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Abstract

Nowadays the advanced technology for single-cell transcription-
al profiling enables people to routinely generate thousands of single-
cell expression data, in which data from different cell states or time
points are derived from different samples. Without transferring such
time-stamped cross-sectional data into pseudo-time series, we propose
COSLIR (COvariance restricted Sparse LInear Regression) for direct-
ly reconstructing the gene regulatory networks (GRN) that drives the
cell-state transition. The differential gene expression between adjacent
cell states is modeled as a linear combination of gene expressions in
the previous cell state, and the GRN is reconstructed through solving
an optimization problem only based on the first and second moments
of the sample distributions. We apply the bootstrap strategy as well
as the clip threshold method to increase the precision and stability of
the estimation. Simulations indicate the perfect accuracy of COSLIR
in the oracle case as well as its good performance and stability in
the sample case. We apply COSLIR separately to two cell lineages
in a published single-cell qPCR dataset during mouse early embryo
development. Nearly half of the inferred gene-gene interactions have
already been experimentally reported and some of them were even
discovered during the past decade after the dataset was published,
indicating the power of COSLIR. Furthermore, COSLIR is also eval-
uated on several single-cell RNA-seq datasets, and the performance
is comparable with other methods relying on the pseudo-time recon-
struction.

Single-cell omics measurements is one major breakthrough in experimen-
tal bio-technologies during the past decade, which has generated a massive
amount of data and provided lots of important insights into biological sys-
tems and complex diseases [27, 32, 49, 50, 56, 39, 29, 54]. However, single-cell
omic experiments sacrifice the cell in each assay, and thus single cells mea-
sured at different time points or stages of development have to come from
different batches of cells, which is independent of each other. So until now it
can only be able to produce time-stamped cross-sectional (TSCS) data rather
than longitudinal time series data containing the real-time information [25],
as shown in Fig. 1A.

Although reconstructing temporal information from single-cell transcrip-
tomic measurements has become an emerging field [44], the methods for gene
regulatory network (GRNs) inference based on the construction of pseudo-
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time series has recently been shown to be sensitive to the accuracy of pseudo-
time series construction, making them less stable [40]. Many other approach-
es without pseudo-time construction have also been proposed to infer GRNs
from TSCS single-cell expression data [30, 33, 1, 10, 28, 26, 36]. Howev-
er, they are mostly only confined within one single cell stage or time point,
the network inferred from which is the mechanism for sustaining the current
cell stage rather than the mechanism responsible for driving the cell-state
transition along cell lineage.

Moreover, the potential upstream regulatory genes picked up through
differential expressed gene (DEG) analysis is typically a lot, and the GRN
responsible for maintaining a single cell state should also be dense due to bio-
logical complexity. However, the GRN driving cell-state transition is believed
to be sparse [18]. Once we can identify the much fewer potential upstream
regulatory genes and possible regulatory relationships among genes, further
biological functional analysis is easy to be performed.

Hence in this paper, we directly model the GRN that is directly respon-
sible for the temporal evolution of gene expression, and propose a novel
optimization method called Covariance Restricted Sparse Linear Regression
(COSLIR), which only requires the first and second moments of the measured
samples. The output of COSLIR is a directed GRN with signs and weights
on each gene-gene interaction. We use the alternative direction method of
multipliers algorithm(ADMM, [6]) to solve this optimization problem, and
apply the bootstrapping([37]) and clip thresholding techniques for select-
ing significant gene-gene interactions to improve the precision and stability
of the estimator. Published single-cell qPCR and RNA-seq gene-expression
datasets during mouse and human early embryo development are used to
evaluate COSLIR. The performance of COSLIR is comparable to previous
methods using pseudo-time construction, but with fewer assumptions and
requirements.

