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Abstract With a growing amount of (multi-)omics data being available, the extraction of15

knowledge from these datasets is still a difficult problem. Classical enrichment-style analyses16

require predefined pathways or gene sets that are tested for significant deregulation to assess17

whether the pathway is functionally involved in the biological process under study. De novo18

identification of these pathways can reduce the bias inherent in predefined pathways or gene19

sets. At the same time, the definition and efficient identification of these pathways de novo from20

large biological networks is a challenging problem. We present a novel algorithm, DeRegNet, for21

the identification of maximally deregulated subnetworks on directed graphs based on22

deregulation scores derived from (multi-)omics data. DeRegNet can be interpreted as maximum23

likelihood estimation given a certain probabilistic model for de-novo subgraph identification. We24

use fractional integer programming to solve the resulting combinatorial optimization problem.25

We can show that the approach outperforms related algorithms on simulated data with known26

ground truths. On a publicly available liver cancer dataset we can show that DeRegNet can27

identify biologically meaningful subgraphs suitable for patient stratification. DeRegNet is freely28

available as open-source software.29

30

Introduction31

Modern high-throughput technologies, in particular massively parallel sequencing (Wang et al.,32

2009) and high-resolutionmass spectrometry (Altelaar et al., 2013), enable omics technologies, i.e.33

the determination of bioanalytes on the genome-wide scale. Many of of these omics technologies34

are increasingly being applied in clinical settings and publicly available large-scale data resources35

such as The Cancer Genome Atlas (TCGA) (Tomczak et al., 2015) provide ample opportunity for36

research. These resources can provide valuable reference data sets in the analysis of molecular37

profiles of individual patients and patient groups. However, one of the biggest challenges in the38

analysis of omics data remains functional annotation/interpretation. The interpretation of the ex-39

perimental read-outs with the goal of understanding the underlying known or unknown biological40
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processes and functions is a vital step in providing personalized, precise, and focused molecular41

therapies.42

One of the most widely used approaches for functional annotation of large omics datasets is43

Gene Set Enrichment (GSE) (Maciejewski, 2014). In its most basic form, GSE entails hypergeomet-44

ric and Fisher test-based approaches to detect the overrepresentation of differentially expressed45

genes. GSE requires a set of predefined gene sets (typically obtained from pathway databases46

(D’Eustachio, 2013) such as KEGG (Kanehisa et al., 2017), WikiPathways (Kutmon et al., 2016) or47

Reactome (Fabregat et al., 2018)) and a measure of "deregulation" (e.g., a binary indication of dif-48

ferential gene expression). The goal of the GSE analysis is to identify those gene sets from the col-49

lection which show "high" deregulation. Here, the term "high" is defined by the method’s specific50

underlying statistical model. In the simplest case, the method examines if each gene set contains51

a higher number of differentially expressed genes than would be expected by chance, under the52

assumption that differentially expressed genes are represented uniformly across all genes. Many53

adaptations and variations of GSE exist (Maciejewski, 2014; Subramanian et al., 2005).54

Classical GSE methods treat pathways as an unstructured collection of genes and do not ex-55

plicitly account for the extensive biological knowledge encoded in biological networks. Networks56

as an abstraction for biological knowledge can be represent signaling networks, metabolic net-57

works (Caspi et al., 2013), gene regulatory networks (Biggin, 2011), or protein-protein interaction58

networks (Li et al., 2017; Szklarczyk et al., 2017), and more.59

There has been extensive research into the possibility of designing enrichment methods which60

take into account the topology of the pathways (Jaakkola and Elo, 2016; Mitrea et al., 2013; Ihna-61

tova et al., 2018). An example of such approach is the calculation of topology-dependent pertur-62

bation scores for each gene (Tarca et al., 2009). A further aspect usually ignored by GSE methods63

is the issue of pathway crosstalks. While ’textbook pathways’ have a solid base in biological find-64

ings and can provide useful guidance for functional interpretation of omics experiments, molecular65

and cellular events are oftenmore complicated and involve the direct interaction of molecular enti-66

ties across predefined pathway boundaries. Correspondingly, a range of methods were proposed67

which aim to extract "deregulated" patterns from larger regulatory networks without relying on68

predefined pathways (Mitra et al., 2013; Batra et al., 2017). These methods are often referred to69

as de novo pathway enrichment (de novo pathway identification, de novo subnetwork/subgraph en-70

richment/identification/detection) methods, emphasizing that the pathways are defined/extracted71

from the data itself and are not given as fixed gene sets. Here, we also call algorithms of this flavor72

deregulated subnetwork/subgraph detection/identification/enrichment methods.73

A way to categorize these methods is based on how they handle undirected or directed inter-74

action networks. A lot of biomolecular interactions are directed in nature, e.g. protein A phospho-75

rylates protein B, enzyme A precedes enzyme B in a metabolic pathway in contrast to symmetric76

interactions such as physical interactions of proteins in protein complexes.77

Somemethods designed for undirected networks are described in the following studies: Ideker78

et al. (2002); Patil and Nielsen (2005); Ulitsky and Shamir (2007); Dittrich et al. (2008); Zhao et al.79

(2008); Ulitsky and Shamir (2009); Ulitsky et al. (2010); Dao et al. (2011); Bailly-Bechet et al. (2011);80

Alcaraz et al. (2012, 2014, 2016). More detailed review of these method is available in Batra et al.81

(2017). These methods, while achieving similar results on an abstract level, vary greatly in terms82

of suitable underlying networks, interpretation of outcomes and algorithmic strategies employed.83

Algorithmic approaches employed include ant colony optimization (Alcaraz et al., 2016), dynamic84

programming (Dao et al., 2011), simulated annealing (Ideker et al., 2002), integer programming85

(Zhao et al., 2008; Dittrich et al., 2008), Markov random fields (Vaske et al., 2010) or message86

passing approaches (Bailly-Bechet et al., 2011).87

Also, somemethods are tailored to the characteristics of a particular data type. An example are88

methods attempting to find significantly mutated pathways/networks (Vandin et al., 2016, 2012a;89

Zhang and Zhang, 2018; Cerami et al., 2010; Hofree et al., 2013; Vandin et al., 2012b), trying to90

factor in the pecularities of mutation data in a network context.91
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While methods which work natively with directed networks are rarer (Keller et al., 2009; Backes92

et al., 2012; Atias and Sharan, 2013; Gaire et al., 2013), it seems instrumental to be able to cap-93

ture the effects of directed biomolecular interactions in the process of discovering deregulated94

networks. One particular approach is the one described in Backes et al. (2012) which utilized an in-95

teger programming approach in order to find deregulated subnetworks. It uncovers deregulated96

subnetworks downstream or upstream of a so called root node where the latter can be fixed a97

priori or determined by the algorithm itself.98

In this paper, we present an algorithm for de novo subnetwork identification which can con-99

ceptually be characterized as a mixture of the approach presented by (Backes et al., 2012) and the100

price-collecting Steiner tree methods proposed in (Huang and Fraenkel, 2009; Huang et al., 2013;101

Gosline et al., 2012; Tuncbag et al., 2013, 2016). Our method natively handles directed interac-102

tion networks and adapts from Backes et al. (2012) the general integer programming approach103

in such a way that it can encapsulate the general idea of sources and targets as put forward in104

the price-collecting Steiner tree/forest (PCST/PCSF) approaches (Huang and Fraenkel, 2009; Huang105

et al., 2013; Gosline et al., 2012; Tuncbag et al., 2013, 2016) which capture the idea of deregu-106

lated networks starting or ending at certain types of nodes, for example membrane receptors and107

transcription factors. Methodologically, we extend the integer programming approach of (Backes108

et al., 2012) to fractional integer programming to allow for the necessary flexibility to incorporate109

sources and targets. Furthermore, we show that our algorithm, DeRegNet, can be interpreted as110

maximum likelihood estimation under a certain natural statistical model. We demonstrate DeReg-111

Net’s suitability as an exploratory hypothesis generation tool by applying it to TCGA liver cancer112

data. We introduce a personalized approach to interpreting cancer data and introduce the notion113

of network-defined cancer genes which allow to identify patient groups based on their similarity114

of their detected personalized subgraphs.1115

Methods and Materials116

DeRegNet: a de-novo subnetwork identification algorithm117

Formal setting and definitions118

Formally, it is given a directed graph G = (V ,E), i.e. E ⊂ V × V , representing knowledge about119

biomolecular interactions in some way. To avoid certain pathologies in the models defined below,120

it is assumed that G has no self-loops, i.e. (v, v) ∉ E ∀v ∈ V . For a subset S ⊂ V , one defines121

�+(S) = {u ∈ V ∖S ∶ ∃v ∈ S ∶ (v, u) ∈ E} and �−(S) = {u ∈ V ∖S ∶ ∃v ∈ S ∶ (u, v) ∈ E}, i.e. the sets122

of outgoing nodes from and incoming nodes into a set of nodes S. For a node v ∈ V one writes123

�±(v) ∶= �±({v}). Furthermore, it is given a score function s ∶ V → ℝ, describing some summary124

of experimental data available for the biomolecular entities represented by the nodes. For a given125

graph G = (V ,E) any node labeling function f ∶ V → ℝ is implicitly implied to be a vector f ∈ ℝ|V |,126

subject to an arbitrary but fixed ordering of the nodes (shared across all node labeling functions).127

In particular, with fv ∶= f (v) for v ∈ V , given f, g ∶ V → ℝ, one can write f T g =
∑

v∈V
fvgv. For S ⊂ V128

and f ∶ V → ℝ one defines fS ∶ V → ℝ via fS (v) ∶= 0 for all v ∈ V ⧵ S and fS (v) ∶= f (v) for129

all v ∈ S. Defining e ∶ V → ℝ with e(v) ∶= 1 for all v ∈ V , one further can write eTSf =
∑

v∈S
fv for130

S ⊂ V and f ∶ V → ℝ. Comparison of node labeling functions f, g are meant to be understood131

element-wise, e.g. f ≤ g means fv ≤ gv for all v ∈ V . Apart from the graph G and node scores s,132

there are given possibly empty subsets of nodes R ⊂ V and T ⊂ V . It is referred to R as receptors133

(or sometimes sources) and to T as terminals (or sometimes targets), independent of the biological134

semantics underlying the definition of these sets (see below). For enforcing the topology of the135

subnetworks later on, strongly connected components will play a decisive role and it is said that a136

1The appendix Supplementary File 1 furthermore contains a demonstration of the usefulness of subgraph-derived features
for survival prediction. In particular, these features outperform comparable features derived from gene set enrichment indi-
cated pathways and also improve classifiers based on clinical data alone.
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Figure 1. DeRegNet’s inputs are a biomolecular network (A), such as a signaling or gene regulatory network,and omics measurements (B), such as gene expression data. The latter are mapped onto the nodes of thenetwork acting as node-level measures of deregulation. DeRegNet then extracts the most deregulatedsubnetwork from the larger regulatory network according to some definition ofmost deregulated. For aconceptual view of the progression from set enrichment to de novo subnetwork methods we refer to thelisted supplementary figures.
Figure 1–Figure supplement 1. Conceptual view of classical pathway/gene set analysis.

Figure 1–Figure supplement 2. Conceptual view of topological pathway/analysis.
Figure 1–Figure supplement 3. Conceptual view of topological pathway/analysis with pathway crosstalks.

Figure 1–Figure supplement 4. Conceptual view of de-novo pathway analysis.
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subset of nodes V ′ ⊂ V induces a strongly connected subgraph (V ′ iscs, for short) if the subgraph137

induced by V ′ is strongly connected.138

Probabilistic model139

The mathematical optimization model which is at the heart of the DeRegNet algorithm and pre-140

sented in the next subsection amounts to maximum likelihood estimation under a certain canoni-141

cal statistical model. The model assumes binary node scores s ∶ V → {0, 1} which are realizations142

of random variables S = (Sv)v∈V . Here, Sv = 1 is interpreted as node v ∈ V being deregulated. Fur-143

ther it is assumed the existence of a subset of vertices V ′ ⊂ V such that Sv|v ∈ V ′ ∼ Ber(p′) and144

Sv|v ∈ V ∖V ′ ∼ Ber(p) with p, p′ ∈ (0, 1) denoting probabilites of deregulation outside and inside145

of the deregulated subgraph encoded by V ′ respectively. It is assumed that p′ > p to reflect the146

idea of higher deregulation (probability) in the deregulated subgraph, whereas p represents a cer-147

tain amount of background deregulation. The network context (dependency) is introduced via the148

restriction that V ′ ∈ (V ) ⊂ (V ). Here, (V ) denotes the set of feasible substructures and should149

(can) reflect topologies inspired by known biomolecular pathway topologies like the one described150

in Backes et al. (2012) and the next subsection. Furthermore it is assumed, that the (Sv), given a151

network context and deregulation probabilities p, p′, are independent. We show in the appendix152

that under this model and the constraints given by the fractional integer programming problem153

formulated in the next subsection (defining (V ) in the above notation) DeRegNet amounts tomax-154

imum likelihood estimation. Furthermore, we also show that themodel put forward in Backes et al.155

(2012) amounts to maximum likelihood estimation only under the assumption of a fixed subgraph156

size.157

Fractional integer programming model158

Given the definitions of the preceding sections, we can now formulate the main model underlying159

DeRegNet. The DeRegNet model and also the model of (Backes et al., 2012) can be placed in the160

context of the so called Maximum Weight Connected Subgraph Problem (MWCSP), see Supplemen-161

tary File 1. Note, that in the following we formulate all problems as maximization problems and162

minimization may, depending on the semantics of the node score, be the proper choice2. As in163

(Backes et al., 2012) we model the problem of finding deregulated subnetworks in terms of indica-164

tor variables xv = I(v ∈ V ′)3 and yv = I(v is the root node)where V ′ ⊂ V is a set of nodes inducing a165

subgraph such that one can reach every node in that subgraph by means of a directed path from166

the root node. In addition the root is supposed to be a source node and all nodes in the subgraph167

with no outgoing edges are supposed to be terminal nodes. The proposed model then reads like168

2Minimization may for example be prudent in case the node scores represent p values originating from some statistical
significance test.3I(P ) = 1 if P , I(P ) = 0 if not P for some predicate P .

