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Abstract

A crucial process in the production of industrial enzymes is recombinant
gene expression, which aims to induce enzyme overexpression of the genes
in a host microbe. Current approaches for securing overexpression rely on
molecular tools such as adjusting the recombinant expression vector, adjust-
ing cultivation conditions, or performing codon optimizations. However, such
strategies are time-consuming, and an alternative strategy would be to select
genes for better compatibility with the recombinant host. Several methods
for predicting expressibility and solubility are available; however, they are all
optimized for the expression host Escherichia coli. We show that these tools
are not suited for predicting expression potential in the industrially impor-
tant host Bacillus subtilis. Instead, we build a B. subtilis-specific machine
learning model for expressibility prediction. Given millions of unlabelled pro-
teins, and a small labelled dataset, we can successfully train such a predictive
model. The unlabelled proteins provide a performance boost relative to us-
ing amino acid frequencies of the labelled proteins as input. On average, we
obtain a modest performance of 0.64 area-under-the-curve (AUC) and 0.2
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Matthews correlation coefficient (MCC). However, we find that this is suffi-
cient to be useful for prioritization of expression candidates. Moreover, the
predicted class probabilities are correlated with expression levels. A num-
ber of features related to protein expression, including base frequencies and
solubility, are captured by the model.1

1. Introduction

Enzymes are the natural catalysts of biochemical processes in every living
cell. Understanding the expression of enzymes is a crucial step in engineering
them for biotechnological applications (Madigan et al., 2003). Industrial
production of enzymes requires recombinant expression in a host microbe
under favorable conditions. However, expression of enzymes is an art form
and large amounts of effort and resources are needed for it to succeed (Habibi
et al., 2014).

Multiple factors are known to influence the outcome of recombinant protein
production. These include codon usage of the gene (Fu et al., 2020), ex-
pression vector and plasmid design (Rosano and Germán, 2019), host strain
design and optimizations, growth media and cultivation conditions, as well as
protein recovery method (Zhang et al., 2020). In addition, some proteins can
be toxic to the host or aggregate in inclusion bodies (Rosano and Germán,
2019). To ensure a robust expression system, variability in the above factors
must be minimized, such as keeping the host strain, expression vector, and
growth conditions constant. However, due to the variation in natural pro-
teins, this is not always possible. To handle the variations, multiple growth
media and cultivation conditions can be explored, as can optimizations of the
genes codon usage to better match the codon usage of the recombinant host
(Fu et al., 2020). The above factors and variability in the expression system
are expected to have significant impact on the protein expression outcome,
and strategies for selecting genes more like to express are needed.

Instead of using the trial-and-error approach to get enough protein overex-
pression, tools that can direct the selection of genes with a higher probability

1code for experiments is publicly available at: https://github.com/hmmartiny/Predicting-
Gene-Expression
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of successful overexpression are desirable. Several tools have been developed
for the prediction of soluble overexpression in Escherichia coli, including
PROSO II (Smialowski et al., 2012), PaRSnIP (Rawi et al., 2018), DeepSol
(Khurana et al., 2018), SKADE (Raimondi et al., 2020), and SoluProt (Hon
et al., 2021). In addition, some tools exist for the more specific prediction
of solubility, which is an important element in soluble preotein expression.
These include Protein-Sol (Hebditch et al., 2017) and SoDoPe (Bhandari
et al., 2020). The mentioned tools use the primary structure as input and
calculate various sequence-based features (e.g., hydrophobicity, charge, k-
mer frequencies, disorder), and they use various machine learning techniques:
support vector machines (Agostini et al., 2014), gradient boosting machines
(Rawi et al., 2018; Hon et al., 2021), neural networks (Khurana et al., 2018;
Raimondi et al., 2020), or other statistical methods (Smialowski et al., 2012;
Hebditch et al., 2017; Bhandari et al., 2020). However, all these tools (with
the exception of Protein-Sol) have been developed especially with the host
Escherichia coli in mind, and it is an open question whether their results can
be generalized to other production organisms.