Our approach: Covariance restricted sparse

linear regression (COSLIR)

Model

Let Xt and Xt+1 be two p-dimensional vectors representing the expression
values of p genes of a same single cell at stages t and t + 1 respectively. In
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Figure 1: Overview of the COSLIR method for GRN reconstruction using
time-stamped cross-sectional single-cell expression data. (A) The illustration
of time-stamped cross-sectional data generated in single-cell experiments.
Only the data in solid red rectangles has been measured. (B) Estimation of
sample mean and co-variance matrix. (C) Solving the optimization problem
in COSLIR through ADMM. (D) Inferred gene regulatory network among
genes represented by the estimator Â.

order to model the dynamic evolution from Xt to Xt+1, we introduce a p
by p matrix At, the element (At)ij at the i-th row and j-th column of which
represents the regulatory strength from gene j to gene i.

For the purpose of simplicity, we propose the following linear regression
model in which the dependent variable is the difference between Xt+1 and
Xt, and the explanatory variable is Xt:

Xt+1 −Xt = AtXt + lt + εt, (1)
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where the noise term εt is a p-dimensional random vector independent of Xt,
and lt is certain possible external perturbation.

However, as we demonstrated in introduction, once we measure Xt or
Xt+1, the other one is missing. There is no correspondence between the
cross-sectional single cell data collected at stages t and t + 1. Even if the
sample size tends to infinity, what we can finally obtained is only the exact
distributions of Xt and Xt+1, still not sufficient to uniquely determine At. To
overcome such difficulties, we further assume At is sparse, and lt as well as
εt is rather small. It’s a commonly used assumption in the field of statistical
learning [53, 9, 16], which is consistent with discoveries in single-cell biology
[18]. Then we could obtain the sparse matrix At by solving the following
non-convex optimization problem (Fig. 1C, Supplementary Information)

min
A∈Rp×p

||Σ̂t+1 − (A+ I)Σ̂t(A+ I)T ||2F
||Σ̂t+1 − Σ̂t||2F

+η
||µ̂t+1 − (A+ I)µ̂t||22
||µ̂t+1 − µ̂t||22

+ λ||A||1,
(2)

where Σ̂· and µ̂· are the estimators of co-variance and mean of X· (Fig. 1B).
|| · ||F denotes the Frobenius norm, and || · ||1 denotes the sum of the absolute
value of all the elements in a matrix. There are two tuning parameters η
and λ. The first two terms in (2) control the quantitative relations between
the mean and co-variance of Xt and Xt+1 according to (1), while λ controls
the sparsity of At. We used an efficient numerical algorithm, Alternating
Direction Method of Multipliers (ADMM [6]), to solve (2). After solving the
optimization problem, the non-zero elements in At constitute the regulatory
relations among genes (Fig. 1D). See Materials and Methods for more details.

It is worth mentioning that COSLIR should be applied to each pair of
adjacent cell stages or time points, not requiring the GRN to be invariant
with time t.

Estimation of mean and co-variance

In oracle cases, i.e. if we know the true mean µ· and true co-variance Σ· of
X·, the estimator of At could be obtained by directly solving (2). However,
the true mean and co-variance is usually unknown, thus we need to estimate
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the mean and co-variance of Xt in advance (Fig. 1B). More accurate estima-
tors of mean and co-variance certainly will lead to a better estimator of the
interacting matrix At. The naive sample mean and co-variance estimators
are recommended when the sample size is large enough. But when sample
size is small compared with the number of components, sample mean and
co-variance may contain large variance and result in quite inaccurate esti-
mator of At, thus other high dimensional techniques [4, 7, 31, 15] should be
applied to obtain more accurate estimations of mean and co-variance. Also
for single-cell RNA-seq data, one may first apply the imputation techniques
to address the technical noise such as dropout or batch effect [52], before
estimating the mean and covariance.

