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Abstract

Normative modeling, a group of methods used to quantify an individual’s deviation
from some expected trajectory relative to observed variability around that trajectory,
has been used to characterize subject heterogeneity. Gaussian Processes Regression
includes an estimate of variable uncertainty across the input domain, which at face
value makes it an attractive method to normalize the cohort heterogeneity where the
deviation between predicted value and true observation is divided by the derived
uncertainty directly from Gaussian Processes Regression. However, we show that the
uncertainty directly from Gaussian Processes Regression is irrelevant to the cohort
heterogeneity in general.

Introduction 1

In case-control studies, participants are assigned labels and classified into one or more 2

categories based on their similarities or common criteria, with little consideration for 3

the heterogeneity within each cohort. Meanwhile, normative modeling is becoming 4

increasingly popular. In a normative model, each observation is quantified as a 5

normalized deviation with respect to the cohort heterogeneity. The growth chart [1, 2] is 6

an example normative model as shown in Fig. 1, where a series of percentile curves 7

(normalized deviation) illustrate the distribution of selected body measurements in 8

children. Another widely-used measure for normalized deviation is the z-score, which is 9

calculated by dividing the difference between an observation and the reference model, 10

i.e., residual, by a standard deviation that represents local heterogeneity and assumes 11

residuals are Gaussian distributed locally. 12

Fig 1. Weight-for-Age Boys: Birth to 2 years [3]. The percentiles show the
distribution of weights in boys form birth to 2 years. Black dots: observations; red error
bars: epistemic uncertainty; blue curly brackets: aleatoric uncertainty.

The uncertainty sometimes can be classified into two categories: epistemic and 13

aleatoric uncertainties. Epistemic uncertainty is known as systematic uncertainty and is 14
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due to things one could in principle know but do not in practice; aleatoric uncertainty is 15

known as statistical uncertainty and is representative of unknowns that differ each time 16

we run the same experiment [4]. Epistemic uncertainty is often introduced by the 17

limited dataset size and can be reduced by adding more observations. On the other 18

hand, aleatoric uncertainty represents a character of heterogeneity in the underlying 19

distribution itself which is unrelated to sample size, so it cannot be reduced by 20

modifying the dataset, and this is the heterogeneity a normative model should measure. 21

As shown in Fig. 1, larger number and density of data points (black dots) reduce the 22

epistemic uncertainty (red error bars), while the aleatoric uncertainty (blue curly 23

brackets) is unrelated to the sample size or distribution. The confidence intervals 24

obtained from most statistical tests and advanced machine learning models only capture 25

epistemic uncertainty, while a normative model is designed to capture the aleatoric 26

uncertainty. 27

Gaussian Process Regression (GPR) has been widely used in many domains. 28

Schulz et al. [5] presented a tutorial on the GPR with the mathematics behind the 29

model as well as several applications to real-life datasets/problems. Tonner et al. [6] 30

developed a GPR based model and testing framework to capture the microbial 31

population growth and shown their proposed approach outperformed primary growth 32

models. Banerjee et al. [7] and Raissi et al. [8] introduced two novel approaches to 33

improve the efficiency of GPR in “big data” problems. 34

However, some previous research implemented the GPR as a normative modeling 35

approach and utilized the derived prediction variance to model the cohort heterogeneity. 36

Ziegler et al. [9] attempted to build a normative model for diagnosing mild cognitive 37

impairment and Alzheimer’s disease based on the normalized deviation of predicted 38

brain volume from GPR. Marquand et al. [10] used delay discounting as covariates and 39

reward-related brain activity derived from task Functional Magnetic Resonance Imaging 40

(fMRI) as the target variable with GPR and extreme value statistics to identify the 41

participants with Attention-Deficit/Hyperactivity Disorder (ADHD). Wolfers et al. [11] 42

investigated the deviation of brain volume in an ADHD cohort from healthy control 43

group (HC) with respect to age and gender, and they also explored the heterogeneous 44

phenotype of brain volume for schizophrenia and bipolar disorder with GPR [12]. 45

