
1 

Energy Landscape of the SARS-CoV-2 Reveals 

Extensive Conformational Heterogeneity 

Ghoncheh Mashayekhi,1#	John Vant,2#	 
Abhishek Singharoy2*,	Abbas Ourmazd1*	

1Department of Physics, University of Wisconsin Milwaukee, 
3135 N. Maryland Ave, Milwaukee, WI, 53211, USA 

2School of Molecular Sciences, Center for Applied Structural Discovery, Arizona 

State University, Tempe, AZ, 85287, USA 

#  Joint first authors 
*  Joint corresponding authors 

* To whom correspondence should be addressed: ourmazd@uwm.edu or asinghar@asu.edu. 

ABSTRACT 
Cryo-electron microscopy (cryo-EM) has produced a number of structural 
models of the SARS-CoV-2 spike, already prompting biomedical outcomes. 
However, these reported models and their associated electrostatic potential 
maps represent an unknown admixture of conformations stemming from the 
underlying energy landscape of the spike protein. As for any protein, some of 
the spike’s conformational motions are expected to be biophysically relevant, 
but cannot be interpreted only by static models. Using experimental cryo-EM 
images, we present the energy landscape of the spike protein conformations, 
and identify molecular rearrangements along the most-likely conformational 
path in the vicinity of the open (so called 1RBD-up) state. The resulting global 
and local atomic refinements reveal larger movements than those expected 
by comparing the reported 1RBD-up and 1RBD-down cryo-EM models. Here 
we report greater degrees of “openness” in global conformations of the 
1RBD-up state, not revealed in the single-model interpretations of the 
density maps, together with conformations that overlap with the reported 
models. We discover how the glycan shield contributes to the stability of 
these conformations along the minimum free-energy pathway. A local 
analysis of seven key binding pockets reveals that six out them, including 
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those for engaging ACE2, therapeutic mini-proteins, linoleic acid, two 
different kinds of antibodies, and protein-glycan interaction sites, switch 
conformations between their known apo- and holo-conformations, even 
when the global spike conformation is 1RBD-up. This is reminiscent of a 
conformational pre-equilibrium. We found only one binding pocket, namely 
antibody AB-C135 to remain closed along the entire minimum free energy 
path, suggesting an induced fit mechanism for this enzyme. 

Introduction 
Intensive research, primarily by cryo-Electron Microscopy (cryo-EM) techniques, has 
established that the spike protein plays a critical role in the process of infection by the SARS-
COVID family (1,2). The average ’apo’ (ligand-free) and ’holo’ (ligand-bound) conformations 
assumed by the spike protein are now known to near-atomic resolution (1,3,4). It is recognized 
that the spike protein exhibits structural variability (1, 5). However, access to an 
experimentally determined conformational path between the apo- and holo-end states would 
substantially elucidate the thermally accessible functionally relevant conformational motions 
of the spike protein (6,7). 

As different molecular conformations populate different energy states, their 
conformational spectrum defines an energy landscape. This landscape is, in principle, multi-
dimensional. Nonetheless, a two-dimensional (2D) representation described by the leading 
two conformational coordinates is commonly used to project the multidimensional free 
energy profiles on to a manifold of reduced dimensionality (6–8). Near equilibrium, 
biomolecular function corresponds to traversing the minimum-energy pathway connecting 
the initial and final states (9–13). For example, the path underlying cell recognition of the spike 
protein commences along the energy landscape of the apo state transitions to the holo state 
after binding the cell surface receptors, ending at the most probable conformations on the 
holo landscape. Here, we focus on the apo segment of the spike conformational pathway and 
draw inferences on its plausible binding mechanisms not amenable to a single-structure 
representation, or even microsecond-long molecular dynamics (MD) simulations of apo-state 
models. 