5 of 24

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.05.11.443638doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.11.443638
http://creativecommons.org/licenses/by-nd/4.0/


Manuscript submitted to eLife

this:169

max
x, y ∈ {0, 1}V

sTx
eTx

(1a)
s.t. y ≤ x (1b)

eT y = 1 (1c)
kmin ≤ eTx ≤ kmax (1d)
xv − yv − eT�−(v)x ≤ 0 ∀v ∈ V (1e)
eTS (x − y) − e

T
�−(S)x ≤ |S| − 1 ∀S ⊂ V iscs, |S| > 1 (1f)

yv = 0 ∀v ∈ V ⧵ R if R ≠ ∅ (1g)
xv − eT�+(v)x ≤ 0 ∀v ∈ V ⧵ T if T ≠ ∅ (1h)
eTIncx = |Inc| (1i)
eTExx = 0 (1j)

The model derives from the corresponding integer linear programming model in (Backes et al.,170

2012) and adapts it for the fractional case, most notably here are the constraints involving the the171

receptors R (1g) and the terminals T (1h). (1g) just ensures that the root node is a receptor4, while172

(1h) ensures that any node in the subgraph with no outgoing edges is a terminal node. (1b) means173

that a node can only be the root if it is included in the subgraph, (1c) means that there is exactly one174

root, (1d) means that the size of subgraph has to be within the bound given by kmin, kmax ∈ ℕ, (1e)175

says that a node v ∈ V in the subgraph is either the root node or there is another node u ∈ V in the176

subgraph such that there is an edge (u, v) ∈ E. Moreover, the the constraints (1i) and (1j) trivially177

allow to include and exclude specific nodes from given node sets Inc ⊂ V and Ex ⊂ V respectively5.178

The constraint (1f) is the most involved one and actually describes exponentially many constraints179

which ensure that there are no disconnected directed circles (Backes et al. (2012)) by requiring180

that any strongly connected component in the subgraph either contains the root node or has an181

incoming edge from another node which is part of the subgraph but not part the given strongly182

connected component. Finally, the objective (2.1a) describes the notion of maximizing the average183

score of the subgraph. This is crucial for allowing the model the flexibility to connect source nodes184

to target nodes and also is at the heart of DeRegNet being able to do Maximum Likelihood estima-185

tion given the presented statistical model. We summarize some crucial terminology next, before186

proceeding in the next subsection to describe the solution algorithms for DeRegNet.187

188

Definition 1 (DeRegNet instances, data, and subgraphs)189

A tuple (G,R, T , Ex, Inc, s) is called an instance of DeRegNet (a DeRegNet instance, an instance of190

the DeRegNet model). Here, G = (V ,E) is the underlying graph, R ⊂ V is the receptor set, T ⊂ V is191

the terminal set, Ex ⊂ V is the exclude set, Inc ⊂ V is the include set and s ∶ V → ℝ is the node score192

(the score). Further, xv ∶ V → {0, 1} is called a subgraphwith the understanding that it is referred to the193

subgraph of G induced by V ∗ = {v ∈ V ∶ xv = 1}. Equivalently to xv ∶ V → {0, 1}, it is also referred to194

the corresponding V ∗ = {v ∈ V ∶ xv = 1} as a subgraph. A subgraph is feasible for DeRegNet (for the195

DeRegNet instance), if it satisfies DeRegNet’s constraints (1b-j). A subgraph satisfying these constraints196

is called a feasible subgraph. A feasible subgraph which optimizes problem (1) is called an optimal197

subgraph.198

4Of course, for practical implementation one can also just introduce variables yv ∈ {0, 1} only for nodes v ∈ T in the first
place. In terms of formulation onewould need tomake a difference for constraints (1e,f) as well and formulate themdifferently
(with or without y) for nodes in R on the one hand and for nodes not in R on the other.5In many situations specific nodes, i.e. genes in the case of gene regulatory networks, may be of interest in other topological
positions than in a receptor or terminal role. In that case just requiring a certain gene to be part of the subgraph without any
special constraints on its inclusion in topological terms can be of value.
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(a) (b)

Figure 2. Conceptual view of subgraphs extracted by DeRegNet. (a) From a receptor node/root node(green cube) one can reach any node in the subnetwork. Nodes without any edges leading to other nodes(red triangles) of the subnetwork need to be elements of the so called terminal nodes. Generally, all nodes inthe subgraph can be reached from the root node. (b) By reversing the the orientation of the underlyingnetwork before applying DeRegNet, one can find subgraphs with only one terminal "root" node and multiplereceptor nodes such that the terminal node can be reached from any other node in the subgraph. See
Supplementary File 1 for further details on applying DeRegNet in reverse mode.

Some formal properties of DeRegNet and its solutions can be found in the Supplementary File 1. A199

high-level depiction of the overall logic of DeRegNet can be found in figure 1. A conceptual view of200

the types of subgraphs determined by DeRegNet can be seen in figure 2.201

Solving the fractional integer programming model202

We solve the integer fractional linear programming problems introduced in the previous sections203

by one out of two implemented methods. Firstly, a generalization of the Charnes-Cooper transfor-204

mation (Charnes and Cooper, 1962) for fractional linear programs described by (Yue et al., 2013)205

and secondly an iterative scheme as introduced generally by Dinkelbach (Dinkelbach, 1962, 1967)206

and subsequently applied in the context of integer fractional programming by (Anzai, 1974; You207

et al., 2009). While the Dinkelbach-type algorithm solves the problem by iteratively solving certain208

non-fractional versions of the original problem until some convergence criterion is met, the gener-209

alization of the Charnes-Cooper method is based on reformulation of the entire fractional model210

to a quadratic problem and requires subsequent linearization of artifically introduced quadratic211

constraints. The latter is implemented in terms of the methods described by (Glover, 1975; Adams212

and Forrester, 2005; Adams et al., 2004).213

214

As in (Backes et al., 2012) the exponentially many constraints forbidding any strongly connected215

components not containing the root and with no incoming edges are handled by lazy constraints.216

Every time an integer solution is found the Kosaraju–Sharir algorithm (Sharir, 1981) is employed217

(as implemented by the Lemon graph library) to check for violoting components and, in the case218

of violating components, the corresponding constraints are added to the model. Both solution ap-219

proaches, the generalized Charnes-Cooper method and the Dinkelbach-type algorithm, allow for220

the lazy constraints to be handled in terms of the original formulation since both retain the rele-221

vant variables of the model within the transformed model(s).222

223

For more details on the theoretical underpinnings and the practical implementation of DeRegNet’s224
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solution algorithms consult Supplementary File 1.225

Assessment of inference quality for known ground truths226

The evaluation and benchmarking of de novo pathway enrichment or deregulated subnetwork de-227

tection algorithms and implementations remains a big challenge. Whilemany of themethods cited228

in the introduction can be applied to reveal useful biological insight, there are limited studies con-229

cerning the comparisonof formal and statistical properties of themethods. The twomain obstacles230

are a lack of well-defined gold standard datasets as well as the differences concerning the exact231

output of the methods. For example, it is not immediately clear how to compare algorithms which232

produce undirected subnetworks to those which elicit directed networks of a certain structure. An233

important first step toward atoning the issue in general is described in (Batra et al., 2017) which234

focuses on benchmarking approaches for undirected networks. For the purposes of this paper,235

we designed and performed benchmarks of DeRegNet relative to its closest relative, namely the236

algorithm described in Backes et al. (2012). Note however, while we are comparing the integer237

programming based algorithm of Backes et al. (2012) to the fractional integer programming algo-238

rithm of DeRegNet, we are using the former as implemented in the DeRegNet software package.239

This renders the benchmark less dependent on implementation technology since both algorithms240

have been implemented with the same general stack of languages and libraries. For the bench-241

mark we always utilize the human KEGG network as the underlying regulatory network. We then242

repeatedly simulate subgraphs which match the structure of both models (DeRegNet and Backes243

et al. (2012)). The simulation procedure is describedmore formally in Supplementary File 1. Initially,244

the simulated subgraph consists of one randomly selected root node, to which we iteratively add245

a random "outgoing" neighbor of a randomly selected current node in the subgraph until the size246

of the subgraph matches a randomly chosen value. The latter is uniformly chosen to be an integer247

between a given lower and an upper bound. "Outgoing" neighbors of v ∈ V are any nodes from248

the set �+(v) = {u ∈ V ∖{v} ∶ (v, u) ∈ E}. All nodes in the simulated "real" subgraph are assigned249

a node score of 1, while all nodes which are not contained in the subgraph are assigned a node250

score of 0. These node scores are then flipped with a certain probability pf to emulate noise in the251

measurements of deregulation. In summary, we obtain random "real" subgraphs and simulated252

scores. In terms of the probabilistic interpretation of DeRegNet presented above, the simulation253

scheme corresponds to a deregulation probability of 1 − pf for nodes in the "real" subgraph and254

of pf for nodes not part of the "real" subgraph. Hence, under the assumptions outlined for the255

statistical model for DeRegNet the simulations are restricted to values pf ∈ [0, 1
2
). The appendix in256

Supplementary File 1 provides further details on the simulation of benchmark instances.257

Given a sequence of N ∈ ℕ of these simulated instances, the algorithms are run in order to find258

subgraphs which can then be compared to the known simulated real subgraph. Here, a hit (true259

positive, tp) is defined as a node appearing in a subgraph calculated by some algorithm which is260

also an element of the real subgraph. A false positive (fp) is a node which appears in a subgraph261

calculated by an algorithm but is not part of the real subgraph. A false negative is defined as a node262

which is part of the true subgraph but not part of the subgraph detected by an algorithm. Further-263

more, we can compare the sizes of the calculated subgraphs with the size of the real subgraph. In264

more formal terms, given an algorithm , which on a given instance with true subgraph V ′ ⊂ V265

finds a subgraph V, one defines:266

• true positive rate TPR ∶= |V ′∩V|

V ′ , i.e. the number of actual hits divided by the number of267

possible hits268

• false positive rate FPR ∶= |V⧵V ′
|

V
, i.e. the proportion of nodes in the subgraph found by the269

algorithms which are not part of the true subgraph270

• size efficiency SE ∶= |V|

|V ′
|

, i.e. the proportion algorithm subgraph size to real subgraph size271

Another comparisonmetric is the running time of the algorithms. Further, the benchmark is based272

on the realistic assumption thatwedonot know the exact size of the real subgraph and that one can273
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only assume lower and upper bounds on the subgraph size instead. Since the Backes et al. (2012)274

algorithm does need a fixed a priori specified subgraph size we employ a strategy suggested by275

Backes et al. (2012) to circumvent that fact. Namely, we iterate from the lower to the upper bound,276

find a subgraph for each subgraph size and then regard the union graph of all found subgraphs as277

the one subgraph emitted by the algorithm. DeRegNet natively requires only a lower and an upper278

bound on subgraph size as parameters. See Supplementary File 1 for more formal details.279

All benchmarks have been carried out with the following setup: software: Ubuntu 18.04, Gurobi280

8.1.1, hardware: 12x Intel i7-8750H @ 4.1 GHz, 32 GB RAM, Samsung SSD 970 EVO Plus.281

Network and omics data282

KEGG network283

While many sources for directed biomolecular networks are available, e.g. (Cerami et al., 2011), in284

this paper we here utilize a directed gene-level network constructed from the KEGG database with285

the KEGGgraph R-package (Zhang and Wiemann, 2009). The script used to generate the network286

as well as the network itself can be found in the DeRegNet GitHub repository. See the subsection287

on Software Availability for details.288

TCGA-LIHC data and RNA-Seq derived node scores289

Gene expression data was downloaded for hepatocellular carcinoma TCGA project from the Ge-290

nomic Data Commons Portal 6. Raw quantified RNA-Seq counts were normalized with DESeq2291

(Love et al., 2014) which was also used for calculating log2 fold changes for every gene with re-292

spect to the entire cohort. Personalized log2 fold changes were calculated by dividing a patients293

tumor sample expression by the mean of all available control samples (adding a pseudo count of294

1) before taking the log. The following node scores are defined.295

• Global RNA-Seq score s: sv =RNASeq log2-fold change for a gene v ∈ V as calculated byDESeq2296

for the TCGA-LIHC cohort297

• Trinary personalized RNA-Seq score sc for case c:298

299

scv =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

+1 if personalized log2 fold > 2

−1 if personalized log2 fold < −2

0 else
(2)

Global and personalized deregulated subgraphs300

We refer to subgraphs found with the global RNA-Seq score s as global subgraphs. A global sub-301

graph can further be subdivided as being upregulated or downregulated depending on whether the302

subgraphs were found by employing a maximization or minimization objective respectively. For303

(any) node score s ∶ V → ℝ we define |s| ∶ V → ℝ by |s|(v) ∶= |s(v)| for all v ∈ V . Dysregu-304

lated global subgraphs are those which were found by using the score |s| under a maximization305

objective. Similarily subgraphs found with any of the scores sc with a maximization objective are306

called upregulated while those found with minimization objective are called downregulated (person-307

alized subgraphs for case/patient c). Subgraphs found with a |sc| score under maximization are308

called dysregulated (personalized subgraphs for case/patient c). Any of the above subgraph types309

is called a deregulated subgraph. The optimal and four next best suboptimal global subgraphswere310

calculated for every modality. The subgraphs were then summarized as a subgraph of the union311

graph of optimal and suboptimal subgraphs in order to allow streamlined interpretation. See the312

supplementary figures referenced in the respective figures for references to the direct output of313

DeRegNet.314

6https://portal.gdc.cancer.gov/projects/TCGA-LIHC
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Network-defined cancer genes315

Genes, gene products or biomolecular agents are likely to bring about their various phenotypic316

effects only in conjunction with other agents via their shared biomolecular network context. By317

that token, one can search for genes which convey phenotypic differences by means of some de-318

fined network context. Here, we propose DeRegNet subgraphs as network context for a given319

case/patient in order to find genes whose inclusion into a case’s deregulated subgraph associates320

with a significant difference in overall survival. Algorithm 1 describes the procedure more formally.321

Genes implicated by the outlined procedure are termed network-defined cancer genes. The next322

section provides details on a specific network-defined cancer gene obtained by application of the323

procedure to personalized upregulated subgraphs in the TCGA-LIHC cohort.324

Algorithm 1: Finding subnetwork-defined cancer genes. After finding subgraphs for
individual cases/patients the procedure partitions a set of cases/patients according to
whether they contain a given gene in their determined subnetwork and tests whether the
thus defined partition conveys a significant survival difference. Note, that in the described
setting, the DeRegNet instances only differ in terms of their case-dependent node score
sc .
Data: A set of cases , DeRegNet instances Ic = (G = (V ,E), R, T ,Ex, Inc, sc) for every c ∈ ,

a subset of nodes of interest VI ⊂ V and a survival mapping p ∶  → [0,∞).
Result: A mapping pval ∶ VI → [0, 1] associating each v ∈ VI with a p-value.
for c ∈  doSolve the DeRegNet instance Ic to obtain the nodes Vc contained in c’s subgraph
for v ∈ VI do

v ∶= {c ∈  ∶ v ∈ Vc}Obtain the Kaplan-Meier estimate Kaplan and Meier (1958) for p w.r.t groups v and
 ⧵ v.
pval(v) ∶= p-value of log rank test Aalen et al. (2008) between groups v and  ⧵ vCarry out multiple testing correction of pval

return pval

Results and discussion325

In the following we present multiple results relating to the application of the DeRegNet algorithm.326

Firstly, we present benchmark results for synthetic data which compares DeRegNet to its closest327

methodological relative Backes et al. (2012). Next, we present applications of DeRegNet on a TCGA328

liver cancer dataset. More specifically, we present global subgraphs for the TCGA representing329

deregulated subnetworks summarizing the cohort under study as a whole, as well as a personal-330

ized application of DeRegNet, i.e. the derivation of patient-specific subgraphs.331

Performance comparison on data with a known ground truth332

As outlined in the introduction, the field of statistical functional annotation needs adequate known333

ground truths (gold standards) against which one can evaluate corresponding methods, see for334

example Batra et al. (2017). Since actual ground truths are hard to come by for fundamental335

reasons, research for functional annotation algorithms justifiably focuses on simulated/synthetic336

ground truths. The latter are then generated such that they represent the assumed or postulated337

data-generating process. We comparedDeRegNet to its closestmethodological relative introduced338

in Backes et al. (2012) based on simulated instances as described in Material and Methods.339

Figure 3 shows results of simulation runs carried out according to the described procedure. As340

can be seen in Figure 3, DeRegNet outperforms Backes et al. (2012) in terms of false positive rate341
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Figure 3. Benchmark patterns for DeRegNet and Backes et al. (2012). (A) Running time (in seconds) ofDeRegNet (Dinkelbach algorithm) and kmax − kmin + 1 (kmax = 50, kmin = 25) runs of the Backes et al. (2012)algorithm: DeRegNet at least matches and for some metrics also beats the performance of Backes et al.(2012) on our test instances (B) Size efficiency: the size DeRegNet subgraphs is closer to the true size of thesubgraph (C) TPR: Backes et al. (2012) finds more of the true subgraph nodes than DeRegNet with a mean of
100 % possible hits, while DeRegNet still achieves always more than 90 % of possible hits with a mean wellabove 95 % (D) FPR: DeRegNet is less noisy than Backes et al. (2012) in that it finds less false positive nodes.Moreover, DeRegNet is more consistent with respect to that metric while the variance of Backes et al. (2012)’sFPR is considerable.At https://github.com/KohlbacherLab/deregnet/tree/0.99.999/benchmark you can find benchmark results andcode. The results shown here correspond to the file benchmark.25.30.50.45.0.01.100.600.json, correspondingto lower and upper bounds provided to the algorithms of 25 and 50, lower and upper bound of the simulatedreal subgraph sizes of 30 and 45, as well as a deregulation noise pf = 0.1. We simulated 100 instances and seta run time limit of 600 seconds. Other parameter combinations for the simulation procedure showed thesame performance patterns. See Supplementary File 1 for further formal details on the simulation procedure.
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(FPR), runtime and size efficiency, while the true positive rate of Backes et al. (2012) is hard to beat.342

Nonetheless DeRegNet achieves solid performance also in terms of TPR.343

Less quantitatively, note that DeRegNet allows for subgraphs which originate from so called source344

(root, receptor) nodes and end at so called terminal nodes. This is not readily possible with the345