Zabihi et al. [13] studied Autism Spectrum Disorder (ASD) regarding the deviation of 46

cortical thickness via a similar methodology. 47

In this paper, we introduce some background knowledge related to GPR. We then 48

present a rigorous mathematical derivation and several examples to demonstrate that 49

the variance from GPR cannot be used in a normative model alone. In the last section, 50

we discuss the difficulties and disadvantages of modeling the cohort heterogeneity by 51

modifying original GPR variance, and a misunderstanding existed in previous research. 52

Materials and methods 53

Gaussian Process Regression 54

The relation between the observation and the predictive model usually can be expressed 55

as 56

y = f(x)+ε, (1)

where y is the observation (output), f(·) represents the predictive model, x is a vector 57

of independent variables (input) corresponding to the output y, and ε is the noise term 58

which follows a normal distribution ε ∼ N
(
0,σ2

noise

)
. Gaussian Process Regression 59

(GPR) assumes a zero-mean normal distribution over the predictive model 60

f(·) ∼ N (0,k(·,·)), (2)
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where k(·,·) is some covariance (kernel) function. Given the training set input X and 61

testing set input X∗, since both of them follow the same distribution, we have 62

f

([
X
X∗

])
∼ N

(
0,

[
K(X,X) K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
. (3)

According to the Eq. 1, the observation follows the summation of these two normal 63

distributions 64[
y
y∗

]
= f

([
X
X∗

])
+

[
ε
ε∗

]
∼ N

(
0,

[
K(X,X)+Σ2

train K(X,X∗)
K(X∗,X) K(X∗,X∗)+Σ2

test

])
, (4)

where Σ2
train and Σ2

test are two diagonal matrices that represent the variance of
observation noise in training and testing sets, and the diagonal elements equal σ2

noise.
By the rules of conditional Gaussian distribution, the prediction of testing set y∗ follows
a normal distribution y∗ ∼ N

(
µ∗,Σ

2
∗
)
, where µ∗ and Σ2

∗ are defined as [14,15]

µ∗ = K(X∗,X)
[
K(X,X)+Σ2

train

]−1
y, (5a)

Σ2
∗ = K(X∗,X∗)+Σ2

test−K(X∗,X)
[
K(X,X)+Σ2

train

]−1
K(X,X∗). (5b)

65

Kernel Trick 66

Similar to Support Vector Machines (SVM), the kernel trick can also be implemented 67

with GPR to project the input of data from the original space into a same or higher 68

dimensional feature space via some mapping function z(·). Given a pair of 69

inputs (x1,x2), the kernel function calculates the inner product of the coordinates in 70

the feature space, i.e., k(x1,x2) = z(x1)z(x2)
T

[16, 17]. The kernel trick avoids the 71

expensive computation of calculating the coordinate in the feature space for each input. 72

We use the linear kernel and Radial Basis Function kernel (RBF) as examples to 73

illustrate this advantage. 74

Linear Kernel 75

The linear kernel is non-stationary and the simplest kernel, which is defined as

k(x1,x2) = x1x
T
2 , (6a)

z(x) = x, (6b)

where the input is projected into a feature space according to Eq. 6b, and the feature 76

space is the original space. 77

Radial Basis Function Kernel 78

The RBF kernel is a stationary kernel, which is also widely used and defined as [17]

k(x1,x2) = e−
‖x1−x2‖

2

2l2 , (7a)

z(x) =

 e
− ‖x‖

2

2l2j√
l2jj!