Data-driven tools, especially machine learning (Bishop, 2006), require sig-
nificant amounts of data. As the cost of sequencing continues to decrease
and the number of publicly available data increases (The UniProt Consor-
tium, 2018), machine learning models are becoming better suited to predict
protein characteristics and functions (Elnaggar et al., 2020). This, in combi-
nation with progress in computational power and access to machine learning
frameworks (Abadi et al., 2015; Pedregosa et al., 2012), have led to new data
driven tools for protein modelling tasks (Almagro Armenteros et al., 2017;
Bileschi et al., 2019; Rives et al., 2019; Strodthoff et al., 2019; Alley et al.,
2019).

However, the majority of available data is unlabelled, or labelled by existing
prediction methods only, and cannot easily be used for learning protein prop-
erties with supervised machine learning. In order to utilize the vast amounts
of unlabelled data, a method known as UniRep (Alley et al., 2019) has been
developed to convert biological sequences into statistical representations that
incorporate structural, evolutionary and biophysical features. UniRep uses
language modeling (Jurafsky and Martin, 2019) to build the representation
by predicting which amino acids comes next given the prior sequence.

This study examines a dataset of proteins that have been experimentally
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validated for expression in the gram-positive bacterium Bacillus subtilis, an
important production host in the biotechnological industry. This dataset
presents a prime opportunity to build a model that can predict the prob-
ability of a gene being expressed in B. subtilis, based only on the amino
acid sequence of the protein. In the recombinant expression system, most of
molecular parameters such as recombinant host and expression vector were
kept constant; a fixed set of growth media and cultivation conditions were
explored, and codon optimizations were not performed, using only the codons
of the natural gene.

We investigate several modeling approaches on how to solve this prediction
task and find that using features generated by UniRep significantly improves
performance relative to using amino acid composition. To our knowledge,
this is the first time unsupervised learning has been successfully applied to
the prediction of soluble expression.

Furthermore, we show that specific UniRep features correlate with biological
features important for protein expression in B. subtilis. We demonstrate
that universal sequence representations are better suited to capture features
important for predicting recombinant gene expression than building a model
only on data coming from one specific host. The study is summarized in
Figure 1.
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Figure 1: Summary of our work. We have designed a system in which a protein sequence
from an organism (gene donor) is converted into a numerical vector by the hidden states
of UniRep (Alley et al., 2019). The vector is then used as a input to a classifier, i.e. a
random forest, that predicts whether the protein can be recombinantly expressed. Finally,
we show that specific hidden states (units) correlate to biological features in a Circos plot
(Krzywinski et al., 2009) with nodes being units and features connected by edges colored
and sized by the absolute correlation.
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2. Materials and methods

We define the problem of predicting recombinant gene expression in B. sub-
tilis as a binary classification (success or failure) and evaluate different classi-
fiers by their performance on a held-out test set. We test a range of machine
learning classifiers using either amino acid frequencies or the internal states of
UniRep as input, and we find that the latter input type significantly improves
the performance.

2.1. Bacterial expression dataset

The dataset consists of 4487 genes, which have been collected and experi-
mentally tested for expression in B. subtilis by Novozymes A/S.

Various methods have been developed to characterize recombinant expres-
sion, where the PCR based cloning approach has been used to verify the
proteins in this dataset. Whole coding regions of the bacterial genes were
amplified by PCR from genomic DNA and cloned into an expression vector
(Widner et al., 2000). The PCR fragment and vector were digested with
restriction enzymes. Vector and fragment were ligated and the recombinant
plasmids were used to transform Escherichia coli yielding several recombi-
nants per gene. A plasmid containing a confirmed gene sequence was trans-
formed into B. subtilis and subsequently one recombinant B. subtilis clone
containing the integrated expression construct was grown in a liquid culture
at temperatures ranging from 20 ◦C-37 ◦C for 2-5 days. The cultures were
harvested and the enzymes analysed by SDS-PAGE electrophoresis. The
separated proteins were visualized by staining with Cromassie Blue G-250,
and estimation of molecular weights and yields of the proteins were made
against molecular (stained) standards (250, 150, 100, 75, 50, 37, 25, 20, 15,
10 kDa) If no visible band of the size of the protein was detected on the
SDS-PAGE, a gene was determined to be not expressed. Different dyes and
contrast levels can affect the readout of SDS-gels, but typically concentra-
tions of down to 50mg/l will produce visible bands. The size of the band
were also used to estimate expression levels for section 3.2.