Bootstrapping

With only sample data in hand, we have to apply the estimated co-variance
and mean of Xt and Xt+1 in (2), which probably will lead to the inaccurate
estimation of At. Thus we apply the non-parametric bootstrapping technique
[14] to increase the robustness of estimator as well as the precision, which is
more interested to experimentalists [40]. We repeat the following procedure
multiple times and take an ensemble of all the estimators for At we got
together: first perform randomly sampling with replacements from the two
collections of samples at different stages or time points, and constitute two
new collections of observations; then apply COSLIR to the new collections
of the samples to obtain a new estimator of At. Finally only keep those non-
zero elements whose confidence (repetition ratio) is above certain threshold,
into the final estimator of the interacting matrix At.

Simulation Study

We first evaluate the performance of COSLIR in a simulation study, in the
oracle case where the true mean and co-variance matrix are known as well
as the sample case with only random samples in hand.

In oracle cases we have evaluated the criteria we proposed for model se-
lection (Materials and Methods), i.e. determining the two tuning parameters
λ and η in (2). The results are quite robust with respect to the value of η,
and our criteria can usually help to find the optimal or sub-optimal value of
λ (see Supplementary Information).
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In oracle cases, the recovery of the estimator obtained through COSLIR is
almost exact (Fig.2A), even when the dimension of the data is up to 500 and
the number of gene-gene interactions in At that should be inferred is as high
as 2.5×105. Not only the precision (the fraction of inferred interactions that
are correct) and recall (the fraction of correct interactions that are inferred)
are nearly 100%, the exact values of the estimator are nearly identical to
the correct ones that we generated (See Supplementary Information). This
gives us the confidence to apply this method to the simulated sample data, in
which all of Σt, Σt+1, µt and µt+1 should be estimated from data separately
at first.

Fig. 2B-D shows how the performance of COSLIR varies as a function
of the number of genes, the number of cells and the threshold of confidence
in the sample cases. Even when the number of genes are high, high degree
of precision can still be achieved, as long as the threshold of confidence from
bootstrapping is set to be high (Fig. 2B, 2D). As a price, the recall will
decrease much as compared to the low gene-number case, which is already
lower than the oracle case (Fig. 2B). However, noticing the number of gene-
gene interactions in the matrix At that need to be inferred is very high(square
of dimension), the number of successfully recovered interactions among genes
is not small at all. The time to run COSLIR once is less than 1 minutes for
dimension 100 and about 40 minutes for dimension 500 in a typical personal
computer. Bootstrapping procedure typically needs to run about 50 times.
It should be much faster to run COSLIR parallel on computer clusters.

Sample size is another important factor to determine the performance of
COSLIR. When the sample size increases, so do the precision and recall (Fig.
2C), approaching the performance of the oracle case. There is also a trade
off between precision and recall when tuning the threshold of confidence in
the bootstrapping procedure (Fig. 2D). It can be determined case by case
in real applications, but the rule of thumb here is to choose a high threshold
of confidence if one cares more about precision such as in most studies of
experimental sciences. Furthermore, the more sparse the true matrix At is,
the better the performance is and the less samples one needs (Supplementary
Information).

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 14, 2021. ; https://doi.org/10.1101/2021.05.12.443928doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.12.443928
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: Performance of COSLIR validated through a simulation study, both
in oracle cases where the true mean and co-variance matrix are known (A),
and in sample cases where only random samples are available (B-D). Detailed
simulation settings is in Materials and Methods as well as Supplementary
Information. The precision and recall vary with the number of genes(A,B),
the number of cells (C) and the threshold of confidence(D). The number of
cells are 5000 in (B) and (D). The number of genes is 100 in (C) and (D).
The threshold of confidence is 0.9 in (B) and (C). Clip threshold is always
0.01.

Results on experimental TSCS Single-Cell dataset-

s during Early Embryo Development

Uncovering the gene expression patterns in early embryos is crucial for under-
standing cellular developmental processes [21, 45, 38, 11, 48]. However, due
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to the limitation of real-time experimental measurements, people are still not
clear about the detailed regulatory mechanism driving this very beginning
process of life. We are going to use COSLIR to infer the gene regulatory
networks responsible for the control of the cell fate decisions.