Backes et al. (2012) algorithm due to the necessity to specify a fixed subgraph size a priori and the346

resulting lack of flexibility to connect receptors to targets. Also note that DeRegNet is available as347

open-source software and also provides an open-source implementation of the Backes et al. (2012)348

algorithm7. Furthermore, given the statistical model introduced in Material and Methods, Backes349

et al. (2012) solves only a special case of the maximum likelihood estimation problem which is350

solved by DeRegNet in its general form.351

Global deregulated subgraphs for TCGA-LIHC352

Using the DeRegNet algorithm we determined the upregulated global subgraphs obtained from353

running the algorithm with the global RNA-Seq score defined above. The optimal and four next354

best suboptimal subgraphs were calculated for every modality. The subgraphs were then sum-355

marized as a subgraph of the union graph of optimal and suboptimal subgraphs in order to al-356

low streamlined interpretation. The global subgraph comprised of upregulated genes as nodes is357

shown in Figure 4.358

Reconstruction of transcriptional activation of WNT signaling359

The subgraphs shows the activation of the WNT signaling pathway by means of over-expressed360

Glypican-3 (GPC3), which represents a membrane-bound heparin sulphate proteoglycan (Arzu-361

manyan et al., 2013). GPC3 has been extensively researched as a early biomarker and potential362

therapy target in HCC (Zhou et al., 2018; Wu et al., 2016; Feng and Ho, 2014; Filmus and Capurro,363

2013; Ho and Kim, 2011; Bertino et al., 2012) (See figure 1).364

Genomic analysis conducted over the past decade have identified mutations affecting Telom-365

ere Reverse Transcriptase (TERT ), �-catenin (CTNNB1) and cellular tumor antigen p53 (TP53) (Llovet366

et al., 2016) as commondrivermutations inHCC.Mutations in the TERT promoter are awell-studied367

factor in liver cancer development (Nault and Zucman-Rossi, 2016; Quaas et al., 2014) and lead to368

TERT overexpression while mutations in CTNNB1, activate CTNNB1 and result in activation of WNT369

signaling. Previous studies have determined that TERT promoter mutations significantly co-occur370

with CTNNB1 alternation and both mutations represent events in early HCC malignant transforma-371

tion (Totoki et al., 2014). In agreement, the DeRegNet algorithm recatures the importance of a372

CTNNB1:TERT connection on a transcriptional level.373

The subgraphs further show a possible alternative mechanism of CTNNB1 activation through374

upregulated GPC3, an early marker of HCC, as well as Wnt Family member 3a (WNT3A) and Frizzled375

10 (FZD10). WNT3A promotes the stablization of CTNNB1 and consequently expression of genes376

that are important for growth, proliferation and survival (Anastas and Moon, 2013) through activ-377

ity of transcription factor Lymphoid Enhancer-Binding Factor 1 (LEF1). As shown in the subgraph378

figure 4, LEF1’s known targets SRY-box 2 (SOX2)8 and Baculoviral IAP Repeat Containing 5 (BIRC5)379

are likely important contributers toWNT pathway drivenWNT proliferation. SOX2 is a pluripotency-380

associated transcription factor with known role in HCC development (Sun et al., 2013; Wen et al.,381

2013; Liu et al., 2016a) and BIRC5 (survinin) is an anti-apoptotic factor often implicated in chronic382

liver disease and liver cancer (Min et al., 2012;Montorsi et al., 2007; Su, 2016).383

In summary, our algorithm reconstructed important components of the canonical WNT signal-384

ing pathway activation in liver cancer (Takigawa and Brown, 2008; Liu et al., 2016b; Vilchez et al.,385

2016; Clevers and Nusse, 2012; Nusse and Clevers, 2017) from TCGA-LIHC RNA-Seq data and pair-386

wise gene-gene interaction information from KEGG.387

7Currently the implementation only supports the commercial Gurobi ILP solver as a solver backend. Gurobi readily provides
free academic licenses though.8Sex-Determining Region Y (SRY )
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Figure 4. Global upregulated subgraph for TCGA-LIHC reconstructs transcriptional activation ofWNT
signaling. The Color of nodes indicates the average log2 fold change of tumor samples compared to controlsas represented in the color bar. The color of rims around nodes indicates genes contained in the integrinpathway (blue), the WNT pathway (yellow) and diverse other pathways (no rim). The color of edges indicatesfollowing interactions: activation (red), inhibition (dark blue), compound (brown), binding/association (yellow),indirect effect (dashed grey), phosphorylation (pink), dephosphorylation (light green), expression (green) andubiquitination (light purple).
Figure 4–Figure supplement 1. GPC3-mediated activation of WNT signaling.
Figure 4–Figure supplement 2. Optimal upregulated global subgraph for TCGA-LIHC
Figure 4–Figure supplement 3. 1st suboptimal upregulated global subgraph for TCGA-LIHC.
Figure 4–Figure supplement 4. 2nd suboptimal upregulated global subgraph for TCGA-LIHC
Figure 4–Figure supplement 5. 3rd suboptimal upregulated global subgraph for TCGA-LIHC
Figure 4–Figure supplement 6. 4tℎ suboptimal upregulated global subgraph for TCGA-LIHC
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388

Crosstalk between integrin and WNT signaling389

Another interesting pattern emerging in the upregulated subgraphs is the crosstalk between the390

WNT signaling cascade and integrin signaling. Over-expressionof Secreted Phosphoprotein 1 (SPP1)391

has been shown to be a common feature for most known humanmalignancies and it is commonly392

associated with poor overall survival (Bellahcene et al., 2008). The binding of SPP1 to integrins393

(e.g. integrin �V�3) leads to further activation of kinases associated with proliferation, epithelial-394

mesenchymal-transition, migration and invasion in HCC, such asMitogen Activated Kinase-like Pro-395

tein (MAPK ), Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K ), Protein Tyrosine Kinase (PTK2),396

and SRC proto-oncogene/Non-receptor tyrosine kinase (SRC) (Wen et al., 2016). Further captured397

by the subgraphs is that elevated expression of PTK2 and MAPK12 are accompanied with elevated398

expression of cell cycle related genes (Cell Division Cycle 25 Homolog C / M-phase inducer phos-399

phatase 1 (CDC25C), Cyclin-dependent Kinase 1 (CDK1) and Polo-like Kinase 1 (PLK1)), thus connect-400

ing over-expression of kinases with cell proliferation.401

Although KEGG lists the interaction between SRC and CTNNB1 as inhibitory in nature, other402

studies have concluded that activated Src enhances the accumulation of nuclear beta-catenin and403

therefore through their interaction contributes to an oncogenic phenotype (Karni et al., 2005).404

In conclusion, the upregulated subgraphs capture the interaction of SPP1with integrin and con-405

sequent activation of PTK2 and SRC together with their connection to the WNT signaling pathway406

(via CTNNB1) and cell cycle genes.407

408

Downregulated oncogenes FOS and JUN and drug metabolism409

The global downregulated subgraphs are centered around down-regulation of transcription fac-410

tors FOS and JUN. The subgraph summary is depicted in figure 5. FOS and JUN, which form AP-1411

transcription complex are considered to be oncogenic factors and necessary for development of412

liver tumors (Eferl and Wagner, 2003). Considering their prominent role in liver tumorigenesis, fur-413

ther experimental study of the significance of Jun and Fos downregulation on HCC development414

could be of great interest. Interestingly, RNA-seq data show that all FOS (FOS, FOSB, FOSL1, FOSL2)415

and JUN (JUN, JUNB, JUND) isoforms are downregulated in a majority of liver tumors of the TCGA416

cohort (See figure 5, Supplementary figure 1).417

Furthermore, the subgraphs show a number of downregulated Cytochrome P450 (CYP) en-418

zymes as part of the most downregulated network of genes. CYP3A4 is mainly expressed in the419

liver and has an important role in the conversion of carcinogens, such as aflatoxin B1 toward their420

ultimate DNA-reactive metabolites (Luch, 2005), as well as, in detoxification of anticancer drugs421

(Undevia et al., 2005). Although the downregulation of CYP enzymes could potentially render HCC422

tumors sensitive to chemotherapy, liver tumors are notoriuosly irresponsive to chemotherapy423

(Llovet et al., 2016). Therefore, it is unclear how the gene pattern of CYP enzymes captured by424

the presented subgraphs could influence the HCC response to therapy and which compensatory425

mechanism is employed to counteract CYP downregulation.426

Personalized deregulated subgraphs for TCGA-LIHC427

Finding deregulated subgraphs in a patient-resolved manner enables steps toward personalized428

medicine. In this section we introduce a case study where we employed our algorithm to find an429

upregulated subgraph for every TCGA-LIHC patient. Stratifying patients according to whether their430

subgraph contains a gene or not, one can identify genes whose inclusion into a patient’s inferred431

subgraph provides a survival handicap or advantage. The supplementary figure of figure 7 shows432

the effect for some of those network-defined cancer genes. Here, we concentrate on one particular433

such gene, namely Spleen Tyrosine Kinase (SYK ).434
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Figure 5. Global downregulated subgraph for TCGA-LIHC are centered on FOS and JUN transcription
factors and drug metabolism. Color of nodes indicates the average log2 fold change of tumor samplescompared to controls as represented by the color bar. The color of edges indicates the following interactions:activation (red), compound (brown), binding/association (yellow), indirect effect (dashed grey) and expression(green). Also noteworthy it the general connection of transcriptional activators and inhibitors to signaling aswell as metabolic networks. Transcription regulators have been highlighted with an orange rim.

Figure 5–Figure supplement 1. Expression of FOS and JUN isoforms in tumor of TCGA-LIHC. cohort.
Figure 5–Figure supplement 2. Optimal downregulated global subgraph for TCGA-LIHC

Figure 5–Figure supplement 3. 1st suboptimal downregulated global subgraph for TCGA-LIHC
Figure 5–Figure supplement 4. 2nd suboptimal downregulated global subgraph for TCGA-LIHC
Figure 5–Figure supplement 5. 3rd suboptimal downregulated global subgraph for TCGA-LIHC
Figure 5–Figure supplement 6. 4tℎ suboptimal downregulated global subgraph for TCGA-LIHC
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Figure 6. SYK signaling indicates poor survival. TCGA-LIHC cases TCGA-5C-AAPD, TCGA-CC-A3MA,TCGA-ED-A5KG, TCGA-DD-AACH, TCGA-YA-A8S7, TCGA-CC-5261, TCGA-CC-A3M9 show activated SYK signalingand poor survival. Survival difference is significant at p=0.0002 (Kaplan-Meier estimates and log-rank test).
Figure 6–Figure supplement 1. Further identified genes whose inclusion into a patient’s inferred subgraph
indicates a poor survival.

Spleen tyrosine kinase (SYK) as a network-defined cancer gene435

Patients whose subgraph contained the spleen tyrosine kinase (SYK) showed comparatively bad436

survival outlook (see Figures 6, 7).437

SYK is most commonly expressed in immune cells and its deregulation has been originally asso-438

ciated with hematopoietic cancers (Lowell, 2011; Krisenko and Geahlen, 2015;Mocsai et al., 2010).439

However, it has been shown that SYK plays a role in various other cancer types and its respec-440

tive roles seem to vary significantly depending on the molecular (i.e. ultimately network) context441

(Krisenko and Geahlen, 2015). SYK comes in the form of two splice variants, SYK (L) and SYK (S) (Hong442

et al., 2014). In the context of liver cancer, SYK promoter hypermethylation and corresponding SYK443

downregulation has been associated with poor survival (Shin et al., 2014). Furthermore, Check-444

point Kinase 1 (CHK1) mediated phosphorylation of SYK (L) and associated SYK degradation has445

been considered an oncogenic process (Hong et al., 2012), associating low levels of SYK as a factor446

of poor survival. On the other hand, (Hong et al., 2014) SYK (S) expression promotes metastasis de-447

velopment in HCC and thus leads to poor survival outcome. Furthermore, high SYK expression has448

been shown to promote liver fibrosis (Qu et al., 2018). The development of HCC is closely related to449

formation and progression of fibrosis. Fibrosis represents excessive accumulation of extracellular450

matrix (ECM) and scarring tissue in an organ. A fibrotic environment promotes development of451

dysplastic nodules which can gradually progress to liver tumors (Bataller and Brenner, 2005). In452

short, a somewhat inconsistent role of SYK as a tumor supressor or oncogene can be observed in453

many cancers (Krisenko and Geahlen, 2015), including liver cancer.454

By employing DeRegNet, we identified by means of the approach defined as algorithm 1 a sub-455

group of HCC patients from the TCGA-LIHC cohort which show poor survival and a distinguished456

SYK-signaling pattern shown in Figure 7. The depicted network is manually extracted from the457

union graphof all the patient’s subgraphswhich contained SYK . The network shows SRC-SYK-mediated458

activation of PI3K-Akt signaling via B-lymphocyte antigen CD19 (CD19) and Phosphatidylinositol 4,5-459

bisphosphate 3-kinase catalytic subunit delta (PI3KCD)9 (Thorpe et al., 2015). Furthermore, SYK also460

feeds into mitogen-activated protein kinase 11-13 (p38) signaling (only MAPK13 shown) through461

GTPase Hras (HRAS) and aspase recruitment domain-containing protein 9 (CASP9). p38 signaling462

9p110�
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Figure 7. Consistent upregulation of SYK signaling components and downstream targets in subgraph
of patients with poor survival. Inner node color represents the average log2 fold change across the"SYK-positive" patients and node rim color represent average log2 fold change across the rest of theTCGA-LIHC cohort. Color of edges indicates following interactions: activation (red), inhibition (dark blue),compound (brown), indirect effect (dark grey) and expression (blue green).
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promotes cytokine expression via Growth-regulated alphaprotein (CXCL1). Increased cytokine ex-463

pression and activation is another canonical effect of SYK signaling (Mocsai et al., 2010). This in464

turn, activates JAK signaling through Januskinase 3 (JAK3) activity, thereby reinforcing PI3K activa-465

tion. Interestingly, SYK signaling is consistently linked to the upregulation of the guanine nucleotide466

exchange factors VAV1 and VAV3 (Mocsai et al., 2010; Lowell, 2011)10. The proto-oncogene VAV3 is467

associated to adverse outcomes in colorectal (Uen et al., 2015) and breast cancer (Citterio et al.,468

2012; Chen et al., 2015). Furthermore VAV3 mutations have been profiled to be potential drivers469

for liver cancer (Li et al., 2018). VAV signaling is mediated by forming a complex with Lympho-470

cyte cytosolic protein 2 (LCP2)11 upon activation of SYK signaling. VAV-meditated Ras-related C3471

botulinum toxin substrate 2 (RAC2) activation may play a role in intravastation and motility (Rous-472

sos et al., 2011). Additionally, the subgraph shows upregulation of the B-cell lymphoma 2 (BCL2)473

gene, a known regulator of apoptosis (Hardwick and Soane, 2013), and vascular endothelial growth474

factor-C (VEGGC) which can promote metastasis (Mandriota et al., 2001) and angiogenesis (Tam-475

mela et al., 2008; Tvorogov et al., 2010).476

Conclusion477

We have shown DeRegNet’s capability to infer relevant patterns to a high degree of accuracy based478

on simulation benchmarks and showed that it compares favorably to related algorithms. Further-479

more, application of DeRegNet to publically available data in a global fashion identified driving480

factors of liver cancer such as a transcriptionally activatedWNT-pathway, thus showing that DeReg-481

Net can provide valuable insight into a given omics experiment and may lead to novel and so far482

uncharacterized discoveries of gene/pathways involved in carcinogenesis and other biological con-483

texts. An example of such discovery is the already outlined insights into the global interaction of484

integrin and WNT signaling, as well as drug metabolism in liver cancer. In fact, profiling of such485

interaction between pathways is one of the main strengths of our algorithm over classical gene486

enrichment methods. Additionally, the application of our subgraph algorithm in a patient-specific487

manner could identify a consistent subgroup of patients showing poor prognosis potentially due488

to aberrant SYK signaling and therefore can generate meaningful hypotheses suitable for further489

experimental follow-up. Given that the SYK example is just one example case of a network-defined490

cancer gene, this indicates that DeRegNet is a useful hypothesis generation tool for network-guided491

personalized cancer research. In addition, furthermodes of application of the DeRegNet algorithm492

increase the spectrum of meaningful exploratory directions. Note, for example, that we only pre-493

sented and discussed network-defined cancer genes (i.e. SYK in our subgraph example) for upreg-494

ulated subgraphs, while we have not presented the results of an analysis based on downregulated495

or generically deregulated (either up- or downregulated) subgraphs which would lead to similar496

opportunities. Together with a solid underlying statistical model for which DeRegNet is shown to497

infer Maximum Likelihood estimates and its open-source implementation, this makes DeRegNet498

a viable option for any researcher interested in network interactions in an high-throughput omics499

context.500

Software Availability501

Our implementation is written in C++ and Python and utilizes the Gurobi optmization libary (http:502

