

(9)
SAM[c] + 2-Octaprenyl-6-methoxy-1,4-benzoquinol[c] →

SAH[c] + 2-Octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol[c] + H+[c]
OMBZLM

(10) 3-Octaprenyl-4-hydroxybenzoate[c] + H+[c] → 2-Octaprenylphenol[c] + CO2[c] OPHBDC

(11)
2 SAM[c] + Fe2+[c] + NAD[c] + Uroporphyrinogen-3[c] →

2 SAH[c] + Siroheme[c] + NADH[c] + 5 H+[c]
SHS1

(12) Hydroxymethylbilane[c] → Uroporphyrinogen-3[c] + H2O[c] UPP3S

Fig 3. Graphical representation of the community of B. adolescentis
ATCC 15703 and F. prausnitzii A2-165 after the application of the
community gap-filling method. The best solution calculated by the community
gap-filling algorithm predicted that the metabolic models of the strains B. adolescentis
ATCC 15703 and F. prausnitzii A2-165 share the available Glucose from the common
medium and produce lactate (LAC), formate (FOR), and butyrate (BUT), while they
exchange acetate (AC), and amino acids (3 letter code). The non-dashed arrows
represent intracellular metabolite flow and the dashed arrows represent the exchange
reactions of SCFAs and amino acids. The thickness of the dashed arrows represents the
relative order of magnitude of the calculated fluxes for the exchange reactions.

We also evaluated the ten best alternative solutions calculated by the community 346

gap-filling algorithm and found several interesting interactions. First, in almost all the 347

solutions (S12 Table), the models of B. adolescentis and F. prausnitzii shared the 348

glucose provided in the community medium. Also, four out of ten solutions predicted 349

that F. prausnitzii consumes the acetate produced by B. adolescentis, while the rest of 350

May 4, 2021 10/23

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2021. ; https://doi.org/10.1101/2021.05.13.443977doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.13.443977
http://creativecommons.org/licenses/by/4.0/


the solutions predicted that F. prausnitzii consumes glucose from the media and 351

produces acetate (S2 Fig). This behavior is consistent with previous studies that show 352

the ability of F. prausnitzii A2-165 to function both as a consumer and a producer of 353

acetate depending on the conditions [50]. However, to our current knowledge, acetate 354

production from F. prausnitzii in the presence of B. adolescentis has not been observed 355

experimentally. For this reason, more detailed research into the conditions that could 356

affect the acetate production in cocultures of F. prausnitzii with B. adolescentis could 357

yield interesting results. 358

We can see that in most of the solutions in which F. prausnitzii consumes acetate, it 359

also produces CO2 (S12 Table, S2 Fig, Solutions 1, 3, 5), while it does not produce CO2 360

when it produces acetate (S12 Table, S2 Fig, Solutions 4, 6, 8, 9, 10). This observation 361

is in agreement with existing information about the acetate consumption and 362

production from F. prausnitzii A2-165 [50]. It is noted that in most of the solutions, 363

CO2 production from F. prausnitzii is accompanied by CO2 consumption from B. 364

adolescentis, while in the rest of the cases the reverse CO2 crossfeeding is observed. The 365

exchange of CO2 between the two models could be an indication that F. prausnitzii and 366

B. adolescentis can use CO2 fixation to cover their carbon needs especially in 367

environments with limited amounts of carbohydrates. This possibility is supported by 368

an experimental study that shows that the presence of CO2 in the medium promotes 369

the anoxic growth of B. adolescentis species [75]. However, it is unclear if CO2 fixation 370

that leads to acetogenesis can be performed through the Wood–Ljungdahl pathway in B. 371

adolescentis and in F. prausnitzii, as it happens in other species of the gut 372

microbiome [76,77]. 373

Furthermore, the production of SCFAs from the models complies with what is 374

expected from literature [57] being that for most of the alternative solutions B. 375

adolescentis produces acetate, lactate, ethanol and formate, while F. prausnitzii 376