Single-cell qPCR dataset

We first analyzed a set of published single-cell gene expression data during
mouse embryo development obtained using the qPCR technique[21].

In [21], 442 single cells were selectively collected from early mouse embry-
onic development, containing 7 developmental stages: Zygote, 2-cell stage,
4-cell stage, 8-cell stage, 16-cell stage, Morula stage and Blastocyst stage.
Blastocyst embryos are found to be made up of 3 different types of cells,
i.e. trophectoderm(TE), primitive endoderm(PE), epiblast(EPI) which have
diverse gene markers and expression patterns[43].

We apply the nonlinear dimension reduction method ISOmap [51] to the
blastocyst data starting from the 8 cell stage (Fig. 3B), instead of the linear
dimension reduction method PCA used in [21]. It indicates that there are
two cell-fate decisions in this data set: (1) the setting apart of inner and
outer cells at the 16-cell stage and consequently forming ICM and TE, and
(2) the subsequent formation of primitive endoderm and epiblast from ICM .

Since during the first cell-fate decision, maternal gene degradation still
dominates the variation of gene expression, which violate the requirement
of COSLIR method, here we are only able to analyze the second cell-fate
decision applying COSLIR.

Fig. 3C-D gives an overview of the two inferred GRNs using Cytoscape
[47]. We have inferred a certain amount of directed gene regulatory relation-
ships using COSLIR, i.e. the positive or negative elements in those matrices
At’s, indicating the activated or inhibited regulatory relations between genes.
The inferred upstream regulatory genes and main regulatory relationships
are consistent very well with the existing knowledge about the second cell-
fate decision during early embryo development [17, 35, 20, 45]. Sall4, Sox2,
Pou5f1, Gata6, Tcfap2c and Pdgfra serve as the main upstream regulators
of the inferred GRN driving the ICM cells towards the EPI fate, the main
task of which is to activate the EPI markers and inhibit the PE marker-
s (Fig. 3C). Similarly, Sall4, Sox2, Pou5f1, Gata4, Tcfap2c and Nanog
serve as the main upstream regulators of the inferred network driving the
ICM cells towards the PE fate, the main task of which is to inhibit the
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EPI markers and activate the PE markers. All of these inferred upstream
regulatory genes as well as their targeted markers are well known for their
functions during early embryo development [55, 21].

Furthermore, through searching the literature and databases(ChIP-atlas(ESC),
BioGRID and TRRUST), we found out that nearly half of the inferred regula-
tory relationships have already been experimentally reported, some of which
were uncovered many years after the used data set from [21] was published
(Figs. S5-S6 in the Supplementary). Many of them have even been validated
by more than one database.

The inferred regulatory relationships that have not been included in the
three databases may still be correct predictions. For instance, the regulatory
relation from Gata3 to Gata6 has just recently been reported in [24], which
is not contained in the three databases but predicted by COSLIR.

Notice that we only used the data sets of ICM and EPI or ICM and PE
to infer the gene regulatory networks separately. For example, even though
the fold change of Gata6 from the ICM stage to the PE stage is only 1.03, it
is known to be an important marker gene of the PE stage compared with its
expression in the EPI stage. Now it is correctly inferred by COSLIR, even
without referring to the gene expression data in the EPI stage, indicating
the power of COSLIR.

Single-cell RNA-seq datasets

We compare COSLIR with three existing regression-based GRN reconstruc-
tion algorithms, SCODE, SINCERITIES, SINGE [41]. Two experimental
scRNA-seq datasets are analyzed, one in human cells (hESC, [12]) and one
in mouse cells(mESC, [23]). These datasets contain multiple time points.
Hence we reconstruct the GRNs underlying each pair of adjacent time points.
Functional interaction networks (STRING) and cell-type-specific ChIP-Seq
data [12, 23] are used as the ground-truth networks for evaluation.