The Receptor Binding Domain (RBD) of the apo spike protein exists primarily in two 
conformations. These “down” and “up” states occur with nearly equal probability (1, 3). In the 
down state, the ACE2 binding pocket is obscured, rendering membrane fusion essentially 
unfeasible. The nature of the pathway between the down and the up states of the RBD, and 
the transition rate between a hidden and an accessible ACE2 binding pocket are of central 
importance for understanding SARS-CoV2’s ability to hide vulnerable epitopes from the host’s 
immune system (2). Several studies have employed Molecular Dynamics (MD) simulations to 
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investigate the transitions between these states, using static cryo-EM structures to 
characterize each endpoint (14–19). However, a single cryo-EM map often represents an 
ensemble of thermally accessible conformations (7, 20, 21). Brute-force MD simulations are 
thus expected to have an inherent model bias towards the selected starting structures. 
Enhanced sampling simulations have been successful in overcoming such bias (22), but are 
cumbersome. 

Here, by combining all-atom MD simulations and cryo-EM data analysis, we determine the 
collection of conformations pertaining to the up state of the RBD. Our results show that in the 
apo-state, the spike protein assumes a broadly heterogeneous ensemble of nearly 
isoenergetic conformations. The heterogeneity of these structures can substantially exceed 
the differences between the average down and up structures inferred by standard cryo-EM 
analyses (1, 3). The local movements have a dramatic effect on key binding sites, offering fresh 
insights into how molecular recognition occurs at the spike’s ACE2, linoleic acid, antibodies-
binding domains. Our approach offers a useful guide for future work on characterizing the 
most probable down to up transitions of the RBD, by integrating experimental cryo-EM data 
and MD simulations. 

Results 
As described below, we extract the conformational energy landscape of the spike protein from 
experimental cryo-EM snapshots, and reconstruct 3D density maps along the minimum-free-
energy pathway (MFEP) on this landscape. Molecular dynamics simulations are then employed 
to interpret the density information in all-atoms detail. Finally, we present the global and local 
conformations of the up-state of the apo spike protein, focusing on the conformational 
heterogeneity of key binding pockets. 

Conformational coordinates, energy landscape, and functional trajectory 
We use geometric machine-learning (ManifoldEM) (23) to extract the manifold of 
conformational motions from cryo-EM images. This manifold is spanned by a set of orthogonal 
conformational coordinates (CC) (6). To determine the conformational changes along each 
coordinate, we compile a 3D movie of the density maps along each of those coordinates. 
(Details of the density movie generation scheme is provided in Methods). Fifty density maps 
were extracted along each of the two conformational coordinates. The nominal resolution of 
these maps varies from 3.2 to 4.4 Å. Molecular dynamics flexible fitting or MDFF was employed 
to construct molecular models from each of the maps (24,25), translating the density movies 
along CC1 and CC2 to molecular movies (Methods and Supplementary Movies 1 and 2). 
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By construction, the motions observed along CC1 play out in the XY plane, and motions 
observed for CC2 evolve along the Z-axis. Movement along CC1 corresponds to a global change 
in the RBD’s center of mass, which deforms orthogonally to the spike protein’s principal axis. 
Similarly, motion along CC2 captures a “projectile-like” motion of the RBD parallel to the spike 
protein’s principal axis. The functionally relevant conformational movements, however, 
involve a combination of CC1 and CC2 along the minimum-energy path on the conformational 
landscape (9). As detailed in Methods, we infer free-energy changes from the population of 
points on the CC1-CC2 conformational plane via the Boltzmann factor (fig. 1A) (6). The 
minimum free energy path on this CC1-CC2 landscape consists of a ‘horse-shoe’ shaped, 
essentially iso-energetic tube. Compiling the conformational movies along the MFEP reveals 
the functional motions of the spike protein (Supplementary Movie 3), because, near 
equilibrium, other conformational states are not significantly occupied. 