//www.gurobi.com/index) and the Lemon graph library (https://lemon.cs.elte.hu/trac/lemon). Our soft-503

ware is open source under a BSD-3-Clause OSI-approved license and is available at https://github.504

com/KohlbacherLab/deregnet where you can also find installation instructions and usage examples.505

The algorithm can be run either by using a Python package or a command line tool via Docker506

images. The Docker images sebwink/deregnet are available at Docker Hub (https://hub.docker.com/507

repository/docker/sebwink/deregnet) and bundle all necessary dependencies. Additionaly Docker508

10Guanine nucleotide exchange factor (VAV )11SLP-76
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images are also provided via https://github.com/orgs/KohlbacherLab/packages?repo_name=deregnet.509

Furthermore, in order to runDeRegNet, a license for theGurobi optimization library is required. For510

academic purposes these licences are readily obtained at https://www.gurobi.com/downloads/. The511

applications of DeRegNet to TCGA data appearing in this paper can be found at https://github.com/512

KohlbacherLab/deregnet-tcga. DeRegNet depends on a C++ library called libgrbfrc (https://github.com/513

KohlbacherLab/libgrbfrc) to solve fractional integer programs with Gurobi which was implemented514

by the authors of DeRegNet which is also available under the BSD-3-Clause open source license.515

Finally, to run the synthetic benchmarks presented in this paper, one can follow the instructions516

at https://github.com/KohlbacherLab/deregnet/tree/master/examples/custom-python-script. The bench-517

mark code and results as obtained by the authors and presented in figure 3 are available here:518

https://github.com/KohlbacherLab/deregnet/tree/0.99.999/benchmark.519

Supplementary Files520

This paper is accompanied by the following supplementary materials:521

• Supplementary File 1: Appendix522

Supplementary File 1 provides additional details and formalized exposition of many aspects of523

DeRegNet. In particular, it provides details on directions on how to run the DeRegNet software,524

definition and derivation of the probabilistic model underlying DeRegNet, as well as the proof that525

DeRegNet corresponds to maximum likelihood estimation under outlined model, DeRegNet in the526

context of the general optimization problem referred to as theMaximum Average Weight Connected527

Subgraph Problem and its relatives, proofs of certain structural properties of DeRegNet solutions,528

different application modes of the DeRegNet algorithms, fractional mixed-integer programming529

as it relates to the solution of DeRegNet instances, lazy constraints in branch-and-cut MILP solvers530

as it relates to DeRegNet, further solution technology employed for solving DeRegNet instances,531

DeRegNet benchmark simulations and use of DeRegNet subgraphs as a basis for feature engineer-532

ing for survival prediction on the TCGA-LIHC dataset.533
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Figure 1–Figure supplement 1. Conceptual view of classical pathway/gene set analysis. Gene
sets/pathways are considered merely as sets of genes ignoring any explicit biomolecular interac-
tions between the elements of a gene set/pathway. Here red nodes represent differentially reg-
ulated genes and a basic GSE analysis employing hypergeometric Over-representation analysis
(ORA) would test for more red nodes than expected in any given gene set.

784

Figure 1–Figure supplement 2. Conceptual view of topological pathway/analysis. Biomolec-
ular interaction are taken into account when calculating enrichment for any given pathway. Gene
sets/pathways are still predefined though and interactions betweenpathways are usually not taken
into account
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Figure 1–Figure supplement 3. Conceptual view of topological pathway/analysis with path-
way crosstalks. Pathway crosstalks happen when genes are part of multiple pathways. They can
also happen if there are genes in two pathways with interactions between them from another
pathway. Even with pathway crosstalks accounted for, the gene sets/pathways as such are still
predetermined.

786

Figure 1–Figure supplement 4. Conceptual view of de-novo pathway analysis. De-novo path-
way identification / deregulated subnetwork discovery drops the predetermined pathways and
defines enriched subnetworks/pathways from the omics data itself.
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Figure 4–Figure supplement 1. GPC3-mediated activation of WNT signaling is a well-
documented process in liver cancer. The figure shows the relevent KEGG map (Proteoglycans
in cancer: hsa05205) with TCGA-LIHC min-max-scaled log2 fold changes mapped onto the genes.
This process was automatically recaptured by our upregulated subgraphs for TCGA-LIHC. Related
to Figure 4.
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Figure 4–Figure supplement 2. Optimal upregulated global subgraph for TCGA-LIHC
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Figure 4–Figure supplement 3. 1st suboptimal upregulated global subgraph for TCGA-LIHC
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Figure 4–Figure supplement 4. 2nd suboptimal upregulated global subgraph for TCGA-LIHC
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Figure 4–Figure supplement 5. 3rd suboptimal upregulated global subgraph for TCGA-LIHC
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Figure 4–Figure supplement 6. 4tℎ suboptimal upregulated global subgraph for TCGA-LIHC
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Figure 5–Figure supplement 1. Expression of FOS and JUN isoforms in tumor of TCGA-LIHC
cohort. (A) Log2-fold changes of FOS isoforms in individual tumors compared to the mean control
value of the TCGA-LIHC dataset. (B) Log2 fold changes of JUN isoforms in individual tumors com-
pared to the mean control value of the TCGA-LIHC dataset. Bars in waterfall plot indicate mRNA
downregulation ≥ 1.5-fold (blue),mRNA upregulation ≥ 1.5-fold (red). Related to Figure 5.
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Figure 5–Figure supplement 2. Optimal downregulated global subgraph for TCGA-LIHC
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Figure 5–Figure supplement 3. 1st suboptimal downregulated global subgraph for TCGA-LIHC
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Figure 5–Figure supplement 4. 2nd suboptimal downregulated global subgraph for TCGA-LIHC
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Figure 5–Figure supplement 5. 3rd suboptimal downregulated global subgraph for TCGA-LIHC
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Figure 5–Figure supplement 6. 4tℎ suboptimal downregulated global subgraph for TCGA-LIHC
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Figure 6–Figure supplement 1. Subset of genes whose inclusion into a patient’s inferred sub-
graph indicates a poor survival. Survival difference is calculated using Kaplan-Meier estimates
and log-rank test. Related to Figure 6.
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12

Abstract This document contains details concerning the Material and Methods outlined in the13

main paper de novo identification of maximally deregulated subnetworks based on14

multi-omics data with DeRegNet. It provides details about the following topics:15

• Directions on how to run the DeRegNet software16

• Definition and derivation of the probabilistic model underlying DeRegNet, as well as the17

proof that DeRegNet corresponds to maximum likelihood estimation under outlined model18

• DeRegNet in the context of the general optimization problem referred to as the Maximum19

Average Weight Connected Subgraph Problem and its relatives20

• Proofs of certain structural properties of DeRegNet solutions21

• Different application modes of the DeRegNet algorithms22

• Fractional mixed-integer programming as it relates to the solution of DeRegNet instances23

• Lazy constraints in branch-and-cut MILP solvers as it relates to DeRegNet24

• Further solution technology employed for solving DeRegNet instances25

• DeRegNet benchmark simulations26

• Use of DeRegNet subgraphs as a basis for feature engineering for survival prediction on the27

TCGA-LIHC dataset28

29

How to use the DeRegNet software30

DeRegNet Docker images and Gurobi setup31

Themain source code repository for DeRegNet is available here: https://github.com/sebwink/deregnet.32

DeRegNet is licensed under the BSD 3-clause OSI-approved open source license. The primary33

route to run DeRegNet is via Docker images which package DeRegNet and all its dependencies.34

Hence, in terms running DeRegNet on a Linux host there are only two dependencies: Docker and a35

Gurobi license. The official Docker images for DeRegNet can be found here: https://hub.docker.com/repository/dock36

For instructions for setting up a Gurobi license for running DeRegNet it is referred to the source37

code repository where one can always find up-to-date information. The sebwink/deregnet Docker38

images support basically two modes of usage: command-line and Python package.39
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Running DeRegNet via Docker40

Assuming you have Docker and a named-user Gurobi license configured, running DeRegNet in41

command-line mode is as easy as running42

g i t clone https : / / github .com/ sebwink / deregnet && cd deregnet43

docker /named−user / run sebwink / deregnet :0 .99 .999 avgdrgnt . py −−help44

which would display all available command-line options for avgdrgnt.py (i.e. DeRegNet’s main45

script):46

usage : avgdrgnt . py [−h] [−− include− f i l e INCLUDE_FILE ]47

[−− include−genesets INCLUDE_GENESETS] [−− inc lude INCLUDE ]48

[−− include−id−type INCLUDE_ID_TYPE]49

[−−exclude− f i l e EXCLUDE_FILE ]50

[−−exclude−genesets EXCLUDE_GENESETS ] [−−exclude EXCLUDE ]51

[−−exclude−id−type EXCLUDE_ID_TYPE ] [−−debug]52

[−−absolute−values ] −−graph GRAPH −−scores SCORE_FILE53

[−−default−score DEFAULT_SCORE] [−−score−column SCORE_COL ]54

[−−score− f i l e −without−header ] [−− id−column ID_COL ]55

[−−sep SEP ] [−−biomap−mapper ID_MAPPER ]56

[−−score−id−type SCORE_ID_TYPE ]57

[−−graph−id−type GRAPH_ID_TYPE ]58

[−−graph−id−a t t r GRAPH_ID_ATTR ] [−−suboptimal SUBOPTIMAL]59

[−−max−overlap−percentage MAX_OVERLAP] [−−gap−cut GAP_CUT]60

[−−time− l im i t TIME_LIMIT ] [−−model_sense {min ,max} ]61

[−−output−path OUTPUT] [−− f l i p −or ientat ion ]62

[−−min−s i ze MIN_SIZE ] [−−max−s i ze MAX_SIZE ]63

[−−min−num−terminals MIN_NUM_TERMINALS]64

[−−algorithm {GeneralizedCharnesCooper , Dinkelbach ,65

ObjectiveVariableTransform } ]66

[−−receptor− f i l e RECEPTOR_FILE]67

[−−receptor−genesets RECEPTOR_GENESETS ]68

[−−receptor RECEPTOR] [−−receptor−id−type RECEPTOR_ID_TYPE ]69

[−− terminal− f i l e TERMINAL_FILE ]70

[−− terminal−genesets TERMINAL_GENESETS]71

[−− terminal TERMINAL] [−− terminal−id−type TERMINAL_ID_TYPE ]72

73

optional arguments :74

−h , −−help show th i s help message and ex i t75

−−include− f i l e INCLUDE_FILE76

Path to GMT or GRP f i l e containing genes defining the77

inc lude layer .78

−−include−genesets INCLUDE_GENESETS79

Comma seperated l i s t of geneset names for inc lude80

layer , only appl i cab le i f GMT f i l e provided .81

−− inc lude INCLUDE Comma seperated l i s t of IDs defining the include82

l ayer .83

−−include−id−type INCLUDE_ID_TYPE84

Id−type for inc lude layer genesets . Options : a l l85

supported by chosen biomap mapper86

−−exclude− f i l e EXCLUDE_FILE87

Path to GMT or GRP f i l e containing genes defining the88

exclude layer .89

−−exclude−genesets EXCLUDE_GENESETS90

Comma seperated l i s t of geneset names for exclude91

layer , only appl i cab le i f GMT f i l e provided .92

−−exclude EXCLUDE Comma seperated l i s t of IDs defining the exclude93

l ayer .94

−−exclude−id−type EXCLUDE_ID_TYPE95

Id−type for exclude layer genesets . Options : a l l96

supported by chosen biomap mapper97

−−debug Debug underlying C++ code with gdb .98
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−−absolute−values Whether to take absolute values of the scores .99

−−graph GRAPH A graphml f i l e containing the graph you want to run100

drgnt with .101

−−scores SCORE_FILE A text f i l e containing the scores . See further options102

below .103

−−default−score DEFAULT_SCORE104

The score of nodes in the graph which are not scored105

in your score f i l e . Default : 0.0106

−−score−column SCORE_COL107

Column name of ( gene ) id in your score f i l e . Default :108

score109

−−score− f i l e −without−header110

Flag to ind icate whether the score f i l e has a header111

or not .112

−−id−column ID_COL Column name of ( gene ) id in your score f i l e . Default :113

id114

−−sep SEP The column seperator in your score f i l e . Options :115

comma, tab . Default : \ t116

−−biomap−mapper ID_MAPPER117

biomap mapper you want to use for id mapping. Default :118

hgnc119

−−score−id−type SCORE_ID_TYPE120

Which id type do you have in your score f i l e ? Options :121

a l l thosesupported by the biomap mapper you chose or122

unspecif ied . Default : same as graph id type123

−−graph−id−type GRAPH_ID_TYPE124

Which id type does the graph have? Options : a l l those125

supportedby the biomap mapper you chose or126

unspecif ied . Default : unspecifed i . e . None127

−−graph−id−a t t r GRAPH_ID_ATTR128

Node at t r ibu te which contains the relevant id in the129

graphml . Default : name130

−−suboptimal SUBOPTIMAL131

Number of suboptimal subgraphs you want to f ind .132

( Increases runtime )133

−−max−overlap−percentage MAX_OVERLAP134

How much can suboptimal subgraphs overlap with already135

found subgraphs . Default : 0136

−−gap−cut GAP_CUT Stop optimization prematurely i f current so lut ion137

within GAP of optimal so lut ion . Default : None138

−−time− l im i t TIME_LIMIT139

Set a time l im i t in seconds . Default : None140

−−model_sense {min ,max}141

Model sense . Default : max142

−−output−path OUTPUT Folder to which output i s written . (Does not have to143

ex i s t . ) Default : cwd144

−− f l i p −or ientat ion Set −− f l i p −or ientat ion when you want to f l i p the145

or ientat ion of the underlying graph .146

−−min−s i ze MIN_SIZE Minimal s i ze of the resu l t ing subgraph ( s ) . Default :147

15148

−−max−s i ze MAX_SIZE Maximal s i ze of the resu l t ing subgraph ( s ) . Default :149

15150

−−min−num−terminals MIN_NUM_TERMINALS151

Minimum number of terminals in the resu l t ing152

subgraph ( s ) . Default : 0153

−−algorithm {GeneralizedCharnesCooper , Dinkelbach , ObjectiveVariableTransform }154

Algorithm to use to solve the f r a c t i ona l in teger155

programming problem . Default : GeneralizedCharnesCooper .156

−−receptor− f i l e RECEPTOR_FILE157

Path to GMT or GRP f i l e containing genes defining the158

receptor layer .159
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−−receptor−genesets RECEPTOR_GENESETS160

Comma seperated l i s t of geneset names for receptor161

layer , only appl i cab le i f GMT f i l e provided .162

−−receptor RECEPTOR Comma seperated l i s t of IDs defining the receptor163

l ayer .164

−−receptor−id−type RECEPTOR_ID_TYPE165

Id−type for receptor layer genesets . Options : a l l166

supported by chosen biomap mapper167

−−terminal− f i l e TERMINAL_FILE168

Path to GMT or GRP f i l e containing genes defining the169

terminal layer .170

−−terminal−genesets TERMINAL_GENESETS171

Comma seperated l i s t of geneset names for terminal172

layer , only appl i cab le i f GMT f i l e provided .173

−−terminal TERMINAL Comma seperated l i s t of IDs defining the terminal174

l ayer .175

−−terminal−id−type TERMINAL_ID_TYPE176

Id−type for terminal layer genesets . Options : a l l177

supported by chosen biomap mapper178

Still in the top-level of the repository, you can find your first subgraph like so:179

docker /named−user / run sebwink / deregnet : l a t e s t avgdrgnt . py \180

−−graph test / kegg_hsa . graphml \181

−−scores test / data / score . csv \182

−−sep , \183

−−graph−id−a t t r ensembl184

This will generate deregnet.log and finally optimal.graphmlwhere the former is a log of the optimiza-185

tion procedure carried out by DeRegNet and the latter the resulting optimal subgraph in GraphML186

format. For more information on GraphML, the most prominent graph serialization format sup-187

ported by DeRegNet, see: http://graphml.graphdrawing.org/.188

DeRegNet Python package via Docker189

For more custom analyses it is often necessary to work with the deregnet Python package directly.190