produces butyrate, fromate and succinate (S12 Table, S2 Fig). Finally, we observed 377

patterns in the amino acid exchanges with alanine, leucine, serine and tryptophan 378

transferred from B. adolescentis to F. prausnitzii, and aspartate and cysteine 379

transferred from F. prausnitzii to B. adolescentis in the majority of the alternative 380

solutions (S12 Table, S2 Fig). 381

Apart from the patterns that emerged regarding the exchanged metabolites in the 382

community, the alternative solutions to the problem also indicate a consistency in the 383

reactions that are added from the database to the model of F. prausnitzii A2-165 (S13 384

Table). However, this is not the case for B. adolescentis, since the reactions added from 385

the database to the model of B. adolescentis ATCC 15703 are not the same through 386

different solutions (S13 Table). Even though most of the added reactions carry realistic 387

fluxes, some of the reactions added to B. adolescentis carry unrealistically high fluxes 388

(in the order of 102 mmol·gDW-1·h-1) and participate in thermodynamic infeasible 389

cycles (S13 Table, Solutions 1 and 4, reaction PDBL 3). 390

ACT-3 community 391

In this case study, we simulated the cogrowth of Dehalobacter sp. CF and Bacteroidales 392

sp. CF50 that represent the most abundant bacterial species of the dehalogenating 393

ACT-3 community [63]. Our simulation is set up in order to represent the conditions of 394

a previous experimental study on the interaction between Dehalobacter and 395

Bacteroidales [63]. More specifically, our community is allowed to grow anaerobically on 396

chloroform, that can be used by the model of Dehalobacter sp. CF as an energy source, 397

and lactate, that can be used by the model of Bacteroidales sp. CF50 as a carbon and 398

energy source. The two models are allowed to exchange organic acids and amino acids. 399

We show that the growth in the community of Dehalobacter sp. CF and Bacteroidales 400

sp. CF50 can be restored by the community gap-filling algorithm. 401

May 4, 2021 11/23

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2021. ; https://doi.org/10.1101/2021.05.13.443977doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.13.443977
http://creativecommons.org/licenses/by/4.0/


The first solution calculated by the community gap-filling algorithm suggested the 402

addition of one reaction to the model of Dehalobacter sp. CF and two reactions to the 403

model of Bacteroidales sp. CF50 (Table 3 and S14 Table). More specifically, the 404

reaction of calcium transport via the ABC system (CA2abc) was added in the model of 405

Dehalobacter sp. CF. The model uses the export of Ca2+ through the ABC system as a 406

proton exchange pump to generate ATP. The additions to the model of Bacteroidales sp. 407

CF50 include the reactions of ammonia transport (NH4ti) and anthranilate synthase 408

(ANS2) that are used in the model in order to import ammonia and use it to produce 409

pyruvate from chorismate. Moreover, the first solution also predicts the ability of 410

Bacteroidales sp. CF50 to uptake lactate from the medium and produce hydrogen, CO2, 411

acetate, and malate that are used by Dehalobacter sp. CF. In parallel, Dehalobacter sp. 412

CF consumes the hydrogen produced by Bacteroidales sp. CF50 and chloroform from 413

the medium, and produces chlorine and dichloromethane as it performs dechlorination. 414

In addition, Dehalobacter sp. CF provides pyruvate to Bacteroidales sp. CF50. Overall, 415

we see that the gap-filling algorithm was able to predict the experimentally observed 416

behavior of the community [63], and it also predicted the exchange of amino acids 417

between the two community members, which remained elusive in the experimental study. 418

The exchanges between the two models are depicted in Fig 4. A post gap-filling analysis 419

shows that all biomass precursors are replenished in both models, and FBA calculated a 420

growth rate of 0.1 d-1 for Dehalobacter sp. CF, and 0.01 d-1 for Bacteroidales sp. CF50. 421

Table 3. Reactions added from the database to the community model according to the best solution
calculated by the community gap-filling algorithm. Reaction (1) is added to the metabolic model of Dehalobacter sp.
CF, while reactions (2) and (3) are added to Bacteroidales sp. CF50.