Previously reported 6VSB (3) and 6VYB (1) densities resemble ManifoldEM models 
pertaining to location no. 29 (CC1 21; CC2 31) and its close vicinity on the minimum free energy 
pathway in fig. 1A. (See Methods for relating density maps to points on the energy landscape.) 
Most of the states along the minimum free energy pathway are nearly isoenergetic, and thus 
populated with comparable probabilities. The pursuit of high-resolution structures, however, 
may preferentially select a subset of the high probability conformations present (7).  key spike 
functions (e.g., antibody and receptor binding or epitope signaling) stem from the entire 
population of structures along the MFEP. The conformational heterogeneity associated with 
the states in this horse-shoe shaped reaction tube highlights the range of global and local 
conformations often subsumed by single-model representations, which ignore the underlying 
conformational energy landscapes. We already observe at the level of density changes, that 
the conformational spectrum along the MFEP of the apo up spike conformation can result in 
more open (CC1 25 → 31; CC2 28 → 32) and less open (CC1 17 → 20 and CC2 8 → 12) apo 
conformations.  These conformations are as probable as those reported in the PDB (1,3). The 
variation in conformations of the spike protein is only partially apparent in a comparison 
between the reported static apo (1, 3), holo (26–28), and long-time MD simulation models of 
the spike (29). In contrast, we circumvent the uncertainties in inferring function from 
stationary snapshots (6), by compiling density movies along the MFEP to reveal the functional 
trajectory of the apo spike conformation. 

Global conformational changes along MFEP 
A total of 59 points on MFEP were refined using a multi-grid MDFF procedure (30,31) to gauge 
the most probable conformational changes of the apo spike. Shown in Supplementary Movie 
3, the set of conformations along the MFEP reveals deviations from the static apo structures 
at both ends of the horseshoe-shaped tube. As expected, models stemming from the MFEP 
resemble previously published open state structures 6VSB and 6VYB (1,3), with RMSD ranging 
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from 2.7 to 4.2 Å (fig. S1). This agreement is especially close in the lowest-energy region of the 
MFEP (MFEP Location: 20 to 30) and is corroborated by comparable inter-domain distances 
between the MFEP models and those previously reported (fig. S2). 

Despite these similarities, fig. 2 shows that, along the MFEP, the RBD’s Solvent Accessible 
Surface Area (SASA) scores span the range of values previously assigned to differences 
between open and closed static structures. The non-biased MD trajectories starting from the 
apo model span a smaller range of SASA values than those seen in the MFEP, despite an 800-
fold longer simulation time. The up RBD’s global conformation is similar to the open spike 
structures. However, coupling of the global conformations to local changes at key antibody or 
inhibitor pockets along the MFEP is expected to be significant. This issue is investigated in the 
next section. 

Globally closed or in RBD-down conformation were not observed in any of the MFEP 
locations. The distribution of RBD “all-down”, “1-up”, and “2-up” conformations varies across 
studies (1,3,32). Typically, both the “RBD down” and “1-up” conformations have been 
reported to be in equilibrium, as reflected in the 2:1 to 1:1 population distribution of the 2D 
images (1,3). The lack of RBD-down conformations reflects the absence of equilibrium 
between the up and the down states in the picked particles used to construct the 6VSB 
structure. This supports the notion that, in early SARS-CoV-2 spike protein data (1), the crown 
of the spike was over-stabilized to a closed conformation. 

Local conformational motions at binding pockets 
The starting structure can have a significant impact on the outcome of computations of ligand 
protein binding interactions (33, 34). Using the MFEP structures derived from experimental 
data, we are able to investigate the impact of the global conformational changes on individual 
binding pockets. We choose six previously identified binding pockets: three neutralizing 
antibodies (27); linoleic acid (LA) (28); a computationally designed neutralizing mini-protein 
(26); and ACE2 (4). By comparing the MFEP structures to apo and holo-structures, we 
investigate excursions from the reported structures in terms of internal deformations, solvent-
accessibility, and the energetics of the individual binding pockets. We also consider the impact 
of two important glycans N165 and N234 on stabilizing the spike protein complex. 