This is also supported by the sebwink/deregnet Docker images which come with all the relevant191

packages pre-installed and properly configured. E.g. in order to run the benchmarks presented in192

themain text, you can follow the directions given here: https://github.com/sebwink/deregnet/tree/master/examples/custom-193

Running any Python script which uses the deregnet Python package is then as easy as:194

docker /named−user / run sebwink / deregnet :0 .99 .999 python3 any_scr ipt . py195

Results concerning the probabilistic model for DeRegNet196

This subsection formalizes the notion that a deregulated subgraph satisfying given topological con-197

straints should have higher/maximal probability of deregulation with respect to all possible sub-198

graphs of that particular topological class. We present a basic probabilistic model yielding one199

possible formal probabilistic rationale for optimizing a model of form given in the main paper.200

Furthermore we provide a suitable interpretation of the model proposed in Backes et al. (2012)201

in terms of that model, showing that DeRegNet solves a more general problem in the statistical202

sense necessitated by the probabilistic model introduced in the main text.203

For sake of locality of exposition we restate the statistical model as introduced in the main204

text. The model assumes binary node scores s ∶ V → {0, 1} which are realizations of random205

variables S = (Sv)v∈V . Further it is assumed the existence of a subset of vertices V
′ ⊂ V such that206

Sv|v ∈ V ′ ∼ Ber(p′) and Sv|v ∈ V ∖V ′ ∼ Ber(p) with p, p′ ∈ (0, 1) denoting probabilites of deregulation207

outside and inside of the deregulated subgraph respectively. It is assumed that p′ > p to reflect208

the idea of higher deregulation (probability) in the deregulated subgraph. The network context (de-209

pendency) is introduced via the restriction that V ′ ∈ (V ) ⊂ (V ). Here, (V ) denotes the set of210
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feasible substructures and should (can) reflect topologies inspired by known biomolecular path-211

way topologies like the one described in Backes et al. (2012) and the last subsection. Furthermore212

it is assumed, that the (Sv), given a network context and deregulation probabilities p, p
′, are inde-213

pendent. We further introduce the notation �(Ṽ ) ∶= |{v ∈ Ṽ ∶ Sv = 1}| and considering V ′, p, p′214

to be parameters, and a subgraph determined by indicator variables x as outlined in the previous215

subsection, we can state:216

Proposition 1

The log-likelihood s(Ṽ , p, p′) = logP(S = s|V ′ = Ṽ , p, p′) under above model is given by:

sTx log
p′(1 − p)

p(1 − p′)
− eTx log

1 − p

1 − p′
+ sT e log p + (e − s)T e log(1 − p).

Proof.

P(S = s|V ′ = Ṽ , p, p′) =
∏

v∈Ṽ

P(Sv = sv|V ′ = Ṽ , p′) ⋅
∏

v∈V ∖Ṽ

P(Sv = sv|V ′ = Ṽ , p)

= p′�(Ṽ )(1 − p′)|Ṽ |−�(Ṽ )p�(V ∖Ṽ )(1 − p)|V ∖Ṽ |−�(V ∖Ṽ )

Employing decision variables xv = I(v ∈ Ṽ ), we can write �(Ṽ ) = sT x, |Ṽ | = eT x, �(V ∖Ṽ ) = sT (e−x)217

and |V ∖Ṽ | = eT (e − x). It follows that the log-likelihood s(x, p, p
′) = s(Ṽ , p, p′) = logP(S = s|V ′ =218

Ṽ , p, p′) can be written as:219

s(Ṽ , p, p′) = sT x log p′ + (e − s)Tx log(1 − p′)

+ sT (e − x) log p + (e − s)T (e − x) log(1 − p)

= sT x log
p′(1 − p)

(1 − p′)p
− eT x log

1 − p

1 − p′
+ sT e log p + (e − s)T e log(1 − p)

■220

I call an optimization model maximizing the objective sTx subject to any constraints on x (the221

subgraph topology) a model of Backes-type Backes et al. (2012). Note that the DeRegNet model222

reduces to a Backes-type model in case of kmin = kmax.223

Proposition 2224

Any subgraph model of Backes-type enforcing a fixed subgraph size can be interpreted as maximum225

likelihood estimation with respect to subgraph structure given the above model.226

Proof. Given the log-likelihood as determined by proposition 1, ignoring the constant term with227

respect to x, a maximum likelihood estimator V ∗ with respect to subgraph structure can be deter-228

mined as follows:229

V ∗ ∈ argmax
Ṽ ⊂(V )

s(Ṽ , p, p′) (1)

= argmax
Ṽ ⊂(V )

{
sTx log

p′(1 − p)

p(1 − p′)
− eT x log

1 − p

1 − p′

}
(2)

= argmax
Ṽ ⊂(V )

{
sTx log

p′(1 − p)

p(1 − p′)

}
(3)

= argmax
Ṽ ⊂(V )

sTx (4)

Here, equality (2.4) follows from the assumption that the topological constraints of the opti-230

mization model enforce a constant subgraphs size (i.e. eT x = k for some fixed k ∈ ℕ). The last231

equality follows (by assumption p′ > p) because log
p′(1−p)

p(1−p′)
> 0. Overall, a maximum likelihood es-232

timator is given by a solution to a given Backes-type optimization model max sT x with subgraph233

topology restricted to subgraphs from (V ).234

■235
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In particular, the specific model proposed by Backes et al. (2012) lends itself to the just justified236

interpretation:237

Corollary 1238

The optimization model suggested by Backes et al. (2012) can be interpreted as maximum likelihood239

estimation with respect to subgraph structure given the above probabilistic model.240

I now proceed to provide a maximum likelihood interpretation for the DeRegNet model. Since241

the DeRegNet model does not assume a fixed subgraph size, above conclusions do not apply. Un-242

der the assumption that the parameter p is estimated external to the model and represents some243

general base level of deregulation one can by (conceptual) reduction from the full log-likelihood244

s(Ṽ , p, p′) to s(Ṽ , p′) state the following proposition.245

Proposition 3246

Solving a DeRegNet instance amounts to maximum likelihood estimation under above model with re-247

spect to subgraph structure and deregulation probability p′ (assuming p′ > 0).248

Proof. Given the log-likelihood as in proposition 1, one can differentiate with respect to p′:

)

)p′
s(Ṽ , p, p′) =

)

)p′
s(Ṽ , p′) (5)

=
)

)p′
sTx log

p′(1 − p)

(1 − p′)p
−

)

)p′
eT x log

1 − p

1 − p′
(6)

By computing249

)

)p′
log

p′(1 − p)

(1 − p′)p
=

)

)p′
log

p′

p
−

)

)p′
log

1 − p′

1 − p
(7)

=
p

p′
⋅
1

p
−

1 − p

1 − p′
⋅

−1

1 − p
(8)

=
1

p′
+

1

1 − p′
(9)

and250

)

)p′
log

1 − p′

1 − p
= −

1

1 − p′
(10)

one obtains251

)

)p′
s(Ṽ , p′) = sTx

1

p′
+ sT x

1

1 − p′
− eTx

1

1 − p′
(11)

Requiring )

)p′
s(Ṽ , p′∗) = 0 and with252

)

)p′
s(Ṽ , p′∗) = 0 ⇔

1 − p′∗

p′∗
+ 1 =

eT x

sTx
(12)

⇔ p′∗ =
sTx

eT x
(13)

and1253

)2

)p′2
s(Ṽ , p′) = sT x

−1

p′2
+ sTx

1

(1 − p′)2
− eTx

1

(1 − p′)2
≤ −

eT x

p′2
< 0 (14)

1Since sT x ≤ eT x and eT x > 0 under the assumption that the subgraphs are constrained to have at least one node and

p′ > 0.
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one arrives at254

V ∗
MLE

∈ argmax
Ṽ ⊂(V )

p′∗ = argmax
Ṽ ⊂(V )

sTx

eT x
(15)

since no terms involving x were dropped in the derivation for p′∗.255

■256

The propositions of this subsection show, that, given the introduced statistical model, solving257

a DeRegNet instance instead of an instance of the optimization model proposed in Backes et al.258

(2012) allows to carry out maximum likelihood estimation without the need to fix the subgraph259

size in advance. Given the assumptions of the model, these results hold regardless of further260

topological constraints and only relate to the respective objective functions.261

Maximum Average Weight Connected Subgraph Problems262

(Rooted) Maximum (Average) Weight Connected Subgraph Problems263

In terms of mathematical optimization and up to minor modifications2, Backes et al. (2012) solve264

instances of the so called (Rooted) Maximum Weight Connected Subgraph Problem.265

Definition 1 (Maximum Weight Connected Subgraph Problem (MWCSP))266

Given a directed graph G = (V ,E) and node scores s ∶ V → ℝ, find a set of nodes V ′ ⊂ V whose267

induced subgraph (V ′, E′) maximizes eT
V ′s such that there is a node r ∈ V ′ such that there is a directed268

path from r to every other node v ∈ V ′.269

By fixing the root node in the MWCSP to a particular node in the underlying graph one arrvies at270

the so called Rooted MaximumWeight Connected Subgraph Problem (RMWCSP):271

Definition 2 (Rooted Maximum Weight Connected Subgraph Problem (RMWCSP))272

Given a directed graphG = (V ,E), node scores s ∶ V → ℝ, and a node r ∈ V called the root node, find a273

set of nodes V ′ ⊂ V whose induced subgraph (V ′, E′) maximizes eT
V ′s such that there is a directed path274

from r to every other node v ∈ V ′.275

The (R)MWCSP has found applications in network biology Dittrich et al. (2008), Backes et al. (2012).276

It also attracted general computational and theoretical research in recent years Buchanan et al.277

(2017), Loboda et al. (2016), fromdifferent integer programming formulations andproblem-specific278

branch-and-cut strategies El-Kebir and Klau (2014), Álvarez-Miranda et al. (2013a), Álvarez-Miranda et al.279

(2013b), Althaus and Blumenstock (2011), to more recent research on computational strategies for280

addressing large-scale instances Álvarez Miranda and Sinnl (2017) and problem reduction tech-281

niques and heuristics Rehfeldt et al. (2019), Rehfeldt and Koch (2019).282

The Maximum Average Weight Connected Subgraph Problem (MAWCSP)283

Analogously to the (R)MWCSP one can define versions which strive to optimize the average score284

in the subgraph.285

Definition 3 (Maximum Average Weight Connected Subgraph Problem (MAWCSP))286

Given a directed graph G = (V ,E) and node scores s ∶ V → ℝ, find a set of nodes V ′ ⊂ V whose287

induced subgraph (V ′, E′)maximizes
eT
V ′ s

eT eV ′
such that there is a node r ∈ V ′ such that there is a directed288

path from r to every other node v ∈ V ′.289

Definition 4 (Rooted Maximum Average Weight Connected Subgraph Problem (RMAWCSP))290

Given a directed graph G = (V ,E), node scores s ∶ V → ℝ, and a node r ∈ V called the root node, find291

a set of nodes V ′ ⊂ V whose induced subgraph (V ′, E′) maximizes
eT
V ′ s

eT eV ′
such that there is a directed292

path from r to every other node v ∈ V ′.293

DeRegNet solves extended versions of the (Rooted) Maximum Average Weight Connected Sub-294

graph Problem.295

2For example the requirement of the subgraphs to be of a certain predefined size k ∈ ℕ.
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Some formal properties of DeRegNet solutions296

In terms of the notation and exact formulation provided in themain text, we will here formally spec-297

ify certain topological characteristics of solutions of the above model which were hinted at before.298

For similar proofs and also alternative formulations for the MWCSP it is referred to Backes et al.299

(2012), Álvarez-Miranda et al. (2013b), Álvarez-Miranda et al. (2013a), El-Kebir and Klau (2014), Althaus and Blumenstock300

(2011). I first formally recapture the defining topological feature of problems of (R)M(A)WCS flavour301

for DeRegNet.302

Proposition 4303

A feasible subgraph V ∗ of a DeRegNet instance has the property that any node in the subgraph can be304

reached from the root of the subgraph.305

Proof. Any given node v ∈ V ∗ of the subgraph is contained in a strongly connected component.306

By constraints (2.1e) and (2.1f) this strongly connected component either contains the root node307

or is reachable from some node u ∈ V ∗ in the subgraph which is not in that strongly connected308

component: Let S ⊂ V be the vertex set inducing the strongly connected component. If the root309

is not in S we have eT
S
(x − y) = |S| and hence it need to hold eT

�−(S)
x ≥ 1, otherwise one would have310

eT
S
(x − y) − eT

�−(S)
x ≥ |S| in violation of constraints (2.1e) and (2.1f). If the root node is in S, it holds311

that eT
S
(x − y) = |S| − 1 and hence constraints (2.1e) and (2.1f) always hold due to eT

�−(S)
x ≥ 0. In312

the case, that the root node is in v’s component, v is reachable from the root node. In the case the313

component does not contain the root, repeat the argument with u instead of v. Again, the root is314

in the strongly connected component of u or the component is reachable from some u′ ∈ V ∗, and315

so on. Since the subgraph has a finite number of strongly connected components, one ultimately316

will encounter the component containing the root in the above argument which proves the the317

existence of a path to any arbitrary v ∈ V ∗ from the root node. ■318

The terminals from the terminal set T represent terminals of a subgraph in the following sense.319

Proposition 5320

A feasible subgraph V ∗ of a DeRegNet instance has the property that a node v ∈ V ∗ in the subgraph321

with v ∉ T has to have an outgoing edge into the subgraph, i.e. only terminal nodes are allowed to have322

no outgoing edges within the subgraph.323

Proof. Given a non-terminal node v ∉ T one has constraint (2.1h): xv − eT
�+(v)

x ≤ 0, i.e. if xv = 1 it324

has to hold that eT
�+(v)

x ≥ 1. The latter inequality means that there exists another node u ∈ V ∗ such325

that (v, u) ∈ E, E being the edge set of the underlying graph. ■326

Further application modes of DeRegNet327

Fixing the root node328

Instead of the root being determined by the algorithm as outlined in the previous paragraph, one329

can also specify a given node r ∈ V as root Backes et al. (2012). In this case, one does not need the330

y variables anymore and, since the constraint logic can be carried over analogously, we can write331
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the corresponding fractional integer problem as:332

max
x ∈ {0, 1}V

sT x

eT x
(16a)

s.t. xr = 0 (16b)

kmin ≤ eT x ≤ kmax (16c)

xv − eT
�−(v)

x ≤ 0 ∀v ∈ V ⧵ {r} (16d)

eT
S
x − eT

�−(S)
x ≤ |S| − 1 ∀S ⊂ V iscs, |S| > 1 (16e)

xv − eT
�+(v)

x ≤ 0 ∀v ∈ V ⧵ T if T ≠ ∅ (16f)

eTIncx = |Inc| (16g)

eTExx = 0 (16h)

Note, that the above formulation is a special case of the more general formulation of the pre-333

vious section, namely R = {r}. It is nonetheless convenient to sometimes refer to the tuple334

(G, r, T ,Ex, Inc, s) as a rooted DeRegNet instance. All other terminology from the general case carries335

over without modification.336

Reversing the orientation337

The default version of the just outlined algorithm will find subnetworks which possess a "root"338

node from which one can reach any other node in the subnetwork. This can be interpreted as the339

subnetwork being deregulated downstream of that root. As outlined in the previous sections, this340

root can either be determined by the algorithm or pre-determined by biological curiosity or insight.341

By reversing the orientation of the graph one can easily obtain subnetworks where the "root" can342

be reached from any node in the subnetwork. Such a subgraph can be interpreted as deregulated343

upstream of the either algorithmically determined or user-defined "root" node. In that case a344

more intuitive name for the "root" is "terminal" or "destination". Formally this difference in the345

structure of the output can be achieved by substituting the original graph G with the transposed346

graph G̃ = (V , Ẽ), Ẽ = {(u, v) ∈ V × V ∶ (v, u) ∈ E}, and defining the models as before with the roles347

of receptors and terminals exchanged.348

Definition 5349

A reverse solution of a DeRegNet instance I = (G,R, T , Ex, Inc, s) with underlying graph G = (V ,E)350

is the (graph) transpose of an optimal subgraph of the DeRegNet instance Ĩ = (G̃, T , R, Ex, Inc, s). The351

latter is called the reverse instance of I. Here, G̃ denotes the transposed graph of G, i.e. G̃ = (V , Ẽ),352