We use homology partitioning to partition the data into training, validation
and test sets to ensure better generalization of our held-out validation and
test set. PSI-CD-HIT (Li and Godzik, 2006) is used to cluster sequences
with 30% identity. Based on the homology, the clusters were used to divide
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the data into 70% training, 10% validation and 20% test set partitions while
maintaining the ratio between successful and unsuccessful expression in each
set.

2.2. Modeling overview

We test a variety of machine-learning based tools for their ability to pre-
dict recombinant gene expression. We compare the prediction performance
of support vector machines (SVM), logistic regression (LR), random forest
(RF), and artificial neural network (ANN)(Hastie et al., 2016) using either
amino acid frequencies or a pretrained language model (UniRep (Alley et al.,
2019)) to embed our proteins before training a model that predicts gene
expression. Parameter optimization is done for all classifiers and each train-
ing round was repeated with 10 different random seeds to obtain balanced
performance measurements.

2.2.1. Modeling details

Given either the amino acid frequencies or the UniRep embeddings as input,
we train an SVM, LR, RF, and ANN to predict recombinant expression.
Given the validation set, we perform a hyperparameter optimization as fol-
lows; the hyperparameters optimized for the SVM are the scaling term for
the regularization used in stochastic gradient descent and the tolerance value
in the stopping criterion. The SVM uses a linear kernel and the modified
huber loss function. For LR, we optimized the tolerance value as well as the
inverse regularization term value. For the RF, the following hyperparameters
are optimized: the number of trees, the number of features for the best split,
the minimum number of samples required to make a split and whether to use
bootstrap (Hastie et al., 2016). We optimize the number of hidden layers in
the ANN and the number of hidden units in each of the hidden layers. Learn-
ing rate and the L2 penalty term are also optimized. Training of the neural
network is done with Adam optimization (Kingma and Ba, 2014) and early
stopping regularization is used. If a hyperparameter is not listed as being
optimized, we use the default values in their implementation in scikit-learn
version 0.20.2 (Pedregosa et al., 2012).
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2.2.2. UniRep details

UniRep (Alley et al., 2019) takes a protein sequence as input and extracts
1900 continuous features. UniRep is based on a deep learning (LeCun et al.,
2015) method known as the recurrent neural network (RNN) (Hochreiter
and Schmidhuber, 1997). The RNN is trained on the UniRef50 database
containing more than 24 million protein sequences (Suzek et al., 2015). The
1900 units are the averages of the RNN hidden states across the sequence.
Our protein sequences are represented with UniRep and then used as inputs
to each of the classifiers.

2.3. Evaluation

To measure relative performance, corrected for class imbalances, we calculate
the area under the Receiver operating characteristic (ROC) curve, known
as the AUC, and the Matthews correlation coefficient (MCC) (Matthews,
1975).

The ROC curve visualizes a trade-off between true-positive rate (TPR, sen-
sitivity) and the false-positive rate (FPR, 1-specificity) when increasing the
probability threshold for classification, τ . The area under the ROC curve
(AUC) is used as a summary statistic of the global accuracy of predictor. A
guideline for interpreting the AUC by Swets (1988) indicates that an AUC
of 0.5 is similar to random selection (our baseline) and the closer AUC is to
1 the more accurate the predictor is. The best model among the evaluated
architectures were chosen based on the AUC.

The MCC is a performance metric that takes into account dataset imbalance
(positive samples are overly represented). A random model will achieve a
performance of 0.0 and an oracle model would get 1.0.