1
j

√
j!

n1!···nk!
xn1
1 ···x

nk

k


j=0,···,∞,

∑k
i=1ni=j

, (7b)

where l is a free scaling parameter. The RBF kernel projects the input from the original 79

space onto an infinite dimensional feature space where the mapping is defined by Eq. 7b. 80

It is impossible to exactly compute the coordinates in an infinite dimensional space, 81

while Eq. 7a still allows straightforward computation of the inner product for coordinate 82

pairs in that feature space. 83
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Estimated Uncertainty for GPR 84

One benefit of using GPR to build a data-driven model is the predictions are associated 85

with the derived variances as shown in Eq. 5. However, we need to emphasize that this 86

variance is only related to the kernel function k(·,·) and distribution/coordinate of 87

training set input X, i.e., it cannot be utilized in a normative model approach alone to 88

capture the variance introduced by the conditional distribution V ar(y|x). 89

We better illustrate and verify this statement through simplifying the Eq. 5b. Since
any kernel function k(·,·) can be written as the inner product of a coordinate pair in the
feature space by some mapping function z(·), we present our derivation in a general
format. We define a variable x∗ which represents a testing input, then Eq. 5b can be
written as1

Σ2
∗(x∗)

=k(x∗,x∗)+σ
2
test−k(x∗,X)

[
K(X,X)+Σ2

train

]−1
k(X,x∗) (8a)

=z(x∗)z(x∗)
T

+σ2
test−z(x∗)Z(X)

T
[
Z(X)Z(X)

T
+Σ2

train

]−1
Z(X)z(x∗)

T
. (8b)

Applying Singular Value Decomposition (SVD) on Σ−1trainZ(X) = UΣV T , Eq. 8 is 90

reformulated as2 91

Σ2
∗(x∗)

=z(x∗)z(x∗)
T

+σ2
test−z(x∗)Z(X)

T
[
Z(X)Z(X)

T
+Σ2

train

]−1
Z(X)z(x∗)

T

=z(x∗)V
[
I−ΣT

(
ΣΣT +I

)−1
Σ
]
V Tz(x∗)

T︸ ︷︷ ︸
quadratic term

+ σ2
test︸︷︷︸

constant

.
(9)

After simplification, the variance is reformulated as Eq. 9, which is a summation of a 92

quadratic term for z(x∗) and a constant represents the noise, Σ and V are constant 93

matrices where the values are fully depended on training input X, training noise Σtrain, 94

and mapping function z(·) or kernel function k(·,·).3 95

Modification of Uncertainty from GPR 96

Regarding Eq. 9, the variance calculated via Eq. 5b is purely depended on kernel 97

function and training data input, thus it is only able to capture the epistemic 98

uncertainty which could be reduced by modifying or adding training data. The derived 99

variance from GPR could be extended to model the heterogeneity V ar(y|x) for a 100

normative model by adding an aleatoric variance term into Eq. 5b 101

V ar(y∗|X∗) =K(X∗,X∗)+Σ2
test−K(X∗,X)

[
K(X,X)+Σ2

train

]−1
K(X,X∗)︸ ︷︷ ︸

epistemic uncertainty

+ Σ2
aleatoric(X∗)︸ ︷︷ ︸

aleatoric uncertainty

,
(10)

where Σ2
aleatoric(X∗) represents the data character of heterogeneity in output at given 102

locations on the input space. This formula, however, is not implemented in any previous 103

research as we know and we will discuss the difficulties and disadvantages in estimating 104

the aleatoric uncertainty later. 105

1σnoise = σtrain = σtest
2Σ is a diagonal matrix and the elements on the diagonal are the singular values of Σ−1

trainZ(X); U
and V are orthogonal; a detailed derivation is presented in Appendix.

3Eq. 8b is also in the format of a summation for a quadratic term of z(x∗) and a noise term.
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Results 106

We apply the unmodified GPR (Eq. 5) on several synthetic datasets where both input x 107

and output y are one dimensional to facilitate visualization. Although the presented 108

results are based on one dimensional input x, they are generalizable to any dimensional 109

input. The selected kernels are linear and RBF kernels, and we present the results of 110

two scenarios with known and unknown noise levels.4 111

Dataset 112

Four synthetic datasets are generated and plotted in Fig. 2, and each of them contains 113

1000 points with a noise level of σnoise = 0.05. Four other undersampled datasets are 114

plotted in Fig. 3, each of which contains 1000×5% = 50 points. 115

Fig 2. Original Datasets.