Ẽ = {(u, v) ∈ V × V ∶ (v, u) ∈ E}.353

After the algorithm found subnetworks with respect to the reversed graph the resulting subnet-354

works have to be re-reversed to reflect physical reality. Also note, that the reversed instance ex-355

changes the roles of receptors and terminal nodes to keep the intuitive notions associated with356

these terms in line with the topology of the just defined reverse solutions.357

Extracting suboptimal subnetworks358

Although the strategy to optimize seems like a sensible heuristic, it is nonetheless just an heuris-359

tic. There is no intrinsic need for a biological system at hand to behave consistently with this360

optimization objective in the sense that it is not granted that the patterns found by the algorithm361

actually correspond to what is biologically important in the given situation. Vice versa, something362

(nodes, a particular pattern of nodes) not showing up in any subgraph does not mean that they363

may not be important in the given context. While this cannot be mediated completely, it is sensi-364

ble to find at least possible suboptimal patterns along with the optimal one. This can be seen as a365

step to capture mathematically speaking slightly less optimal but biologically potentially similarily366
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or even more important patterns. I implement this notion by following the appproach found in367

(Dittrich et al., 2008) and adapt it to DeRegNet. Given a specified maximal overlap � ∈ [0, 1) and368

a (induced) subgraph V ∗ ⊂ V one adds to the DeRegNet model as stated in the main part of the369

paper the suboptimality constraint eT
V ∗x ≤ � ⋅ eT x and reoptimizes, forcing any corresponding sub-370

graph to be found to maximally have 100 ⋅ � % node overlap with the the nodes of the previously371

found subgraph. One can iterate this theme. For example, given a set of subgraphs V (1), ..., V (k) for372

some k ∈ ℕ one can add the constraints eT
V (j)

x ≤ � ⋅eT x for all j = 1, ..., k to the DeRegNet instance to373

obtain a optimal subgraph of that modified DeRegNet instance which is guaranteed to have node374

overlap ≤ � with any of the V (j). With V (1) = V ∗ being the original optimal subgraph of a DeRegNet375

instance one thus obtains a series of suboptimal subgraphs V (2), ..., V (k). The question which k to376

choose can be for example decided such that one chooses the k for which
eT

V (k+1)
s

|V (k+1) |
< � ⋅

eT
V ∗ s

|V ∗|
for the377

first time for some � ∈ [0, 1]. Here, � quantifies the degree of suboptimality one is willing to accept.378

Fractional mixed-integer programming379

Definition 6 (Fractional mixed-integer linear program; FMILP)
A Fractional mixed-integer linear program (FMILP) is an optimization problem of the following struc-

ture:

max
cTx + d

pTx + q
(17a)

s.t. x ∈ ℝ
nc ×ℤ

ni (17b)

Ax ≤ b (17c)

Here, c, p ∈ ℝ
n, d, q ∈ ℝ define the objective, A ∈ ℝ

m×n, b ∈ ℝ
m define m ∈ ℕ linear constraints and380

nc ∈ ℕ, ni ∈ ℕ denote the number of continuous and discrete (integer) variables.381

We assume ∀x ∈  ∶ pTx + q > 0,  ∶= {x ∈ ℝ
n ∶ Ax ≤ b}. Fractional mixed-integer lin-382

ear problems are hence mixed-integer problems except for the objective which is a rational func-383

tion with linear enumerator and denominator instead. While a FMILP is non-convex, it turns out384

that a FMILP is pseudolinear and hence quasilinear, rendering local optima to be globally optimal385

You et al. (2009).386

Proposition 6387

A FMILP is pseudoconvex and pseudoconcave.388

Proposition 7389

A FMILP is strictly quasiconvex and strictly quasiconcave.390

Proposition 8391

A local optimum of a FMILP is also a global optimum.392

The latter facts render FMILP solvable by any generic mixed-integer nonlinear programming393

(MINLP) solver which can handle pseudolinear objective functions You et al. (2009). Empirically,394

it was shown that iterative schemes You et al. (2009) or linearization-reformulation approaches395

Yue et al. (2013) outperform generic MINLP solvers with respect to computing time and memory396

footprint. These approaches rely on a mixed-integer linear programming (MILP) solver as their397

optimization kernel, hence unlocking the power of modern MILP software, and rely on transform-398

ing the original problem into a (sequence of) MILP problem(s). The DeRegNet software pack-399

age discussed in the main text implements a Dinkelbach-type algorithm You et al. (2009) and400

a reformulation-linearization method Yue et al. (2013) resembling the Charnes-Cooper method401

Charnes and Cooper (1962) for solving fractional linear programs (FLP). The following sections pro-402

vide algorithmic details on the these methods.403
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Dinkelbach-type algorithm (Dinkelbach algorithm)404

Originating in the 1960’s Dinkelbach (1962, 1967) and studied in the context of FMILP problems405

Anzai (1974); You et al. (2009) later on, the Dinkelbach algorithm relies on the iterative solution of406

linear problems only containing the original variables and an auxiliary iteration parameter. Algo-407

rithm 1 details the procedure. In the following, as well as in the entire thesis, Dinkelbach algorithm408

and Dinkelbach-type algorithm are used synonymously to refer to Algorithm 1.409

Algorithm 1: Dinkelbach-type algorithm

Data: FMILP with feasible set 

Result: solution x∗ of FMILP

Initialization:
� = 0

� > 0 (termination tolerance)

F = ∞

while F > � do
x∗ = arg max {cT x + d − � (pTx + q) ∶ x ∈ }

F = cTx∗ + d − r (pTx∗ + q)

� =
cTx∗ + d

pTx∗ + q

return x∗

410

The mixed-integer linear program appearing in the while-loop of algorithm 1 is called a Dinkel-411

bach iteration problem. Dinkelbach’s algorithm iteratively solves a sequence Dinkelbach iteration412

problems until some convergence criterion is met. The follwing subsection shows that this proce-413

dure indeed solves the original FMILP.414

Correctness of Dinkelbach’s Algorithm (1) - based on You et al.You et al. (2009)415

In order to facilitate the following exposition the functions N ∶  → ℝ,N(x) ∶= cTx + d for the416

nominator and D ∶  → ℝ, D(x) ∶= pTx + q for the denominator of the objective function are417

introduced. Without loss of generality one can set d = q = 0 since one can introduce dummy418

variables xd and xq with linear constraints xd = xq = 1 and corresponding coefficients cd = pq = 1419

leading to N(x) = cTx + cdxd and D(x) = pTx + pqxq . Furthermore, define L�(x) ∶= N(x) − �D(x) and420

F ∶ ℝ → ℝ, F (�) ∶= max {L�(x) ∶ x ∈ } be the optimal objective value of a Dinkelbach iteration421

problem as a function of the auxiliary parameter �. Without loss of generality we assume D(x) > 0422

for all x ∈  .423

424

The two main results concerning Dinkelbach’s algorithm are the following:425

Proposition 9 (Optimality criterion, Yue et al. (2013) Proposition 1)426

F (�∗) = max {N(x)−�D(x) ∶ x ∈ } = 0 ⟺ �∗ =
N(x∗ )

D(x∗)
= max {

N(x)

D(x)
∶ x ∈ }where x∗ = argmax{

N(x)

D(x)
∶427

x ∈ }428

Proposition 10 (Convergence (rate), Yue et al. (2013) Proposition 2)429

Dinkelbach’s algorithm converges superlinearly to �∗ in where x∗ ∈ argmax{
N(x)

D(x)
∶ x ∈ } and �∗ =

N(x∗ )

D(x∗ )
.430

We follow Yue et al. (2013) in proving the above propositions via a series of lemmas.431

Lemma 1 (Yue et al. (2013) Appendix, Lemma 4)432

F is convex.433

Proof. For � ∈ [0, 1], let x� ∈  be x� ∈ argmax{L��′+(1−�)�′′ (x) ∶ x ∈ } with �′, �′′ ∈ ℝ. Then:

F (��′ + (1 − �)�′′) = max {L�(x) ∶ x ∈ } (18)

= N(x�) − [��′ + (1 − �)�′′]D(x) (19)

= �[N(x�) − �′D(x�)] + (1 − �)[N(x�) − �′′D(x�)] (20)

= �F (�′) + (1 − �)F (�′′) (21)
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■434

Lemma 2 (Yue et al. (2013) Appendix, Lemma 5)435

F is strictly monotonically increasing, i.e. �′ < �′′
⟹ F (�′) < F (�′′).436

Proof. Given �′ < �′′ one obtains with x′ = argmax{L�′ (x) ∶ x ∈ } and x′′ = argmax{L�′′ (x) ∶ x ∈ }:

F (�′′) = N(x′′) − �′′D(x′′) (22)

< N(x′′) − �′D(x′′) (23)

≤ N(x′) − �′D(x′) (24)

= F (�′) (25)

■437

Lemma 3 (Yue et al. (2013) Appendix, Lemma 6)438

F (�) = 0 has a unique solution.439

Proof. Follows from lim
�→∞

F (�) = −∞ and lim
�→−∞

F (�) = ∞ and F being strictly monotonically increasing440

(Lemma 2). ■441

Lemma 4 (Yue et al. (2013) Appendix, Lemma 7)442

∀x′ ∈  ∶ F (
N(x′)

D(x′)
) ≥ 0443

Proof. For any x′ ∈  one has:

F (
N(x′)

D(x′)
) = max{N(x) −

N(x′)

D(x′)
D(x) ∶ x ∈ } (26)

≥ N(x′) −
N(x′)

D(x′)
D(x′) (27)

= 0 (28)

■444

One can now prove proposition 1:445

Proof of proposition 1. We have to show: F (�∗) ⟺ �∗ =
N(x∗ )

D(x∗ )
= maxx∈

N(x)

D(x)
.446

⟹ : Given F (�∗) = maxx∈FN(x) − �∗D(x) it follows with x∗ ∶= argmax{N(x) − �∗D(x) ∶ x ∈ } for447

all x ∈  0 = N(x∗) − �∗D(x∗) ≥ N(x) − �∗D(x). Hence N(x)

D(x)
≤ �∗ =

N(x∗ )

D(x∗)
, i.e. x∗ = argmax{

N(x)

D(x)
∶ x ∈ }.448

⟸ : With x∗ = argmax{
N(x)

D(x)
∶ x ∈ } one has �∗ =

N(x∗ )

D(x∗)
≥

D(x)

N(x)
. Under our general assumption449

D(x) > 0 for all x ∈  it follows N(x) − �∗D(x) ≤ 0 = N(x∗) − �∗D(x∗) for all x ∈  which shows450

x∗ = argmax{N(x) − �∗D(x) ∶ x ∈ }.451

■452

From now onward, let �∗ be the unique solution of F (�) = 0 and let x∗ ∈ argmax{
N(x)

D(x)
∶ x ∈ } with453

�∗ =
N(x∗)

D(x∗)
.454

Lemma 5 (Yue et al. (2013) Appendix, Lemma 8)455

Let x′ ∈ argmax{N(x) − �′D(x)} and x′′ ∈ argmax{N(x) − �′′D(x) ∶ x ∈ } with �′ < �′′, then D(x′) ≥456

D(x′′).457

Proof. Adding the inequalitiesN(x′)−�′D(x′) ≥ N(x′′)−�′D(x′) andN(x′′)−�′′D(x′′) ≥ N(x′)−�′′D(x′)458

leads to (�′′ − �′)D(x′) ≥ (�′′ − �′)D(x′′), i.e. D(x′) ≥ D(x′′) since �′′ ≥ �′ by assumption. ■459

Lemma 6 (Yue et al. (2013) Appendix, Lemma 9)460

Let x′ ∈ argmax{N(x)−�′D(x)} and x′′ ∈ argmax{N(x)−�′′D(x) ∶ x ∈ }, then f (x′′)−f (x′) ≥
F (�′′)

D(x′′)
−

F (�′)

D(x′)
461
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Proof. From F (�′′) = N(x′′) − �′′D(x′′) ≥ N(x′) − �′′D(x′′) it follows N(x′′ )

D(x′)
− �′′ D(x′′)

D(x′)
≥

N(x′)

D(x′)
− �′′. This

implies:

N(x′′)

D(x′′)
−

N(x′)

D(x′)
≥

N(x′′)

D(x′′)
+ (−�′′ +

D(x′′)

D(x′)
�′′ −

N(x′′)

D(x′)
) (29)

=
N(x′′)

D(x′′)
−

N(x′′)

D(x′)
+ �′′(

D(x′′)

D(x′)
−

D(x′′)

D(x′′)
) (30)

= N(x′′)(
1

D(x′′)
−

1

D(x′)
) + �′′D(x′′)(

1

D(x′′)
−

1

D(x′′)
) (31)

= −F (�′′)(
1

D(x′)
−

1

D(x′′)
) (32)

=
F (�′′)

D(x′′)
−

F (�′′)

D(x′)
(33)

■462

Lemma 7 (Yue et al. (2013) Appendix, Lemma 10)463

Let x′ ∈ argmax{N(x) − �′D(x)} and x′′ ∈ argmax{N(x) − �′′D(x) ∶ x ∈ } and F (�∗) = 0, then if follows464

for �′ ≤ �′′ ≤ �∗, that N(x′)

D(x′)
≤

N(x′′)

D(x′′)
.465

Proof.

N(x′′)

D(x′′)
−

N(x′)

D(x′)
≥

F (�′′)

D(x′′)
−

F (�′)

D(x′)
(34)

≥
F (�′′)

D(x′)
−

F (�′′)

D(x′)
(35)

= 0 (36)

The first inequality follows from lemma 9, the second from lemma 7 and 8. ■466

Lemma 8 (Yue et al. (2013) Appendix, Lemma 11)467

Let x′ ∈ argmax{N(x) − �′D(x)} and x′′ ∈ argmax{N(x) − �′′D(x) ∶ x ∈ }, then f (x′′) − f (x′) ≤468

(−F (�′′) + (�′ − �′′)D(x′′))(
1

D(x′)
−

1

D(x′′)
).469

Proof. From N(x′) − �′D(x′) ≥ N(x′′) − �′′D(x′′) it follows N(x′)

D(x′)
− �′ ≥

N(x′′)

D(x′)
− �′ N(x′′ )

D(x′)
by dividing by

D(x′) > 0. It then follows:

f (x′′) − f (x′) =
N(x′′)

D(x′′)
−

N(x′)

D(x′)
(37)

≤
N(x′′)

D(x′′)
− �′ −

N(x′′)

D(x′)
+ �′D(x′′)

D(x′)
(38)

=
N(x′′)

D(x′′)
−

N(x′′)

D(x′)
− �′(

D(x′′)

D(x′′)
−

D(x′′)

D(x′)
) (39)

= (−N(x′′) + �′D(x′′))(
1

D(x′)
−

1

D(x′′)
) (40)

= (−F (�′′) + (�′ − �′′)D(x′′))(
1

D(x′)
−

1

D(x′′)
) (41)

■470

Lemma 9 (Yue et al. (2013) Appendix, Lemma 12)471

Let x′ ∈ argmax{N(x)−�′D(x)} and x′′ ∈ argmax{N(x)−�′′D(x) ∶ x ∈ }with F (�∗) = N(x∗)−�∗D(x∗) =472

0, then �∗ − f (x′) ≤ (�∗ − �′)(1 −
D(x∗)

D(x′)
).473
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Proof.