The behavior of the classifier is highly dependent on the cut-off value, τ ,
since higher values of τ will decrease the sensitivity (Se) and increase the
specificity (Sp) and vice versa (Greiner et al., 2001). We use the Youden
Index J = maxτ{Se(τ) + Sp(τ)− 1} (Youden, 1950) to select the value of τ
based on the validation ROC curve, where J is set to put equal weight on
the sensitivity and specificity of the model (Fluss et al., 2005; Greiner et al.,
2001). Classifying a gene to be expressed occurs when the likelihood is above
the threshold (P (gene) > τ), meaning that we expect confident answers are
more likely to be correct (Johansen and Socher, 2017).
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Finally, we compare our results on the validation and test set with predictors
published in earlier studies. We evaluate the following predictors of solubility
in E. coli : Protein-Sol (Hebditch et al., 2017), SKADE (Raimondi et al.,
2020) and SoDoPe (Bhandari et al., 2020).

2.4. Sequence-based feature generation

Features related to protein solubility were generated with Protein-Sol (Heb-
ditch et al., 2017) and SoDoPe (Bhandari et al., 2020). The selected Protein-
Sol features were 7 amino acid composites (K-R, D-E, K+R, D+E, K+R-D-
E, K+R+D+N, F+W+Y) and 8 protein predicted features (protein length,
isoelectric point (pI), hydropathy, absolute charge at pH 7, fold propensity,
disorder, sequence entropy and beta-strand propensity). From SoDoPe, we
added the predicted solubility score (SWI) for a protein.

Predicted secondary structures of the proteins were made by Porter 4.0
(Mirabello and Pollastri, 2013), which classifies a protein sequence into three
classes: Helix, Strand or Coil. We converted the counts into percentages of
helices, strands and coils for a given sequence.

Information about enzyme type and origin were provided by Novozymes A/S
and were added to the set of sequence-based features.

2.5. Correlations between UniRep units and biological features

In order to understand which features UniRep captures in its embedding of
our protein sequences, we calculate Pearson’s correlation coefficient between
sequence-based features and the vectors with UniRep represented sequences
and the p-value for testing non-correlations. We report only statistically
significant correlations (p-value ≤ 0.05 with Bonferroni correction) for the
validation and test data (Hastie et al., 2016). Correlations are done for
predicted secondary structures, solubility properties, amino acid frequencies,
enzyme and taxonomic labels.

Correlations between UniRep values and the sequence features are visualized
in a heatmap or in Circos plots (Krzywinski et al., 2009), where each node
is either a UniRep or a biological feature and an edge shows the strength of
the correlation between two nodes.
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3. Results

Table 1 contains the results of our comparison of various approaches to pre-
dicting recombinant gene expression with the two types of protein inputs.
We benchmark the following modelling architectures on their performance of
the held-out test set: SVM, LR, RF and ANN. Furthermore, we evaluate the
effect of using amino acid frequencies as input as compared to using UniRep
formatted sequences. Performance is measured by the area under the ROC
curve (AUC) and Matthew’s correlation coefficient (MCC).

Our results show that using UniRep to format the sequences boosts perfor-
mances with the ANN scoring test 0.64 ± 0.01 AUC and 0.20 ± 0.03 MCC
for τ = 0.60 and the RF achieving 0.64 ± 0.01 AUC and 0.20 ± 0.02 MCC
for τ = 0.61. Interestingly, we find that using either input is better than
random guessing, but that UniRep formatted sequences gave the highest
performance. Comparing our models with existing frameworks (Protein-Sol
(Hebditch et al., 2017), SKADE (Raimondi et al., 2020) and SoDoPe (Bhan-
dari et al., 2020)) show that models built on data coming from one type of
host organism (i.e. E. coli) is not comparable to the universal embeddings
learned by UniRep (Table 2). The performance gained by using UniRep
based models indicates that unsupervised feature extraction can be useful
for predicting recombinant gene expression in different production organ-
isms.