Reaction Formula Reaction (BiGG ID)

(1) Ca2+[c] + Pi[c] + H+[c] + ADP[c] → Ca2+[e] + H2O[c] + ATP[c] CA2abc
(2) NH4+[e] → NH4+[c] NH4ti
(3) NH4+[c] + Chorismate[c] → H+[c] + H2O[c] + Anthranilate[c] + Pyruvate[c] ANS2

Fig 4. Graphical representation of the community of Dehalobacter sp. CF
and Bacteroidales sp. CF50 after the application of the community
gap-filling method. The best solution calculated by the community gap-filling
algorithm predicted that the metabolic model of Dehalobacter sp. CF consumes
chloroform (CF), while the metabolic model of Bacteroidales sp. CF50 consumes lactate
(LAC) from the common medium. Dehalobacter sp. CF consumes H2 and CO2

produced by Bacteroidales sp. CF50, and uses part of the consumed H2 in order to
respire chloroform (CF) to chlorine (Cl) and dichloromethane (DCM). The two models
exchange acetate (AC), malate (MAL) and pyruvate (PYR) as expected from
experimental studies. The algorithm also predicted the exchange of specific amino acids
(3 letter code) between the models. The non-dashed arrows represent intracellular
metabolite flow, while the dashed arrows represent exchange reactions. The thickness of
the dashed arrows represents the relative order of magnitude of the calculated fluxes for
the exchange reactions.

An analysis of the ten best solutions calculated by the community gap-filling 422

algorithm shows that the model of Bacteroidales sp. CF50 consistently uptakes lactate, 423

the only carbon and energy source in the medium, and ferments it into CO2, hydrogen, 424

acetate, malate, fumarate and succinate, while the model of Dehalobacter sp. CF 425

consistently performs dechlorination by reducing chloroform and producing 426

dichloromethane and chlorine (S15 Table). Moreover, all the alternative solutions 427

predicted the ability of Dehalobacter sp. CF to consume part of the acetate and all the 428
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malate and hydrogen produced by Bacteroidales sp. CF50, while providing 429

Bacteroidales sp. CF50 with pyruvate (S15 Table, S3 Fig). 430

In most of the solutions Dehalobacter sp. CF consumes part of the CO2 produced by 431

Bacteroidales sp. CF50 (S15 Table, S3 Fig, Solutions 1 - 5, 8, 10). This exchange could 432

indicate that Dehalobacter sp. CF performs CO2 fixation, which is possible since the 433

species is known to possess the Wood–Ljungdahl pathway [63]. Furthermore, we 434

observed patterns in the amino acid exchanges between the two community members, 435

with arginine, asparagine, isoleucine, lysine, phenylalanine, threonine, and tyrosine 436

transferred from Bacteroidales sp. CF50 to Dehalobacter sp. CF, and alanine and 437

glutamate transferred from Dehalobacter sp. CF to Bacteroidales sp. CF50 in the 438

majority of the alternative solutions (S15 Table, S3 Fig). 439

More information about the quality of the solutions calculated by the community 440

gap-filling algorithm can be retrieved by closer inspection of the reactions that were 441

added from the database to the models in the ten best solutions. We can see that in 442

most of the solutions (S16 Table, Solutions 1 - 6, 8, 10), even though the reactions 443

added to the model of Bacteroidales sp. CF50 have realistic fluxes, those added to the 444

model of Dehalobacter sp. CF carry unrealistically high fluxes (close to the infinite 445

reaction bounds). For example, the already discussed reaction of calcium transport via 446

the ABC system (CA2abc), which is used for ATP production in the model, has 447

unrealistically high fluxes and forms a cycle with the reaction calcium transport in/out 448

via proton antiporter (CAt4) that already exists in the Dehalobacter sp. CF model (S16 449