We utilized a slightly modified early precision rate (EPR) from BEELINE
[41] to assess these algorithms. A weighted network is generated by each
algorithm. EPR is just the fraction of true positives in the most significant k
edges. We chose these k’s in Fig. 4 when the averaged EPR as a function of
k obtained from the GRN generated by COSLIR has attained a stable value
(See Supplementary Information). In Fig. 4, the differential EPRs among
algorithms with respect to COSLIR across different datasets are shown.

Among these totally 18 times of comparisons, COSLIR is much better
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than all the other algorithms in 7 times, and ranks the second in 8 times.
Therefore we can come to the conclusion that COSLIR is at least comparable
with these existing methods, without the step of pseudo-time reconstruction.

Discussion

In this era, the intersection between machine learning and network biology
is offering invaluable opportunities and challenges, including gene regulato-
ry network inference [8]. In this paper, we proposed an optimization model
COSLIR for the inference of gene regulatory network, with only the time-
stamped cross-sectional single-cell expression data in hand. Our approach
minimizes the requirements for the inputs, i.e. using just the estimated mean
and co-variances of the samples, even without the construction of pesudotime
trajectories, but outputs directed GRNs with weights and sign. Our model
does not assume any specific category of sample distributions, broadly en-
hancing its applicability. In the simulation study, we showed that COSLIR
is able to exactly recover the true network in the oracle cases, while its per-
formance is still quite good in the sample cases, especially the precision with
the help of bootstrapping. Moreover, in the real-data analysis, COSLIR is
applied to the single-cell qPCR and RNA-seq datasets. COSLIR is able to
recovers crucial upstream regulatory genes as well as gene-gene interactions
during early mouse and human embryonic development. It implies that the
GRN information has long been hidden in the TSCS data itself, even in the
absence of real time-series data.

In real applications, several other issues will influence the performance of
COSLIR. For example, if the data is multi-scaled across the genes, certain
normalization is necessary before applying COSLIR. We recommend using
correlation matrix instead of co-variance matrix, though it may cause some
bias. Gene selection is also a problem. Similar to many other GRN recon-
struction methods, the computation time of COSLIR would be significant if
the number of genes exceeds 1000 [40]. Typical strategy for selecting genes is
choosing the highly varying ones together with transcriptional factors. Better
and automatic strategy is still in demand.

Another important issue is whether the data strictly follows the linear
model (1). Although linear regression model is the most commonly used
model in GRN reconstruction using single-cell expression data [19, 34, 13, 46,
2], the information on linearity is actually missing in the time-stamped cross-
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sectional data. However, in statistical learning, we always chose the linear
model except there is strong evidence that it is highly nonlinear, because
empirically, as long as the data does not highly deviate from the linearity
assumption, the performance of statistical inference by the linear model is
still pretty good [22]. Also linear model is much easier to be interpreted.
People believe that the simpler is often better.

The reconstruction method of GRN can be further combined with existing
prior knowledge such as additional databases or supervision [1] to increase
the accuracy. And very recently, it was shown that RNA velocity analysis
might restore certain amount of temporal information [42]. Hence combining
COSLIR with existing database knowledge and bioinformatic methods will
be our future research directions.

Materials and Methods

Derivation of the Model

Denote the mean and co-variance of the p-dimensional random vector Xt as
µt and Σt. Note that Xt doesn’t have to be drawn from normal distribution.
εt is a noise term with mean lt and co-variance Dt which is small compared
with Σt, then the following equations could be derived from (1):

Σt+1 = (At + I)Σt(At + I)T +Dt;

µt+1 = (At + I)µt + lt, (3)

in which I is the identity matrix.
It is under-determined as an equation of At, i.e. there are infinite number

of solutions of At, even if Σ·, µ·, l·, D· have all been known. Hence additional
assumption should be added to reduce the number of variables. One popular
approach is to assume the sparsity of parameters [53, 9]. Hence here we
assume At is sparse, i.e. only a few entries of At are non-zero, then we
propose an estimator for At following the idea of compressed sensing with
nonlinear observations [5]

min
A∈Rp×p

||A||1

s.t. Σt+1 − (A+ I)Σt(A+ I)T = Dt

µt+1 − (A+ I)µt = lt.