Fig. S4 shows Root-Mean-Square Standard Deviation (RMSD) plots calculated using 
residues specific to each binding pocket. Despite the highest similarity to 6VSB at MFEP 
locations 20 to 30 for the global analysis, local variations in RMSD are more pronounced when 
the binding pockets are aligned by the residues involved in ligand-protein interactions. In fig. 
3, we investigate RMSD excursions from the static structure 6VSB aligned using the entire 
monomer. The pattern observed in the global RMSD analysis recurs, whereby MFEP location 
28 has the lowest RMSD to 6VSB. However, each binding pocket deviates from 6VSB. The 
binding pockets for ACE2 and the mini-protein have high RMSD values at both ends of the 
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horseshoe shaped MFEP, while the binding pockets for LA, AB-EY6A, and AB-CR3022 maintain 
similar RMSD values in all MFEP locations. The binding pocket for AB-C135 deviates strongly 
from 6VSB throughout the entire MFEP trajectory. This is discussed further below. In the RMSD 
space, it is difficult to determine how amenable a pocket is to binding. However, the LA and 
AB-C135 binding pockets display large differences in RMSD between the apo (6VSB) and holo-
structures. The LA binding pocket is distinctly more apo-like, while the converse is true for the 
AB-C135 binding pocket. To avoid uncertainties in interpreting the local RMSD values, we 
examine SASA at the local binding-pocket level. 

Fig. 4 shows a clear difference between apo and holo binding pockets.  This allows direct 
comparisons between different MFEP locations, and the tight or loose nature of the binding 
pockets from holo and apo discrete structures. For five of the six binding pockets, the MFEP 
reveals a larger or comparable variation in SASA compared to the apo “1-up” RBD structures 
(6VSB, and 6VYB), the “all-down” RBD structure (6VXX), the holo structure, and 10 
microsecond MD ensembles (29). For the five binding pockets, where the MFEP locations span 
the SASA variation or openness of the pocket seen for the static and nonbiased MD structures, 
the binding mode appears to involve a conformational selection mechanism. For example, the 
mini-protein binding pocket in fig. 4, at MFEP locations 4, 47, 49, and 54, the calculated SASA 
scores are commensurate with the holo-structure (PDBID: 7JZU), while the rest of the MFEP 
locations involve more open structures (higher SASA scores). This suggests that even without 
the presence of the mini-protein, the binding pocket is able to adopt a tight binding 
configuration amenable to spike protein neutralization. Interestingly, we observe a key 
interaction between the LA binding pocket of the “up” RBD and the N234 glycan of the same 
chain (see fig. 5). At MFEP locations 51 to 59, the N234 glycan on chain A hydrogen bonds with 
residues 387 (Leu) and 388 (Asn), pulling the binding pocket open, and resulting in the “super-
open” states seen in fig. 4 at the same MFEP locations. 

The AB-C135 binding pocket has a decidedly more closed conformation (fig. 4). The 
hydrophobic residues near the AB-C135 binding pocket and at the surface of 6VSB are buried 
in our simulations, as indicated by the lower SASA score calculated for 6VSB (see fig. S5). This 
suggests the binding mechanism involves an induced fit.  the AB-C135 binding pocket is a 
“hidden epitope”, indicating that the closed state we find is biologically relevant (26). The map 
resolution surrounding this binding pocket has a marginally lower resolution (see fig. S6), 
decreasing confidence in the relevance of the observed “super-closed” conformation. The 
presence of a closed local pocket in an overall up or open spike RBD further suggests that AB-
C135 binding entails an induced fit. 

So far, we have observed the effect of glycosylation on the LA binding pocket. Fig. 5B shows 
that N165 has similar pairwise potential energies for all three intermolecular interactions 
between N165 and the RBD of the counterclockwise chain. The pairwise potential energies for 
the intramolecular interaction between N234 and the RBD of the same chain show large 
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differences in the ability of the glycan either to stabilize or destabilize the RBD conformation. 
Both the N234B	RBDB	and N234C	RBDC	pairwise interactions show positive potential energies in 
many of the MFEP locations due to strong van der Waals interactions. These steric interactions 
suggest the “down” RBD conformation is destabilized by the presence of N234, as noted by 
Amaro and colleagues (26), albeit only for their intermolecular interactions. The N234A	RBDA	