Table, Solutions 1, 2, 3). 450

Discussion 451

Our results demonstrate the ability of the community gap-filling method to resolve 452

metabolic gaps and restore growth in metabolic models by adding the minimum possible 453

number of biochemical reactions from a reference database to the models and activating 454

already existing reactions of the models, while the models are allowed to interact 455

metabolically. In the first test case study, the algorithm restored community growth and 456

predicted the exchange of acetate between the two E. coli strains. For the community of 457

B. adolescentis and F. prausnitzii in the second case study, the algorithm calculated the 458

competitive consumption of glucose present in the common medium, the syntrophic 459

exchange of acetate, CO2 and amino acids, and the production of SCFAs. The 460

algorithm also identified the exchange of organic acids, amino acids, CO2 and H2 for the 461

community of Dehalobacter and Bacteroidales. In all three case studies, the metabolic 462

exchanges were not strictly forced with constraints, but they emerged from the 463

algorithm. We also showed that the implementation of FVA in our algorithm resulted in 464

significantly decreased solution time of the MILP community gap-filling problem. 465

In general, the community gap-filling method could facilitate the study of complex 466

communities where the existing information for the involved species is incomplete. A 467

method like this can be used at the last steps of the metabolic reconstruction process, 468

and it can also become part of the efforts for the creation of a microbiome modeling 469

toolbox [78]. However, like every other constraint-based method, our community 470

gap-filling method has some weaknesses. One of the most prominent challenges is that 471

the performance of the algorithm depends highly on the quality of the input models and 472

databases being used. More specifically, the absence of some important reactions from 473

the models can lead to poor predictive power, while unconstrained reaction 474

directionality, especially for exchange reactions, can affect the predicted metabolic 475

interactions and give birth to flux-carrying cycles between the community members. 476

The algorithm performs better with highly curated models, but even then it shows 477

preference over specific pathways. This bias comes from the fact that the process of 478
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manual curation and gap-filling for a model is based on the use of specific media and 479

requires knowledge about the growth of the organism under specific conditions. In 480

addition, the composition and the quality of the database reactions is important. 481

Ideally the database should contain balanced biochemical reactions that represent a 482

diversity of metabolic functions observed in prokaryotic organisms, or any type of 483

organisms that represents the models being used. Regarding the solutions of the 484

algorithm that predict reactions with unrealistically big fluxes and reactions that form 485

thermodynamically infeasible cycles, they can either be excluded completely from the 486

analysis of results as they are not trustworthy, or they could be avoided by further 487

constraining the reactions of the metabolic models based on thermodynamic 488

information [79, 80]. From the perspective of computational efficiency, the total running 489

time of the algorithm can be further decreased with the use of newer and faster parallel 490

implementations of FVA, such as VFFVA [81]. 491

Conclusion 492

In this work, we presented an algorithm that performs gap-filling while permitting 493

metabolic interactions in microbial communities. Metabolites produced from one 494

organism can either be released to the environment or used by another member of the 495

community. Therefore, one of the key characteristics of the community gap-filling 496

method is that it attempts to identify if interspecies exchanges of metabolites can 497

compensate for insufficient metabolic capabilities of the community members, instead of 498

just adding biochemical reactions from reference databases to the metabolic models of 499

the community members. Our results showed that the algorithm can successfully 500

predict both cooperative and competitive metabolic interactions in microbial 501

communities and comply with experimental measurements and observations. With the 502

ability to predict elusive metabolic interactions, the community gap-filling method can 503

be used to generate hypotheses about potential metabolic relationships among 504

community members. This direction is useful not only for the improvement of metabolic 505

models, but also for understanding functions at the community level and providing 506

valuable information for selective media composition that can enable the isolation of 507

pure cultures for microorganisms. 508

The community gap-filling method can be further applied on communities with more 509

than two members, even though such a scale-up could probably require a more 510

computationally efficient reformulation. A way to use the community gap-filling method 511

for the study of microbial communities could be the following. Applying the community 512

gap-filling method for the simulation of a microbial community on different media can 513

generate plenty of data on the function of the community in different environments. 514