(4)
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In practice, the exact co-variance Σ· and mean µ· can be replaced by their
estimators Σ̂· and µ̂· from samples. Also the noise mean lt and co-variance Dt

are usually unknown in real data analysis, thus applying the penalty method
as well as the idea of least square estimation, the optimization problem (4)
could be turned into the unconstrained minimization problem (2). (2) is a
non-convex approximation problem, hence we used the ADMM method to
solve it (See Supporting Information), which may have many local optimum.
We found out that setting zero matrix as the start point in the ADMM
algorithm can always obtain a reasonable solution.

Co-variance matrix estimation

We first obtain the naive co-variance matrix estimator Σ̂, and then corrected
it by

Σ̃ = (1− α)Σ̂ + αI, (5)

where I is an identity matrix, α = 0.01, to ensure positive definiteness.

Model selection and evaluation

Notice there are two hyper-parameters needed to be set in COSLIR: λ to
controlling the sparsity of At and η controlling the noise term in (3). Our
model is an unsupervised-learning model due to the lack of simultaneous
measured Xt and Xt+1, hence cross-validation does not work. To overcome
such a problem, empirically, we used three indexes of criterion to help select
the model:

eΣ(Â) = ||Σ̂t+1 − (Ât + I)Σ̂t(Â+ I)T ||F/||Σ̂t+1 − Σ̂t||2F
eµ(Â) = ||µ̂t+1 − (Ât + I)µ̂t||2/||µ̂t+1 − µ̂t||22

s0(Â) =
#{non-zero elements of Â}

p2
.

(6)

eΣ, eµ measure the small noise terms in (3), while s0(Â) measures the sparsi-

ty of Ât. We chose the model with all three indexes small, namely, choosing
the sparsest matrix At with eΣ, eµ below a reasonable level. Our simulation
study illustrates the effectiveness of this criterion we proposed(See Supple-
mentary Information for more details). Also to make things easier, during
bootstrapping, we first determine the hyper-parameters λ and η using the
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whole sample, and then just use these determined values for the subsequent
analysis.

In real applications, figuring out the positions of nonzero elements and
their sign(positive or negative) in At is enough, and we call such elements
as properly recovered. Therefore we used the commonly used criterion pre-
cision and recall in machine learning to evaluate the performance in the
simulation study, i.e.

precision =
#{properly recovered nonzero elements}

#{nonzero elements in Ât}
; (7)

recall =
#{properly recovered nonzero elements}

#{nonzero elements in true At}
. (8)

Clip thresholding

In practice, we always need a clip thresholding procedure on the output of
the numerical algorithm, to eliminate those non-zero entries with very small
absolute values below certain threshold. In the oracle case, it is quite simple,
since there is always a huge gap among the values of non-zero elements.
However, in the sample case, it is not that clear which value of clip threshold
we should chose. We suggest to determine the clip threshold based on the
trade off among the three indexes of criterion in (6), i.e let Ât(ε) be the
adjusted estimator after taking ε as the clip threshold, then we determine
the clip threshold ε by choosing the sparsest Ât(ε) with eΣ(Ât(ε))+ηeµ(Ât(ε))
below certain reasonable level. Similar to the hyper-parameters λ and η, the
clip threshold is also determined in advance before bootstrapping using the
whole sample.