interaction is negligible in most of the MFEP locations, except in the 50 to 59 range of locations. 
In this region, RBDA	is stabilized by its interactions with N234A, incidentally creating the “super-
open” LA binding pocket discussed above. Finally, fig. S3 shows that comparing SASA values 
from MD ensembles derived by fitting a single CC with those utilizing the multigrid procedure 
(i.e., the MFEP locations), the single map CC ensembles do not agree with the MFEP locations 
at the same CC value. Also, the SASA values for the single CC fitting procedure generally do not 
span the same range seen for the MFEP locations. This indicates that single-densities based on 
a single CC do not capture conformations similar to those seen along the MFEP. 

 
Discussion and Conclusions 
An equilibrium sample of biological macromolecules is inherently conformationally 
heterogeneous, because a range of conformational states can have significant thermally 
induced occupancies. Conventional cryo-EM data analysis techniques align and average 
snapshots with similar particle orientations. While this improves contrast in the 2D images, 
there is a loss of thermodynamic information. Also, static models that fit the averaged 3D 
reconstruction are ill-suited to describing the system’s conformationally dynamical nature. 
Starting from such static models, even unbiased MD cannot capture all the low thermally 
accessible conformational states for a given system due to limited sampling times. By 
combining data-driven machine learning and MD computations, we have extended the 
conformational search around the one-up RBD state by making use of experimentally 
determined energy landscapes. This approach has revealed a broad spectrum of hitherto 
unobserved iso-energetic conformations associated with RBD binding sites. 

The experimentally determined horseshoe shaped MFEP shows it is necessary to move 
beyond a rigid one-up RBD state picture, because of substantial conformational heterogeneity 
on local and global scales. The concerted movement of the RBD has regional effects, which 
entail substantial conformational heterogeneity compared with both apo and holo structures. 
Nearly all binding pockets analyzed in this study indicate conformational selection mechanism, 
where specific MFEP locations are more or less favorable to binding. MFEP locations with 
higher SASA values are interpreted as more amenable to binding, with potential therapeutic 
implications. The inclusion of a broad spectrum of low-energy conformations can enable new 
drug discovery routes by considering the extensive conformational flexibility of important 
binding pockets. By going beyond static structures fitted to heavily averaged maps, our 
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approach reveals the flexible nature of biological macromolecules, which may have 
implications for novel drugs. 

Methods 
Cryo-EM Data 
In this study, we used the cryo-EM images from a previous study (3), in which Sars-CoV-2 spike 
ectodomain residues 1 to 1208 were expressed based on the first reported genome sequence 
(35), adding two stabilizing proline mutations in the C-terminal S2 fusion machinery. Cryo-EM 
grids were prepared using purified fully glycosylated spike protein. Frozen grids were imaged 
in a Titan Krios (Thermo Fisher) equipped with a K3 detector (Gatan). Movies were collected 
using 
Leginon at a magnification of x22,500, (36) corresponding to a calibrated pixel size of 1.047 
A/pixel. A full description of sample preparation and data collection parameters can be found˚ 
in (3). Motion correction, CTF-estimation, and non-templated particle picking were performed 
in Warp. (37) There were thousands of images in the 631,920 extracted particles which had 
artifacts e.g. harsh line/boxes. Those images were removed. The remaining 574,324 were 
imported to CryoSPARC and non-uniform refinement was used to get the orientation of each 
particle. 

Geometric Machine learning (ManifoldEM) 
The details of our data-analytic approach are available at (6). In brief, having assigned an 
orientation to each snapshot, we divide the snapshots to small orientational bins, which we 
call projection directions (PD). In other words, each PD includes the snapshots which are in 
closely similar orientations. 