�∗ − f (x′) = f (x∗) − f (x′) (42)

≤ (−F (�∗) + (�′ − �∗)D(x∗))(
1

D(x′)
−

1

D(x∗)
) (43)

= (�′ − �∗)(
D(x∗)

D(x′)
− 1) (44)

= (�∗ − �′)(1 −
D(x∗)

D(x′)
) (45)

where the inequality follows from Lemma 11. ■474

Proposition 2 can now be demonstrated as follows:475

Proof of proposition 2. Let F (�∗) = 0, i.e. �∗ = max{
N(x)

D(x)
∶ x ∈ }. For i ∈ ℕ, let �i+1 =

N(xi )

D(xi)
= f (xi)476

where xi ∈ argmax{N(x) − �iD(x) ∶ x ∈ } it follows with Lemma 9:477

�∗ − �i+1

�∗ − �i

=
�∗ − f (xi)

�∗ − �i

≤ 1 −
D(x∗)

D(xi)

Since �i ≤ �∗ = max{
N(x)

D(x)
∶ x ∈ } it follows with Lemma 5 D(x∗)

D(xi )
≤ 1 and since D(x∗)

D(xi)
> 0 one obtains

0 ≤
�∗ − �i+1

�∗ − �i

< 1

for all i ∈ ℕ. The latter inequality demonstrates superlinear convergence. ■478

Correctness of Dinkelbach’s algorithm for solving the DeRegNet model479

Here, we prove that the fractional integer programming model for finding deregulated subgraphs480

proposed in the main text can be solved via Dinkelbach’s algorithm. The only points to clarify are481

the suitability of Dinkelbach’s algorithm for models with lazy constraints, the suitability of an initial482

value for � of 0 and the positivity of the objective denominator, see last subsection.483

Proposition 11 (Dinkelbach-type algorithm for DeRegNet)484

The Dinkelbach algorithm is correct for the fractional integer programming problem of DeRegNet.485

Proof. The first point to observe is that the objective of DeRegNet is always ≥ 0 hence the initial-486

ization condition of the iteration parameter � = 0 statisfies � ≤ �∗. Furthermore, for subgraphs487

which are constrained to contain at least one node, the denominator of the objective is strictly pos-488

itive. These two properties are enough to guarantuee convergence of Dinkelbach’s algorithm as489

detailed above. Also since the original decision variables are also part of the parameterized Dinkel-490

bach iteration problems introducing lazy constraints is technically feasible. Since lazy constraints491

can only decrease the maximum objective, after every iteration � ≤ �∗ where �∗ is the optimal492

objective determined by the current constraints and hence lazy constraints do not interfere with493

the correctness of Dinkelbach’s algorithm since it requires a starting value of � which is a lower494

bound of the optimal objective value. ■495

Note that lazy constraints effectively amount to restarting Dinkelbach’s algorithm (in a valid initial-496

ization state) every time a lazy constraint is added. Hence, convergence can also only be consid-497

ered superlinear (see last subsection) with respect to the current optimal objective determined by498

the lazy constraints.499
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Reformulation-Linearization methods500

Generalized Charnes-Cooper method501

The so called Generalized Charnes-Cooper transformation Yue et al. (2013) described in this sub-502

section derives its name and general idea from the classical Charnes-Cooper transformation Charnes and Cooper503

(1962) used to solve continuous fractional linear problems. Consider the above general form of a504

FMIP in the following slightly more detailed format:505

max
cT
c
xc + cT

i
xi + d

pT
c
xc + pT

i
xi + q

(46a)

s.t. x =

(
xc

xi

)

∈ ℝ
nc ×ℤ

ni (46b)

Acxx + Aixi ≤ b (46c)

where we explicitly decomposed the variable x into its continuous and integer parts. Analogously506

we have c =

(
cc

ci

)
with cc ∈ ℝ

nc , ci ∈ ℝ
ni , and p =

(
pc

pi

)
with pc ∈ ℝ

nc , pi ∈ ℝ
ni , and A =

(
Ac Ai

)
507

with Ac ∈ ℝ
m×nc , Ai ∈ ℝ

m×ni . As detailed in Yue et al. (2013) one can now define additional variables508

u ∶=
1

pT
c
xc + pT

i
xi + q

and z ∶=
xc

pT
c
xc + pT

i
xi + q

= ux. Note, since we assume that there exists some509

real m > 0 such that pTx + q > m for all feasible x ∈ ℝ
n, it follows that u > 0. After incorporating510

the definition of u as a further constraint and multiplying all constraints with u one arrives at the511

following quadratic mixed-integer problem:512

max cT
c
z + cT

i
(u ⋅ xi) + d (47a)

s.t. xi ∈ ℤ
ni , z ∈ ℝ

nc , u ∈ ℝ+ (47b)

pT
c
z + pT

i
(u ⋅ xi) + qu = 1 (47c)

Acz + Ai(u ⋅ xi) − bu ≤ 0 (47d)

Note that the above problem is not a MILP but a quadraticmixed-integer problem due to the terms513

uxi in the transformed constraints. This is addressed in the next subsection. With the notation of514

this subsection one can formulate the following propositions formalizing the equivalence of the515

two model formulations Yue et al. (2013):516

Proposition 12 (Feasible points of the generalized Charnes-Cooper transform)517

A point (xc , xi) is a feasible solution of problem (A.30) if and only if (z, xi, u) is a feasible solution of518

problem (A.31).519

Proof. Because of pT
c
xc + pT

i
xi + q > 0 this is true by definition of u and z. ■520

Proposition 13 (Equivalence of solutions of the generalized Charnes-Cooper transform)521

An feasible point (x∗
c
, x∗

i
) of (A.30) is optimal if and only if (z∗, x∗

i
, u∗) is optimal for (A.31). It holds that522

z∗ = u∗x∗
c
and u∗ =

1

pTc x
∗
c+p

T
i
x∗
i
+q
.523

Proof. By definition of u and z the objectives of (A.30) and (A.31) have the same value for all feasible524

points. The relations for the optimal points are also true by definition. ■525

With respect to lazy constraints involving the integer variables xi there do not arise any com-526

plications since they are part of both problem formulations. Lazy constraints for the continuous527

variables xc require more care due to the necessity to transform the constraints correspondingly.528

The DeRegNet model does only contain integer (in fact, binary) variables and hence it is straight-529

forward to incorporate lazy constraints in the solution process in terms of the original model for-530

mulation.531
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Linearization of binary-continuous quadratic constraints532

In contrast to the iterative Dinkelbach scheme, the reformulation-linearization method described533

in the last section relies on the linearization of products of integer and continuous variables. Since534

we only deal with binary variables in this paper, we assume from now on that all integer variables535

are in fact binary. In case of a proper integer variable x ∈ D ⊂ ℤ, one can introduce auxiliary binary536

variables x′
d
∈ {0, 1}, d ∈ D with x =

∑

d∈D

d ⋅ x′
d
and

∑

d∈D

x′
d
= 1 in order to transform its product with537

continuous variables into a sum of products between binary and continuous variables. There exist538

variations on the theme of linearization Adams et al. (2004), Adams and Forrester (2005), but here539

we will present the implemented most basic version going back to Glover (1975).540

541

Given a continuous variable v ∈ ℝ and a binary variable x ∈ {0, 1} one introduces a third (contin-542

uous) variable z ∈ ℝ corresponding to z = vx and substitutes any appearance of the product vx543

with z. Along with z one introduces the following constraints to ensure equivalence:544

z ≤ Ux

z ≥ Lx

v − U (1 − x) ≤ z

v − L(1 − x) ≥ z

(48)

Here, U ∈ ℝ is an upper and L ∈ ℝ is a lower bound of v which are either given by the problem545

formulation itself, can be inferred from manual insight into the problem or by solving a certain546

MILP in some cases. See below.547

Proposition 14 (Linearization binary-continuous products)548

Let v ∈  ⊂ ℝ with bounded  and let x ∈ {0, 1} and z ∈ ℝ. Furthermore U ≥ sup and L ≤ inf .549

Then, the constraints (A.15) are statisfied if and only if z = vx.550

Proof. Let z = vx, then z = vx ≤ Ux since U is an upper bound of v and z = vx ≥ Lx since L is a551

lower bound of v. Also for the case x = 1 one has v−U (1−x) = v = vx = z and v−L(1−x) = v = vx = z552

and for the case x = 0 the two constraints v − U (1 − x) ≤ z and v − L(1 − x) ≥ z reduce to v ≤ U553

and v ≥ L respectively which is true by assumption. Conversely, let the constraints in (A.15) be554

satisfied. Then in the case x = 1, the constraints v−U (1 − x) ≤ z and v−L(1 − x) ≥ z imply v ≤ z ≤ v555

and hence z = v = vx. In the case x = 0 the first two constraints of (A.15) imply z = 0 = vx. ■556

The lower bound L and the upper bound U can generally be obtained by solving suitableMILPs557

Yue et al. (2013) involving the denominator of the original objective. To obtain the (tightest possi-558

ble) lower bound one can solve the following problem:559

max pT
c
xc + pT

i
xi + q (49a)

s.t. x =

(
xc

xi

)

∈ ℝ
nc ×ℤ

ni (49b)

Acxx + Aixi ≤ b (49c)

Analogously to obtain the (tightest possible) upper bound one can solve the following mini-560

mization problem:561

min pT
c
xc + pT

i
xi + q (50a)

s.t. x =

(
xc

xi

)

∈ ℝ
nc × ℤ

ni (50b)

Acxx + Aixi ≤ b (50c)
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Note however, that any lower and upper bound would work. The trade-off between less tight562

bounds on the denominator variable and the necessity of solving up to two MILPs up front has to563

be decided for every model.564

In case of DeRegNet, lower and upper bound on the objective denominator are explicitly set565

in the problem formulation in the form of minimal and maximal subgraph size. Hence one does566

not have to solve any MILPs up front and has (optimal) lower and upper bounds for the inverse567

denominator readily available due to the problem formulation.568

Software for solving fractional integer programs: libgrbfrc569

In order to solve the fractional integer programs formulated in the main text, a C++ library based570

on the commercial Gurobi solver was implemented. libgrbfrc (https://sebwink.github.io/libgrbfrc/)571

in particular implements the two solution methods from above: Dinkelbach’s algorithm and the572

generalized Charnes-Cooper transform. Due to the requirements of the developed optimization573

models (seemain text) the implementations support lazy constraints. Academic licenses for Gurobi574

are readily obtained.575

Lazy constraints in branch-and-cut MILP solvers576

For reference this section contains an high-level outline of how lazy constraints fit into branch-and-577

cut algorithms for solving mixed-integer programs. The exposition is adapted from Conforti et al.578

(2014).579

Let a MILP with nc ∈ ℕ continuous and ni ∈ ℕ integer variables of the following form be given:580

max cT x + dT y (51a)

s.t. x ∈ ℝ
nc (51b)

y ∈ ℤ
ni (51c)

Ax + By ≤ b (51d)

x, y ≥ 0 (51e)

Here c ∈ ℝ
nc , d ∈ ℝ

ni , A ∈ ℝ
m×nc and B ∈ ℝ

m×ni for some m ∈ ℕ. The (natural) linear programming581

relaxation of a MILP of the above form is the following:582

max cT x + dT y (52a)

s.t. x ∈ ℝ
nc (52b)

y ∈ ℝ
ni (52c)

Ax + By ≤ b (52d)

x, y ≥ 0 (52e)

Lazy constraints are constraints which are not initially explicitly part of the model formulation, the583

reason usually being that it would require an infeasable exponential number of constraints (with584

respect to the number of variables).585

The classical branch-and-cut strategy for solving MILPs with lazy constraints can then be formu-586

lated as the following algorithm 2.587

Lazy constraints for the DeRegNet model588

For DeRegNet the lazy constraint separation subroutine centers around finding the strongly con-589

nected components of the given solution. This is generally considered an efficiently solvable prob-590

lem.591
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Algorithm 2: Branch-and-cut for MILPs with lazy constraints

Data: MILP and lazy constraints
Result: Solution of MILP satisfying any lazy constraint

Initialization:
 = {MILP} (Set of MILP problems in search tree)

z = −∞ (Current best lower bound for optimal objective)

(x∗, y∗) = (null, null) (Current best feasible solution)

while  ≠ ∅ do
Choose P from  and remove P from 

(*) Solve linear programming relaxation of P

Let z be the solution value and (x, y) be the solution of the relaxation

if z > z then

if (x, y) feasible for P then
Find the set V of violated lazy constraints

if V = ∅ then
(x∗, y∗) ∶= (x, y)

z ∶= z

else
Insert P back into 

Add lazy constraints from V to models in 

else
if you want to add cuts then
Add cuts and GOTO (*)

else
Branch and add created subproblems to 

return (x∗, y∗), z
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Strongly connected components592

Given a directed graph G = (V ,E) one says that G is strongly connected if and only if there is a593

directed path from every node v ∈ V to every other node u ∈ V . A strongly connected component594

of a directed graph is any maximal subgraph which is strongly connected3. Sometimes one refers595

to V ′ ⊂ V as inducing a strongly connected component if the subgraph induced by V ′ is a strongly596

connected component. One denotes the set of node sets inducing all strongly connected compo-597

nents of a graph G = (V ,E) by SCC(G) ⊂ (V ). The three classical algorithms which can be used598

to solve the problem of finding a directed graph’s strongly connected components in O(|V | + |E|)599

time are the Kosarju-Sharir algorithm Sharir (1981), Tarjan’s algorithm Tarjan (1972) and variants600

of the path-based strong component algorithm Dijkstra (1972). A strongly connected subgraph (in601

contrast to component) is a subgraph of a graph which is strongly connected.602

Lazy constraint separation subroutine of DeRegNet603

This subsection and algorithm 3 provide the details on the lazy constraint separation subroutine604

employed for the solution of the DeRegNet model. The formal details are given as algorithm 3.605

In short, given a (potential) incumbent solution to a DeRegNet instance not containing all strong-606

component constraints, the subroutine finds the strongly connected components of the corre-607

sponding subgraph and checks whether any such component either contains the root node itself608

or has at least one incoming edge from within the subgraph but from outside the component. If609

so, the (potential) incumbent is feasible, hence an actual incumbent solution. Otherwise the vi-610

olated constraint is added to the model in while the (potential) incumbent is declared infeasible.611

The general implementation strategy employed is based on the one given by Backes et al. (2012)612

where cycles are detected in order to avoid unconnected subgraphs.613

Algorithm 3: Lazy constraint subroutine for DeRegNet. In case a potential incumbent
is found all strongly connected components are checked to assess feasibility. In case any

strongly connected component does not contain the root node and has no incoming edges

from another component, a (lazy) constraint enforcing the requirement is added. SCC(G)

denotes the set of all strongly connected components of a graph G.

Data: DeRegNet instance and x, y ∶ V → {0, 1}

Result: True if x and y do not violate any lazy constraints, false otherwise

V ∗ = {v ∈ V ∶ xv = 1} (nodes implied by x)

G∗ = (V ∗, E∗) the subgraph induced by V ∗

 = SCC(G∗),  ∈ (V ∗) (Find strongly connected components)

for C in  with |C| > 1 do

if eT
C
(x − y) − eT

�−(C)
x > |C| − 1 then

return false

return true

Further technical aspects of solving DeRegNet models614

Primal heuristics for the DeRegNet model615

Every feasible solution of a mixed-integer program provides a lower bound on the optimal solu-616

tion value (for maximization problems). The feasible solution which currently gives the best lower617

bound on the optimal value during a branch-and-bound procedure is called the incumbent (solu-618

tion). Branch-and-bound (and hence branch-and-cut) for mixed-integer programs relies on pruning619

parts of the search tree of LP relaxation subproblems by assessing whether the optimal solution620

3I.e. adding any node not in the subgraph would render the resulting subgraph to be not strongly connected anymore.
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value of a given LP relaxation is less than the best lower bound provided by the incumbent. Pri-621

mal heuristics Berthold (2006) aim at finding and/or improving feasible solutions during a branch-622

and-bound procedure. While some generic methods for primal heuristics exist Glover and M.623

(1997a), Glover and M. (1997b), Fischetti et al. (2005), Balas et al. (2004), Balas and Martin (1980),624

they tend to be highly problem-specific Berthold (2006). Of special interest in that context are pri-625

mal heuristics for theMWCSP Rehfeldt and Koch (2019), Álvarez-Miranda et al. (2013a), Álvarez-Miranda et al.626

(2013b). In the following I describe start and improvement heuristics useful during the solution of627