In Figure 2 we analyse what happens when only considering samples above
a certain probability threshold in order to maximize specificity. Our results
suggest that the model has increased precision on proteins with high con-
fidence. E.g., thresholding the probability of expression to τ = 0.8 gives a
precision of more than 80%. However, this reduces the amounts of available
samples to less than 10% of the test samples.
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Input Score SVM LR RF ANN

AA frequency
Valid AUC 0.55± 0.02 0.57± 0.00 0.57± 0.01 0.58± 0.01
Test AUC 0.58± 0.02 0.60± 0.00 0.59± 0.01 0.59± 0.01
Test MCC 0.13± 0.05 0.15± 0.00 0.10± 0.02 0.15± 0.02

UniRep sequence
Valid AUC 0.59± 0.02 0.60± 0.00 0.66± 0.01 0.62± 0.01
Test AUC 0.62± 0.02 0.64± 0.00 0.64± 0.01 0.64± 0.01
Test MCC 0.15± 0.04 0.20± 0.00 0.20± 0.02 0.20± 0.03

Table 1: Validation and test set performances by the various model architectures. AA:
amino acid. UniRep sequence: protein sequence represented with UniRep. Model hyper-
parameters are in Table A.3 and Table A.4.

E. coli B. subtilis

Method AUC AUC MCC Reference

Protein-Sol 0.92 0.54 0.08 Hebditch et al. (2017)
SoDoPe 0.71 0.57 0.09 Bhandari et al. (2020)
SKADE 0.82 0.58 0.13 Raimondi et al. (2020)
UniRep-RF - 0.64 0.20

Table 2: Comparison of selected solubility predictors performance on E. coli test sets and
our B. subtilis test set. The reported E. coli AUC scores are those reported on the test
data used in the papers.
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Figure 2: Precision and data distribution by UniRep-RF probability thresholds on the
test set. Left: Blue bars corresponds to precision by each bin and the orange curve is the
precision of all samples above the threshold. The precision is calculated by saying that
all the samples in a bin are positive. Right: Green bars shows the percentage of data in
each bucket and the brown curve corresponds to the amount of available data above a
threshold.

3.1. Specific UniRep units correlate to protein features

In an attempt to understand why using UniRep formatted sequences raised
test performances, we examine the correlation between each element of the
1900-unit vector produced by UniRep for each protein sequence and various
protein features (Figure B.5). Pearson’s correlation coefficient is used and we
selected only statistically significant values (p-value < 0.05 with Bonferroni
correction).

Only 25 out of the 1900 units are repeatedly selected as being part of the
10 most important features in the differently seeded UniRep-RFs and their
correlation to protein features in the test set are shown in Figure 3. Feature
importance is measured as the Gini impurity (Hastie et al., 2016), mean-
ing the decrease in node impurity for each feature. It can be seen that
the 25 units can be clustered into two large groups with one being a small
sized cluster that contains 7 units that correlates to many of the protein
features. Especially unit 932 seems to capture base frequencies (amino acid
and nucleotide) in the sequences as well as protein properties (e.g. secondary
structure or solubility), although many of the 25 units have varying levels of
correlations to the latter. See Figure B.5 for which UniRep units correlate
to which protein features.
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Figure 3: The most important UniRep (UR) units for the RFs and what they correlate
to. Top: Heatmap visualization of feature importance (%) of all selected UR that are in
the top 10 most important (%) in the differently seeded RFs (1–10). Bottom: Heatmap
showing the correlations between an UR and a data feature. A zero correlation indicates
that the correlation is not statistically significant (p-value > 0.05).
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3.2. Prediction scores correlate with estimated expression levels

Following development of the model, 108 additional genes were expressed.
Expression yields were categorized into Low (estimated 0.05-0.15 g/l), Medium
(0.2-0.5 g/l) and High yields (>0.5 g/l). Figure 4 shows a box plot of the
estimated expression yields vs. the expressibility likelihood score per yield
category.
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Figure 4: Box plot of categorized estimated expression levels and expressibility likelihood
scores of 108 expressed genes. P-values of t-tests between groups shown at the top.

4. Discussion

Testing expressibility of a protein in a production host typically entails sev-
eral weeks of lab work and only one outcome (success or failure). The out-
come may depend on several factors extrinsic to the amino acid sequence,
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such as experimental conditions and codon usage. Despite this inherent noise
in the data, we find that UniRep features, combined with a non-linear clas-
sifier, can extract generalizable information from the training set and deliver
predictions that are better than the composition-based baseline. The model
makes it possible to reduce the amount of unsuccessful experiments by focus-
ing on genes with high predicted expression probabilities which would result,
with statistical significance, in higher expression rates.