We select all the projection directions lying on a great circle around the orientational 
sphere. Then in each projection direction, we use manifold embedding (6) to extract the 
conformational manifold. We use the two topmost conformational coordinates to describe 
the conformational manifold If we sort the snapshots along each of these eigenfunctions. We 
can compile a movie of the conformational changes along those eigenfunctions by using Non-
Linear Spectral Analysis (38). Fig. 1 shows the first and last frames of the movies 
(Supplementary Movie 1 and 2) along with the two conformational coordinates. As the movies 
show, CC1 corresponds to a breathing like motion, while in CC2, the RBD moves from a down 
position to up. 
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Integrating the information from all the PDs on a great circle, we compiled 3D 
conformational movies of electrostatic potential maps along each of these conformational 
coordinates (Supplementary Movie 1 and 2). 

Map Preparation 
We compiled 50 maps (.spi) along each conformational coordinate. The maps along each 
conformational coordinate were then converted from .spi format to .mtz format with Chimera. 
(39) The .mtz maps were then converted to potentials thresholding the maps at the solvent 
density peak by utilizing the voltools pot command, which is part of the Voltools Plugin within 
VMD. (40) These potentials were used to guide the spike protein trimer’s dynamics. The maps 
were thresholded again where the RBD density was weak to increase the magnitude of the 
potential map gradients for the RBD. 
 
Molecular Dynamics Simulations 
We used models from the CHARMM-GUI Archive - COVID-19 Proteins Library. (41) The models 
were stripped of all water molecules with the molecular visualization program VMD. (40) All 
simulations utilized the generalized Born Implicit Solvent (GBIS) model and Charmm Force 
Field, (42) with the molecular dynamics engine NAMD 2.14b1. (43) The simulation parameters 
are provided in the supplementary NAMD input file. 

Molecular Dynamics Flexible Fitting 
MDFF was used to bias simulations and fit atomic models to the extracted conformational 
coordinates (24,25). Noting the medium resolution of our experimental maps, only the 
backbone of the models was coupled to the density, with the conformations of the remainder 
of the system (sidechains and glycans) responding to the MD force fields. To ensure that the 
protein backbone conforms to the density, we constrained the protein by knowledge of its 
secondary structure, chirality, and cis-peptides; while the less resolved sidechains and glycans 
continued to refine under the chemical constraints (bonds, angles, dihedrals, and non-bonded 
interactions) imposed by the CHARMM36m force fields. 

Conformational Coordinate Fitting 
To obtain references for the fitting atomic models on the extracted energy landscape, atomic 
models were fitted to each map for both conformational coordinates. Simulations were biased 
with two map potentials coupling the singular threshold maps to all backbone atoms except 
chain A residues 320 to 520, and the doubly thresholded maps were coupled to the backbone 
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atoms chain A and residues 320 to 520. The fitting process occurred in two steps starting from 
the same starting structure following the cascade-MDFF procedure (22). The blurred maps 
were created with the command voltool smooth in the VMD Voltools Plugin. The first step 
utilized a 2 A˚ Gaussian blurred potential map, while the second step used maps at their 
original resolution of the maps. 

MFEP Fitting 
A movie of molecular motions was compiled along the MFEP of the energy landscape using a 
so-called “multigrid” fitting procedure (30, 31). This procedure enables the construction of 
atomic models under the influence of two or more density maps. As outlined in Methods, the 
multigrid procedure is employed within MDFF to enable the fitting of the XY-dimension of the 
spike protein backbone under the influence of the CC1 maps, while Z-dimensions of these 
atoms conform to the CC2 maps. A resolution-exchange protocol was concomitantly employed 
(22) to improve the sampling efficiency of the conformational space. Agreement between the 
single CC and MFEP fitting in terms of radius of gyration is shown in fig. S7. 

SASA Calculations 
We used VMD’s measure Plugin to calculate SASA values. The radius sampled around each 
atom selected was that atom’s radius + 1.4 A˚ . The static models used for comparison were 
built with VMD using the autopsf Plugin to add H at the physiological pH. 
 