DeRegNet instances.628

Start heuristics629

A priori there is no feasible solution known at the beginning of a branch-and-bound procedure630

for solving a mixed-integer program. Heuristics which try to find initial feasible solutions are called631

start heuristics. I outline two start heuristics which can be employed at the beginning of the branch-632

and-bound search for the solution of the DeRegNet model.633

634

Greedy start heuristic. The first start heuristic is called greedy start heuristic and basically starts635

with the highest scoring node and greedily adds neighbors of already added nodes until the av-636

erage score of the thus defined subgraph starts decreasing. If the currently selected subgraph is637

feasible upon termination, one has found a feasible solution. The formal procedure is outlined638

in algorithm 4. There are a number subtleties attached to this start heuristic. First and foremost639

the procedure only assures the reachability constraints regarding the root node. Most other con-640

straints may or may not be satisfied at any given time during the procedure, mostly: subgraph size641

constraints and constraints ensuring the necessity of leaf nodes to be from the subset of terminal642

nodes. While the subgraph size constraint is relatively easily manageable by stopping the proce-643

dure when the maximal subgraph size is reached and by restarting in case the minimal subgraph644

size can not be achieved in the first place. In the latter case, one can restart the procedure from the645

best scoring node not already selected during earlier attempts of the greedy start heuristic. The646

issue of the terminal node constraints is not easily handled and hence the greedy start heuristic is647

in effect only usable in case T = ∅. Also instances with Inc ≠ ∅ cannot be handled by this heuristic.648

649

Receptor-terminal shortest path heuristic. The second start heuristic is more suitable in sit-650

uations where there is a non-empty terminal set T . In short, it finds the shortest path between651

a pair of receptor and terminal nodes with high node scores. The SHORTEST_PATH subroutine652

referenced in algorithm 5 can be an implementation of any of the canonical algorithms to find653

single-source shortest paths with unit edge weights in directed graphs in polynomial time Dijkstra654

(1959), Johnson (1977), Ahuja et al. (1990). Subject to Ex = Inc = ∅ all connectivity constraints will655

be satisfied by construction. If the subgraph size constraints are met is up to chance however.656

Again, running multiple times with the, say K , highest scoring pairs of receptors and terminals,657

can help in this situation. Note, that the restriction of Ex = Inc = ∅ could be lifted by formulating658

the corresponding shortest path problem by canonical means in terms of integer programming659

problems Taccari (2016). This possibility is not explored further however since solving integer pro-660

grams to get initial feasible solutions to integer program may be a slippery slope. In particular661

in the case of DeRegNet, where the main problem to solve is formulated in terms of decision662

variables corresponding to nodes while shortest path integer programming formulations usually663

introduce decision variables corresponding to the edges of the graph.664

Improvement heuristics665

In case a feasible solution is found at a particular branch-and-bound node (which may be a new666

incumbent or not), heuristics which try to improve that given feasible solution are called improve-667

ment heuristics. Here I describe a simple greedy improvement heuristic which can be applied to668

any feasible solution, either found during the branch-and-cut procedure or otherwise. It works669
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Algorithm 4: Greedy start heuristic for the DeRegNet model

Data: DeRegNet instance with T = Inc = ∅

Result: Feasible solution of DeRegNet instance or null

if R ≠ ∅ then
VI = R

else
VI = V ⧵ Ex

v∗ = argmaxv∈VI sv (Select feasible root with highest score)

V ∗ = {v∗} (Selected DeRegNet solution)

N = �+(v∗) ⧵ Ex (Candidate nodes to be potentially added next)
A∗ = sv∗ (Current average score of selected subgraph)

CONTINUE = true
while CONTINUE and |V ∗| < kmax do

v∗ = argmaxv∈N sv (Highest scoring node in candidate set)

if sv∗ ≥ A∗ then
A∗ =

|V ∗|A∗+sv∗

|V ∗|+1
(Update average score of selected subgraph)

V ∗ = V ∗ ∪ {v∗} (Update current subgraphs)

N∗ = (�+(v∗) ⧵ V ∗) ⧵ Ex (New candidate nodes)
N = (N ⧵ {v∗}) ∪N∗ (Update candidate nodes)

else
CONTINUE = false

if V ∗ feasible then
return V ∗ (Return feasible solution of DeRegNet instance)

else
return null (Return nothing to indicate failure to find feasible solution)

Algorithm 5: Receptor-terminal shortest path start heuristic for the DeRegNet model

Data: DeRegNet instance with Ex = Inc = ∅

Result: Feasible solution of DeRegNet instance or null
if R ≠ ∅ then

VR = R

else
VR = V

r∗ = argmaxv∈VR sv (Receptor with highest score)

if T ≠ ∅ then
VT = T

else
VT = V

t∗ = argmaxv∈VT sv (Terminal with highest score)

V ∗ = {r∗, t∗} (Selected DeRegNet solution)

P = SHORTEST_PATH(G, r∗, t∗) (Find shortest path between receptor and terminal)

V ∗ = V ∗ ∪ P (Add nodes from shortest path)

if kmin ≤ |V ∗| ≤ kmax then
return V ∗ (Return solution if it satisfies the subgraph size constraints)

else
return null (Return nothing if size constraints are not met)
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analogously to the greedy start heuristic (algorithm 4), the only difference being that one is al-670

ready starting with a feasible solution. In particular, the heuristic can be applied to solutions671

constructed by the receptor-terminal shortest path start heuristic (algorithm 5) described in the672

previous section. Trying to improve the greedy start heuristic (algorithm 4) with the improvement673

strategy outlined below is futile however since by construction the former already added all poten-674

tial subgraph nodes in a greedy fashion. During a branch-and-cut run any new feasible solution675

can potentially be improved by the heuristic. In case of an incumbent one can hope for an even676

better incumbent, in case of a feasible solution one can hope to improve it up to a point where it677

actually becomes a new incumbent. The description of the heuristic is provided as algorithm 6.678

Algorithm 6: Greedy improvement heuristic for the DeRegNet model

Data: Feasible solution of a DeRegNet instance
Result: Another feasible solution of (the same) DeRegNet instance
V ∗ = {v ∈ V ∶ xv = 1} (Selected DeRegNet solution)

N = (
⋃

v∈V ∗

�+(v)) ⧵ (V ∗ ∪ Ex) (Candidate nodes to be added next)

A∗ =
sT x

eT x
(Current average score of selected subgraph)

CONTINUE = true
while CONTINUE and |V ∗| < kmax do

v∗ = argmaxv∈N sv (Highest scoring node in candidate set)

if sv∗ ≥ A∗ then
A∗ =

|V ∗|A∗+sv∗

|V ∗|+1
(Update average score of selected subgraph)

V ∗ = V ∗ ∪ {v∗} (Update current subgraphs)

N∗ = (�+(v∗) ⧵ V ∗) ⧵ Ex (New candidate nodes)
N = (N ⧵ {v∗}) ∪N∗ (Update candidate nodes)

else
CONTINUE = false

return V ∗

Approximate solutions via branch-and-bound gap cut679

One can use a mixed-integer programming solver generically to obtain suboptimal solutions to a680

given (maximization) MILP with optimal objective value z∗. During the branch-and-cut search one681

obtains lower bounds on the optimal value by feasible solutions to the problem and an upper682

bound by the solution value of the initial LP relaxation of the problem. Let z ≤ z∗ be the best683

available lower bound and let z̄ ≥ z∗ be the upper bound obtained by the relaxed problem. The684

relative gap �rel during a branch-and-cut search is defined as �rel ∶=
z∗

z̄
.4 With the upper bound685

�̂rel ∶=
z̄

z
≥

z∗

z̄
on the gap it follows that z∗ ≤ �̂relz and hence �z∗ ≤ z with � ∶= �̂−1

rel
. Stopping the686

branch-and-cut procedure at the given gap upper bound value hence provides an approximate687

solution of a posteriori approximation guarantee of �̂−1
rel
. I refer to the strategy of stopping the688

branch-and-cut search once the gap upper bound is below a certain threshold as gap cut or gap689

(cut) thresholding. Employing the gap cut strategy can be useful in situations where the MILP solver690

can find reasonably good solutions in reasonable time but would take significantly more time to691

find the optimal solution. The option of to carry out gap cut thresholding is incorporated in the692

implementation of DeRegNet for this very reason.693

Caching transformed model formulations694

For DeRegNet’s use cases it is quite common to optimize DeRegNet instances which just differ695

in terms of their node scores, i.e. share the same underlying graph. For example, finding dereg-696

4While the (absolute) gap �abs is defined as �abs ∶= z̄ − z∗.
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ulated subgraphs for individual cases in a TCGA cohort with a fixed regulatory network derived697

from KEGG will require to solve a model with the same structural properties but with differing698

score data5 In particular, in such a situation the reformulation and linearization procedure of the699

generalized Charnes-Cooper transform only has to be carried out once and can be reused across700

cases since it does not depend structurally on the objective data vector s. While solution time of a701

DeRegNet instance with the generalized Charnes-Cooper transform tends to be dominated by the702

time to solve the resulting integer linear program, reuse of the transformed model structure can703

nonetheless result in significant computational savings.704

Further details on benchmarking DeRegNet705

Algorithm 7 details the benchmark instance simulation algorithm. Algorithm 8 details the mode of706

application of Backes et al. (2012) in the context of the benchmarks described in the main part of707

the paper. Figure 1 depicts the subgraphs simulation procedure conceptually.708

Algorithm 7: Simulating DeRegNet instances with known "optimal" subgraph. Here,
Ber(pf ) denotes a Bernoulli random variable with parameter pf .

Data: A directed graph G = (V ,E), sets T ⊂ V , pf ∈ [0,
1

2
)

Result: A DeRegNet instance, a simulated true optimal subgraph V ′ ⊂ V and the simulated

root node r

Choose r ∈ R with probability 1

|R|
(Choose root node)

V ′ ∶= {r} (Initialize subgraph with root)

Choose k ∈ [kmin, kmax] with probability
1

kmax−kmin+1
(Choose subgraph size)

while |V ′| ≠ k do

if (
⋃

v′∈V ′

�+(v)) ⧵ V ′ = ∅ then

RESTART Algorithm 7

Choose v ∈ (
⋃

v′∈V ′

�+(v)) ⧵ V ′ with probability |(
⋃

v′∈V ′

�+(v)) ⧵ V ′)|−1

V ′ = V ′ ∪ {v} for v ∈ V ′ do
Sample s(v) ∼ Ber(1 − pf )

for v ∈ V ⧵ V ′ do
Sample s(v) ∼ Ber(pf )

return (G,R,∅,∅,∅, s), V ′, r

DeRegNet subgraph derived features for predicting survival709

Predicting phenotypes based on clinical and molecular data is one of the big challenges on the710

road to personalized medicine. A frequently readily available phenotype for cancer patients is sur-711

vival time (i.e. the time from disease onset/diagnosis to (possibly disease induced) death). Improv-712

ing upon clinical predictors with molecular data often still poses significant challenges (Yuan et al.,713

2014). Here, we provide an example of the suitability of deregulated subgraph-derived features714

for predicting survival in the TCGA-LIHC dataset. In particular, we demonstrate that predictions715

based on subgraphs is at least as good GSEA-based predictions obtained in a comparable manner.716

Furthermore, subgraph derived features can improve upon predictions based on clinical features717

alone.718

5For example a omics-readout for every case in the cohort.
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Algorithm 8: Applying Backes et al. (2012) for benchmarking DeRegNet. Here,

APPLY_BACKES(k) refers to applying the algorithm of Backes et al. (2012) with fixed subgraph
size k, understood to return a set of nodes corresponding to the induced subgraph found by

the run.

Data: A DeRegNet instance with underlying graph G = (V ,E)

Result: A set V ′ ⊂ V (inducing a subgraph)

V ′ ∶= ∅ (Initialize the final subgraph)

for k = kmin; k ≤ kmax; k++ do
V ′ = V ′ ∪ APPLY_BACKES(k)

end
return V ′

(a) (b) (c)

Figure 1. Simulating DeRegNet instances. See algorithm 7

for a formal outline of the simulation procedure. On a high level it proceeds like this: (a) Choose
root node randomly. (b) Simulate a feasible subgraph by randomly choosing nodes maintaining
the topological constraints of the model. Set the deregulation score of nodes in the subgraph to

one. (c) Introduce noise by flipping node deregulation scores randomly.

Data preparation and feature engineering719

Survival times were binarized by labeling all patients with survival less than three years (1095 days)720

as bad outlook patients (y = 0) and all patients with last follow-up time larger than three years as721

good outlook patients (y = 1). The resulting dataset consisted of 198 patients from the TCGA-LIHC722

cohort6. For every case the following features are derived:723

• clinical: Features from clinical data comprising age, gender, body mass index (BMI), tumor724

stage (!) and tumor morphology. Age (in years) and BMI were scaled via z-scores. Tumor stage725

and morphology where one-hot encoded.726

• gsea: Features derived from (single sample) Gene Set Enrichment Analysis (GSEA) (Subramanian et al.,727

2005). Two lists of significantly enriched pathways w.r.t good outcomes vs. bad outcomes728

and vice versa were computed by (standard) GSEA. From every list I retained pathways with729

adjusted p-value less than 0.1, which resulted in a total of 14 KEGG pathways. After per-730

forming ssGSEA, every sample received the corresponding personalized ssGSEA enrichment731

scores for these pathways as a 14-dimensional feature vector. The above steps were carried732

out with gseapy 7. For more information on single-sample GSEA, see Foroutan et al. (2018).733

The obtained features were scaled via z-scores.734

• subgraph_overlap: Features based on up- and downregulated subgraphs for the good and735

bad outcome subgroups. Subgraphs were computed based on the global deregulation score736

6Some cases dropped out due to incomplete or missing survival data.
7http://gseapy.rtfd.io/
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Figure 2. Subgraph features vs. GSEA features across models. (A) Support Vector Classifier (SVC) with
linear kernel (B) Support Vector Classifier (SVC) with radial basis function (RBF) kernel (C) Artificial Neural

Network (ANN) (D) Random forest (E) Logistic Regression.

Figure 3. Subgraph features vs. clinical features across models. Clinical + subgraph features together
outperform either in isolation. Subgraph features perform comparably to clinical features. (A) Support Vector

Classifier (SVC) with linear kernel (B) Support Vector Classifier (SVC) with radial basis function (RBF) kernel (C)

Artificial Neural Network (ANN) (D) Random forest (E) Logistic Regression.

for the good outcome and bad outcome patients respectively (on the respective training sets737

only, see below). Every sample is then associated with the regulation-aware node overlap8738

between its personalized de-, up- and downregulated subgraphs and up- and downregulated739

global subgraphs for the good and bad outcome subgroups respectively. This amounts to a740

12-dimensional feature vector. Again, z-scores were applied.741

• ndcg: Subgraph features derived fromnetwork-defined cancer genes. After identifying network-742

defined cancer genes (see previous subsection) for de-, up- and downregulated subgraphs743

one obtains a binary indicator for every case representing whether it contains any given such744

gene or not, leading to 15-dimensional feature vectors corresponding to 15 network-defined745

cancer genes.746

• subgraph: subgraph_overlap and ndcg combined (concatenated).747

Under a feature combination it is understood the combination of two ormore of the just defined748

features. In the following, I use a plus sign to indicate feature combinations, e.g. subgraph =749

subgraph_overlap + ndcg. As another example, subgraph + clinical then denotes subgraph features750

combined with clinical features.751

Survival prediction with clinical, pathway and subgraph features752

The experiments described in the following were carried out with scikit-learn 9. Every feature/fea-753

ture combination was tested by training a Support Vector Machine, a simple artificial neural net-754

work, a random forest and a logistic regression. For every algorithm we performed an algorithm-755

specific grid search for model selection. The grid searchwas equivalent for different feature combi-756

nations in order to be able to assess the comparative suitability of the features. Final models were757

evaluated with 6-fold cross validation estimating mean Receiver Operating Characteristic (ROC)758

curves and Area under the curve (AUC) scores.759

Features gsea and subgraph_overlap are roughly equivalent with respect to the underlying logic,760

with subgraphs or pathways as contextual data inputs respectively. Hence, comparing these two761

features may give an indication of the suitability of subgraph vs. pathway methods for feature en-762

gineering for survival prediction. Figure 2 shows that the subgraph_overlap features hold promise763

w.r.t gsea features.764

Furthermore, it has been shown that improving upon clinical features with molecular features765

for survival prediction is not an easy task (Yuan et al., 2014). The experiments conducted here766

show that for the given setting, predictionmodels combining clinical and subgraph features (based767

on molecular interactions and data) provide performance gains compared to a purely clinical768

model. Also, the subgraph features achieve parity with classifiers based on clinical data alone.769

Figure 3 represents these findings.770

8Given two (induced) subgraphs V ′, V ′′ ⊂ V and node scores s′, s′′ ∶ V → {−1, 0, 1} the deregulation-aware node overlap is

defined as
∑

v∈V

(I(v ∈ V ′) s′
v
) ⋅ (I(v ∈ V ′′) s′′

v
).

9https://scikit-learn.org
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