Confidence of bootstrapping

After clip thresholding, for each matrix element in At, if the ratio of non-zero
estimators with the same sign(confidence) during the bootstrapping proce-
dure is greater than a given threshold, then we regard the estimated sign of
this element as statistically significant, and the mean value of these estima-
tors generated through bootstrapping makes the final estimator.
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Simulation settings in Fig. 2

In the oracle case, the co-variance matrix Σt is generated by the formula

Σt = PΛP T in which Λ ∈ Rp×p is a diagonal matrix with Λii = exp
(
i
p

)
, i =

1, 2, ...p and P = I +R where I is the identity matrix and the elements of R
are all sampled from independent standard normal distributions. The true
interacting matrix At ∈ Rp×p is a sparse matrix with only 10% elements are
non-zero and randomly generated from N (0, 1) independently. The elements
of the µt ∈ Rp are all generated from N (0, 100) independently. The mean of
each element in the noise term εt ∈ Rp is set to be 0.1 and the co-variance
matrix Dt of εt is set to be a diagonal matrix with (Dt)ii = 0.01 for each
i. Then µt+1 and Σt+1 are calculated through Eq. 3. Given the mean and
covariance matrix, the sample data is generated using normal distribution,
with only one of Xt and Xt+1 available.

Numerical experiments have been repeated for 100 times in the oracle case
and 50 times in the sample case. The bootstrapping procedure is repeated
for 50 times in each sample experiment. The determined values of η, λ and
clip threshold are summarized in Supplementary Information.

Implementation in real-data analysis

The qPCR dataset from [21] contains mRNA expression levels of 48 genes
(including 27 transcriptional factors, 19 known marker genes and 2 house-
keeping genes for normalization) in over 500 individual cells, during the first
two cell fate decisions of the early mouse embryo. We only use the data of
the 46 non-housekeeping genes to do the analysis. We re-scaled the raw data
by log transformation:

x̃ = log(x+ 1). (9)

The bootstrapping procedure is repeated for 500 times.
The genes in the RNA-seq datasets are selected using the strategy in

BEELINE [3]. The mESC datasets using STRING as the ground-truth net-
work contains 646 genes, with 90 (0h), 68 (12h), 90 (24h), 82 (48h) and 91
(72h) cells during 5 time points; the mESC datasets using cell-type-specific
ChIP-Seq data as the ground-truth network contains 970 genes with the same
number of cells during the 5 time points. The hESC datasets using STRING
contains 517 genes with 92 (0h), 102 (12h), 66 (24h), 172 (36h), 138 (72h)
and 188 (96h) cells during 6 time points; the hESC datasets using cell-type-
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specific ChIP-Seq contains 814 genes with the same number of cells during
the 6 time points. Note the data from [3] has already been normalized so we
just use it after selecting genes. The bootstrapping procedure in COSLIR is
repeated for 50 times.

Re-scaled values for selecting most influential regulato-
ry interactions

In single-cell expression data analysis, people may be more interested in
those interactions contributing more to the changes in the mean expression,
i.e. DEGs. Therefore, we define a rescaled value

(Ã)ij =
(|Â|)ij|µ̂1|j
|(µ̂1)i − (µ̂2)i|

, i, j = 1, 2, ...p,

for selecting the most influential regulatory gene-gene interactions. We only
perform this technique on the final estimator obtained after bootstrapping.

Software and data

Code, simulation data, and single cell gene expression data are available at
https://github.com/Ge-lab-pku/COSLIR.
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Figure 3: Overview of the real single-cell RT-PCR expression data analysis
applying COSLIR. (A) The developmental lineage tree for mouse early em-
bryo development. (B) Data illustration using Isomap. (C) Inferred GRNs
driving the ICM cells towards the fate of EPI, with its sketch map. (D)
Inferred GRNs driving the ICM cells towards the fate of PE, with its sketch
map. Here clip threshold is 0.01, the threshold of confidence is 0.75, and the
threshold of rescaled values we chosen is 0.1.
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Figure 4: Early precision rate (EPR) across different algorithms in mESC (A,
B) and hESC (C, D) datasets, using STRING (A, C) and cell-type-specfic
ChIP-Seq (B, D) as the ground-truth. mESC has 5 time points and hESC
has 6 time points. We here plot the differential EPR of existing algorithms
with respect to COSLIR.
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