 

Supplementary Materials 
Movies S1 to S3 
Figs. S1 to S7 
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Figures 

 
Figure 1:  The energy landscape of the SARS-CoV-2 Spike Protein spanned by two conformational 

coordinates.  Each conformational coordinate consists of a space of 50 binned electrostatic potential maps 

defining conformational changes in the space of these maps.  The MFEP locations are traced with a white 

line representing the 59 MFEP locations found in this study.  The numbering scheme used here is consistent 

with our analysis. 
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Figure 2:  Whole RBD SASA scores calculated for the up RBD (residues 320 to 510).  The SASA scores for 

static structures are represented with red circles in the left panel, the non-biased equilibrium MD 

trajectories are represented with green circles and error bars in the right panel, and finally each MFEP 

location SASA scores are represented with blue circles and error bars in the central panel.  The error bars 

show 1 standard deviation from the mean. The red and blue highlighted regions are used to compare the 

spread of SASA scores of the previously deposited static structures (red shading) with the range of SASA 

scores seen for all MFEP locations (blue shading). 
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Figure 3:  Binding pocket residues colored by RMSD changes across the minimum free energy path.  The 

residues involved in binding are used to calculate the RMSD at MFEP locations 0, 15, 28, 43, and 59 (see 

Fig. 1) and are shown in a licorice representation.  The RMSD values range from 0 to 1 following the color 

scale at the top of the figure.  The structure 6VSB is shown for comparison on the far left. 
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Figure 4:  Individual binding pocket SASA scores calculated from only those residues involved in binding.  For 

all six panels, the SASA scores for static structures are represented with red circles, non-biased equilibrium 

MD trajectories are represented with green circles and error bars, and finally each MFEP location SASA 

score is represented with blue circles and error bars.  The red and blue highlighted regions are used to 

compare the spread of SASA scores of the previously deposited static structures (red shading) with the range 

of SASA scores seen for all MFEP locations (blue shading). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.05.11.443708doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.11.443708


18 

 
Figure 5:  Glycan conformations and interaction energies for all chains.  Panel A shows each chain of the 

spike protein trimer individually colored in a cartoon representation.  The glycan chains are shown a red 

and green surface representation and are labeled accordingly.  Panel B shows intramolecular or 

intermolecular interaction energies of the glycan and the spike protein RBD (residues 330 to 520) for each 

chain. 

 
 
 
 
 
 
 
 
 
 
 

Intramolecular Intermolecular

N234C

N234A

N234B

Top View

“Up” RBDA

“Down” RBDC

“Down” RBDB

N165C

N165A

N165B

N234CN234A

“Up” RBDA

NTDC

“Down” RBDB

N165C

N165A

Side View

B

A

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.05.11.443708doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.11.443708


19 

Acknowledgments 

This work was supported by the US National Science Foundation (NSF) under award DBI-
2029533.  The development of underlying techniques was supported by the US 
Department of Energy, Office of Science, Basic Energy Sciences under award DE-SC0002164 
(underlying dynamical techniques), and by the US NSF under awards STC 1231306 
(underlying data analytical techniques) and 1551489 (underlying analytical models).  A.S. 
acknowledges an NSF CAREER award MCB-1942763, and the NIH award R01GM095583. 
J.V. acknowledges support from the NSF Graduate Research Fellowship Grant 2020298734. 
We thank J. McLellan and collaborators for providing the cryo-EM dataset, and J. 
Frank for valuable discussions in the initial stages of the project.  
 
Author Contributions 
AO proposed the study.  AO and AS designed the study architecture.  All authors 
contributed to study design.  GM extracted the manifold of conformational motions from 
single particle images, produced the free-energy landscape, and identified the MFEP.  JV 
produced the atomic models for each conformational coordinate and along the MFEP, and 
analyzed the atomic models.  All authors provided critical input and participated in writing 
the manuscript. 
 
Competing interests 
The authors declare no conflicts of interest. 
 
Data and materials availability 
The data supporting the findings of this study are available from the corresponding authors upon 
reasonable request. 
 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.05.11.443708doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.11.443708