We show that a small set of UniRep units correlate to biochemical and tax-
onomic features from the sequences and that classifiers placed more impor-
tance on this subset. More work is needed to verify which units correlates to
what, which could be confirmed by calculating correlations for a larger set of
enzyme sequences, regardless of whether they have been tested for recombi-
nant expression in B. subtilis. UniRep is not the only published model that
can extract information rich sequence representations, thus comparing the
relative performances of other pretrained models, such as Strodthoff et al.
(2019) or Rives et al. (2019), might reveal other important features.
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Appendix A. Parameters for classifiers

Table A.3: Parameters for AA Frequency classifiers
1 2 3 4 5 6 7 8 9 10

Model Parameter

ANN lr 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Hidden
layer
units

16 16 16 16 16 16 16 16 16 16

p
dropout

0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14

LR C 100 100 100 100 100 100 100 100 100 100
max
iter

10000 10000 10000 10000 10000 10000 10000 10000 10000 10000

penalty l2 l2 l2 l2 l2 l2 l2 l2 l2 l2
solver lbfgs lbfgs lbfgs lbfgs lbfgs lbfgs lbfgs lbfgs lbfgs lbfgs
tol 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

RF bootstrap True True True True False True False True True False
max
fea-
tures

auto auto sqrt auto sqrt sqrt sqrt auto sqrt auto

min
samples
split

2 10 5 2 5 5 10 5 5 10

n esti-
mators

100 100 200 200 200 100 500 200 500 500

SVM alpha 0.001 0.001 1e-06 0.001 0.0001 0.001 0.001 1e-05 0.001 1e-05
loss modified

huber
modified
huber

modified
huber

modified
huber

modified
huber

modified
huber

modified
huber

modified
huber

modified
huber

modified
huber

max
iter

10000 10000 10000 10000 10000 10000 10000 10000 10000 10000

penalty l2 l2 l2 l2 l2 l2 l2 l2 l2 l2
tol 1 0.001 0.001 0.001 0.001 0.0001 0.0001 0.0001 10 0.1

Table A.4: Parameters for UniRep classifiers
1 2 3 4 5 6 7 8 9 10

Model Parameter

ANN lr 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Hidden
layer
units

16 16 16 16 16 16 16 16 16 16

p
dropout

0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14

LR C 1 1 1 1 1 1 1 1 1 1
max
iter

10000 10000 10000 10000 10000 10000 10000 10000 10000 10000

penalty l2 l2 l2 l2 l2 l2 l2 l2 l2 l2
solver lbfgs lbfgs lbfgs lbfgs lbfgs lbfgs lbfgs lbfgs lbfgs lbfgs
tol 1 1 1 1 1 1 1 1 1 1

RF bootstrap False False False False False True False False False False
max
fea-
tures

sqrt sqrt sqrt sqrt auto sqrt sqrt sqrt auto sqrt

min
samples
split

5 10 2 5 5 2 2 10 10 10

n esti-
mators

100 500 100 100 100 1000 200 500 1000 1000

SVM alpha 0.01 0.001 0.1 0.1 0.1 0.01 0.1 0.01 0.1 0.01
loss modified

huber
modified
huber

modified
huber

modified
huber

modified
huber

modified
huber

modified
huber

modified
huber

modified
huber

modified
huber

max
iter

10000 10000 10000 10000 10000 10000 10000 10000 10000 10000

penalty l2 l2 l2 l2 l2 l2 l2 l2 l2 l2
tol 0.0001 0.0001 0.0001 0.0001 0.01 0.001 10 10 0.1 0.0001
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Appendix B. Correlations

Figure B.5: Circos plot showing the three highest correlations between each pair of all
sequence based features and UniRep units (UR). A node is either a UR or a feature
connected with an edge showing the strength of the absolute correlation. Only correlations
that were statistically significant are shown.
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