Evaluating these results to identify the reactions added to the models, as well as the 515

metabolic interactions between the models, can offer an insight on which reactions are 516

necessary for the metabolic reconstructions and which metabolic interdependencies are 517

prevalent in the community. Such predictions can be further tested experimentally and 518

can be used for improving gene-annotations by identifying gene functions, not based on 519

sequence similarities, but rather on a growth restoration strategy. 520
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S15 Table. Fluxes of Exchange Reactions from the ten best solutions for 556

the community of Dehalobacter sp. CF and Bacteroidales sp. CF50. 557

S16 Table. Fluxes of Added Database Reactions from the ten best 558

solutions for the community of Dehalobacter sp. CF and Bacteroidales sp. 559

CF50. 560

S1 Fig. Time needed for the solution of the MILP problem with and 561

without the prior use of FVA for the reduction of the solution space, 562

depending on the number of organisms in the community. As the number of 563

organisms that make up the microbial community increases, the community gap-filling 564

algorithm needs increasingly more time to solve the MILP problem that restores growth 565

in the community. However, the increase in solving time is significantly reduced with 566

the use of our community gap-filling method that reduces the solution space of the 567

MILP problem by performing FVA for each organism compartment of the community 568

before formulating the optimization problem. (The presented measurements were 569

performed with the models from the toy E. coli community.) 570

S2 Fig. Fluxes of Exchange Reactions from the ten best solutions for the 571

community of B. adolescentis ATCC 15703 and F. prausnitzii A2-165. a) 572

Fluxes of exchange reactions for the SCFAs acetate, butyrate, ethanol, lactate, formate, 573

and succinate, and CO2. b) Fluxes of exchange reactions for the amino acids alanine, 574

aspartate, cysteine, glutamine, glutamate, glycine, histidine, isoleucine, leucine, 575

phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine. 576

S3 Fig. Fluxes of Exchange Reactions from the ten best solutions for the 577

community of Dehalobacter sp. CF and Bacteroidales sp. CF50. a) Fluxes 578

of exchange reactions for the organic acids acetate, malate, and pyruvate, CO2 and H2. 579

b) Fluxes of exchange reactions for the amino acids alanine, arginine, asparagine, 580

glutamate, isoleucine, lysine, phenylalanine, threonine, and tyrosine. 581

Availability 582

The code used to perform this study can be found on GitHub: 583

https://github.com/LMSE/Community_Gap-Filling. 584
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et al. Ecology and Metabolism of the Beneficial Intestinal Commensal Bacterium
Faecalibacterium Prausnitzii. Gut Microbes. 2014;5(2):146–151.
doi:10.4161/gmic.27651.

44. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG,
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Figures 

 