Fig 3. Undersampled Datasets.

In Dataset 1, both input X and output y follow a Gaussian distribution N
(
0,12

)
116

and are correlated with a Pearson coefficient of 0.75. Dataset 2 is transformed from 117

Dataset 1, which moves the set of points where x ≥ 0 in Dataset 1 along the line y = x 118

until the maximum input in that set equals 0, and moves the remaining points where 119

x < 0 in Dataset 1 until the minimum input is 0. Dataset 3 has input X and output y 120

uniformly distributed over a half-open interval [−π,π). Output y of Dataset 4 is 121

obtained by multiplying a factor function over output y from Dataset 3, which is 122

defined as f(x) = sin(x)/2+1 and x is the corresponding input. We should note that 123

the inputs X of original Datasets 3-4 are exactly same as shown in Fig. 2C-2D, and the 124

inputs X of corresponding undersampled Datasets 3-4 are also identical as shown in 125

Fig. 3C-3D. 126

GPR with Known Noise Level 127

Linear Kernel 128

The regression surface of GPR with linear kernel is a hyperplane and the variance is a 129

quadric hypersurface defined by Eq. 9 in feature/original spaces, where the hyperplane 130

always passes the origin, the variance is a function only with respect to the coordinate 131

of testing input x∗ and a unique minimum is located at x∗ = 0. Figs. 4-5 present 132

results for GPR with linear kernel on the one dimensional synthetic datasets, where top 133

sub-figures plot the reference models/predictions (red lines) overlapped on the data 134

(blue dots), middle sub-figures show the derived variances (blue curves) across the 135

original input space, and the bottom sub-figures shows the corresponding “z-score” for 136

training set which is computed via Eq. 11 if the residual (y−yreference) is mistakenly 137

normalized by standard deviation Σ directly from GPR (Eq. 5b). 138

Fig 4. GPR with Linear Kernel on Original Datasets.

Fig 5. GPR with Linear Kernel on Undersampled Datasets.

4These results are produced by Python 3.8.7 and scikit-learn 0.24.0; although we have not tested, it
should work with other version of Python and package as well. The code for this paper is available at:
https://github.com/nidaye1999/normative-model-GPR.
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z-score =
y−yreference

Σ
(11)

The mapping function of linear kernel projects an input to itself (Eq. 6b), and for 139

one dimensional input, Eq. 9 can be further reduced to5 140

Σ2
∗(x∗) =

[
1−ΣT

(
ΣΣT +I

)−1
Σ
]
x2∗+σ

2
test

=

(
1− σ2

σ2+1

)
x2∗+σ

2
test

=
x2∗
σ2+1

+σ2
test,

(12)

where σ is a scalar and equal to the only one singular value of Σ−1trainX. As shown in 141

Figs. 4-5, the variance is a univariate function of coordinate of the testing input x∗ 142

where the shape is a quadratic curve, and the global minimum is always located at 143

x∗ = 0 with a value of σ2
test = 0.052 as Eq. 12 formulated. The result of GPR with 144

linear kernel presents a good example which illustrates the derived variance from GPR 145

does not model the conditional variance V ar(y|x), thus corresponding z-score cannot be 146

utilized as a normalized deviation in a normative model. 147

As previously mentioned, the predicted variance for testing set from GPR only 148

depends on the training set input and the kernel function. As the original as well as the 149

undersampled Datasets 3-4 have identical inputs X, the variance curves in Figs. 4C-4D 150

and Figs. 5C-5D are respectively identical. 151

RBF Kernel 152

Unlike the linear kernel, RBF kernel mapping function (Eq. 7b) defines a feature space 153

which is different from the original space. Therefore, regarding the original space, the 154

regression surface is no longer a hyperplane and the variance is no more a quadric 155

hypersurface for the RBF kernel.6 Because the mapping function of RBF kernel is very 156

complicated, we only briefly describe the characteristics of the regression surface and 157

variance in the original space. For a test input x∗, the prediction is a summation of 158

discounted outputs of all training points where each corresponding discount factor is 159

determined by the Euclidean distance between x∗ and that training input, and the 160

predicted value converges to 0 if x∗ is far away from all training inputs. On the other 161

hand, the variance depends only on the density of training inputs at x∗, and higher 162

density results in lower variance. Therefore, the variance of GPR with RBF kernel is 163

related of the relative location to the training inputs rather than the absolute location 164

specified by coordinate. 165

The results for GPR with RBF kernel applied to these synthetic datasets are shown 166

in Figs. 6-7.7 As shown in Figs. 6-7, the variance is unrelated to the conditional 167

variance V ar(y|x). Therefore, z-scores based on this model do not represent normalized 168

deviation. However, unlike the quadratic curves whose unique minimum is always 169

located at x = 0 in Figs. 4-5 for linear kernel, the variance function of GPR with RBF 170

kernel regarding the original input space is related to the distribution of training 171

input X. The denser inputs at the middle of Dataset 1 and two ends of Dataset 2 lead 172

5z(x) = x is an one dimensional vector (scalar) in this example, Σ is a m×1 matrix where Σ1,1

equals σ and the rest elements are 0s, V is an 1×1 matrix and the only one element equals 1.
6In the feature space, regression surface is always a hyperplane and variance is always a quadric

hypersurface for any kernels.
7The value of hyper-parameter l in Eq. 7a does not affect the main idea of this paper, thus we used

a fixed value of 1 instead of hyper-parameter optimization.
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to lower variances at those locations in Figs. 6A-6B, while the uniformly distributed 173

inputs of Datasets 3-4 result in relatively flat curves in Figs. 6C-6D. According to 174

Eq. 7a and given an arbitrary input x∗, the RBF kernel function returns a larger value 175

for a point in X that is closer to x∗, and k(x∗,X) and k(X,x∗) have more large 176

elements if x∗ is close to more points in X. Both result in the decrease of the value for 177

Eq. 8a, i.e., to smaller variance.8 178

Fig 6. GPR with RBF Kernel on Original Datasets.

Fig 7. GPR with RBF Kernel on Undersampled Datasets. Scales of Y-axis for
variance plots are different.

Similar to the result for the linear kernel, the theoretical minimum of variance is 179

σ2
test = 0.052,9 and the variance curves are exactly identical in Figs. 6C-6D and 180

Figs. 7C-7D respectively. 181

GPR with Unknown Noise Level 182

The noise level can be included as a hyper-parameter when it is unknown. However, the 183

derived variance from GPR still does not model the heterogeneity V ar(y|x), although it 184

could be a good approximation in some special cases. 185

As the basic properties of linear and RBF kernels have been introduced, a hybrid 186

kernel is utilized in the following analysis which is defined as 187

khybrid(·,·) = wlinearklinear(·,·)+wRBFkRBF(·,·)+kwhite(·,·), (13)

where wlinear and wRBF represent adjustable weights on linear and RBF kernels, and 188

kwhite(·,·) refers to a white-noise kernel that represents the Σ2
noise.

10 The Eq. 5b is 189

reformulated as 190

Σ2
∗ = Khybrid(X∗,X∗)−Khybrid(X∗,X)Khybrid(X,X)

−1
Khybrid(X,X∗). (14)

Original Datasets 3-4 in Figs. 2C-2D are prefect for testing whether a model captures 191

the heterogeneity V ar(y|x), as the large number of instances and uniformly distributed 192

data over the input space lead to negligible epistemic uncertainty in certain input range, 193

and the true reference model y = 0 is very simple.11 The hyper-parameters are tuned by 194

maximizing the likelihood P (y|X,θ), where θ represents all hyper-parameters in the 195

model. The results are plotted in Fig. 8, and the optimized hyper-parameters are listed 196

in Table 1 as well as the overall variances of residual V ar(y−yreference). 197

Fig 8. GPR with Hybrid Kernel on Original Datasets 3-4. Scales of Y-axis for
variance plots are different.