Fig 1. Graphical representation of the community gap-filling method. The metabolic reconstructions of two individual 
organisms (blue and orange respectively) are allowed to exchange metabolites and interact with the environment through a 
common metabolite pool (green). a) The algorithm adds biochemical reactions from a reference database (dark purple) to the 
community model. b) The community gap-filling algorithm is an MILP problem with the objective to add the minimum number 
of database reactions to the community model in order to restore biomass production in the individual metabolic models, while 
it satisfies some constrains for the reaction fluxes. The fate of each database reaction is controlled by a binary variable, which 
takes the value of 1 if the database reaction is added to the community model, and 0 otherwise. 
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Fig 2. Graphical representation of the core E. coli community after the application of the community gap-filling method. The 
central carbon metabolism of an E. coli core model (blue rectangular: Glycolysis, pink square: Pentose Phosphate Pathway, 
yellow circle: TCA cycle) was used in order to create two E. coli strains: one that consumes glucose (left) and one that consumes 
acetate (right), after the deletion of the reactions marked with red crosses. The best solution of the community gap-filling 
algorithm predicted the addition of the reactions represented by continuous blue arrows and the activation of the existing 
reactions represented by dashed blue arrows, in order to restore biomass production in the two models. The dashed black 
arrows show the exchange reactions for glucose and acetate in the community. The metabolites in bold represent biomass 
precursors. The numbered deleted reactions are: (1) PGM, (2) MALS, (3) SUCOAS, (4) PFL, (5) PTAr, (6) GLCpts, (7) CS. The 
numbered added and activated reactions are: (1) POX, (2) CS, (3) PKETF, (4) EDD and EDA, (5) PDH, (6) ACS, (7) ACKr, (8) ME1. 
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Fig 3. Graphical representation of the community of B. adolescentis ATCC 15703 and F. prausnitzii A2-165 after the application 
of the community gap-filling method. The best solution calculated by the community gap-filling algorithm predicted that the 
metabolic models of the strains B. adolescentis ATCC 15703 and F. prausnitzii A2-165 share the available Glucose from the 
common medium and produce lactate (LAC), formate (FOR), and butyrate (BUT), while they exchange acetate (AC), and amino 
acids (3 letter code). The non-dashed arrows represent intracellular metabolite flow and the dashed arrows represent the 
exchange reactions of SCFAs and amino acids. The thickness of the dashed arrows represents the relative order of magnitude of 
the calculated fluxes for the exchange reactions. 
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Fig 4. Graphical representation of the community of Dehalobacter sp. CF and Bacteroidales sp. CF50 after the application of 
the community gap-filling method. The best solution calculated by the community gap-filling algorithm predicted that the 
metabolic model of Dehalobacter sp. CF consumes chloroform (CF), while the metabolic model of Bacteroidales sp. CF50 
consumes lactate (LAC) from the common medium. Dehalobacter sp. CF consumes H2 and CO2 produced by Bacteroidales sp. 
CF50, and uses part of the consumed H2 in order to respire chloroform (CF) to chlorine (Cl) and dichloromethane (DCM). The two 
models exchange acetate (AC), malate (MAL) and pyruvate (PYR) as expected from experimental studies. The algorithm also 
predicted the exchange of specific amino acids (3 letter code) between the models. The non-dashed arrows represent 
intracellular metabolite flow, while the dashed arrows represent exchange reactions. The thickness of the dashed arrows 
represents the relative order of magnitude of the calculated fluxes for the exchange reactions. 
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S1 Fig. Time needed for the solution of the MILP problem with and  without the prior use of FVA for the reduction of the 
solution space, depending on the number of organisms in the community. As the number of organisms that make up the 
microbial community increases, the community gap-filling algorithm needs increasingly more time to solve the MILP problem 
that restores growth in the community. However, the increase in solving time is significantly reduced with  the use of our 
community gap-filling method that reduces the solution space of the MILP problem by performing FVA for each organism 
compartment of the community before formulating the optimization problem. (The presented measurements were  performed 
with the models from the toy E. coli community.) 
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S2 Fig. Fluxes of Exchange Reactions from the ten best solutions for the community of B. adolescentis ATCC 15703 and F. 
prausnitzii A2-165. a) Fluxes of exchange reactions for the SCFAs acetate, butyrate, ethanol, lactate, formate,  and succinate, and 
CO2. b) Fluxes of exchange reactions for the amino acids alanine, aspartate, cysteine, glutamine, glutamate, glycine, histidine, 
isoleucine, leucine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine. 
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S3 Fig. Fluxes of Exchange Reactions from the ten best solutions for the community of Dehalobacter sp. CF and Bacteroidales 
sp. CF50. a) Fluxes of exchange reactions for the organic acids acetate, malate, and pyruvate, CO2 and H2. b) Fluxes of exchange 
reactions for the amino acids alanine, arginine, asparagine, glutamate, isoleucine, lysine, phenylalanine, threonine, and tyrosine. 
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