As shown in Fig. 8, the GPR accurately estimates the reference models, i.e., 198

yreference ≈ yreference,true. The variance curves are nearly quadratic, since the wlinear is 199

relatively larger than wRBF while wRBF is not exact zero as listed in Table 1. However, 200

the domination of kwhite(·,·) over klinear(·,·) and kRBF(·,·) due to small optimized 201

weights flattens the curves, i.e., the value of the curve is almost constant over the 202

8K(X,X)+Σ2
train is a symmetric positive definite matrix.

9It is a theoretical lower limit, the smallest variance for a given dataset is very likely greater than
σ2
test.
10Kwhite(X,X) = Σ2

train, Kwhite(X∗,X∗) = Σ2
test, Kwhite(X,X∗) = 0, and Kwhite(X∗,X) = 0.

11Two datasets with quadratic reference models are presented in Appendix.

May 6, 2021 7/10

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2021. ; https://doi.org/10.1101/2021.05.11.443565doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.11.443565
http://creativecommons.org/licenses/by/4.0/


Table 1. Optimized Hyper-parameters for Hybrid Kernel on Original
Datasets 3-4.

wlinear wRBF l σ2
noise V ar(y−yreference)

Dataset 3 7.29e-8 4.88e-10 2.94e2 3.29 3.29
Dataset 4 1.35e-7 1.98e-17 1.54e-5 3.64 3.64

plotted input range in this example. Particularly, the σ2
noise is very close to the overall 203

residual variance V ar(y−yreference), and the explanation will be presented later. 204

Therefore, Khybrid(X∗,X∗) ≈ Σ2
test, Khybrid(X,X) ≈ Σ2

train, Khybrid(X∗,X) ≈ 0 and 205

Khybrid(X,X∗) ≈ 0, which result in Σ2
∗ ≈ Σ2

test = Σ2
noise. 206

Regarding Eq. 1, since the noise is included as a tunable hyper-parameter without 207

any constraints, the optimizer will adjust reference model f(·) as well as bias σ2
noise to 208

V ar(y−yreference) to maximize the likelihood P (y|X,θ). Even the σnoise refers to the 209

observation noise level in GPR while the optimizer handles it as a variable without 210

considering its meaning in a model. 211

In Dataset 3, σ2
noise is biased to the overall residual variance V ar(y−yreference), and 212

V ar(y−yreference) is well matched with the homoskedastic heterogeneity V ar(y|x). So 213

the z-scores plotted in Fig. 8A show the GPR works as a normative model approach in 214

this special case. However, in Dataset 4, σ2
noise is also biased to the overall residual 215

variance V ar(y−yreference), while V ar(y−yreference) does not approximate the 216

heteroskedastic heterogeneity V ar(y|x). So the z-scores plotted in Fig. 8B do not 217

represent a measure of normalized deviation in general. 218

Discussion 219

Although GPR could be extended and to model the heterogeneity as presented in this 220

work, it is either: (1) hard to estimate the aleatoric uncertainty accurately when the 221

data are sparse, e.g., at the middle of Dataset 2; or (2) unnecessary to model the 222

conditional variance by Eq. 10 when the data are dense, e.g., Datasets 3-4. One 223

approach to estimate σ2
aleatoric(x∗) is using the sliding window technique, but it is hard 224

to choose the window size for each dimension of input. For Scenario 1, even if the 225

optimal window sizes can be obtained, it is hard to accurately estimate σ2
aleatoric(x∗) 226

when the window centered at x∗ only covers a small number of training data points, 227

e.g., x∗ is far away from all points in X. If the window centered at x∗ covers a large 228

number of training data points, e.g., Scenario 2, V ar(y|x∗) should almost equal 229

σ2
aleatoric(x∗) and epistemic uncertainty is insignificant. Then V ar(y|x∗) can be simply 230

approximated as a local variance over a space defined by the window. 231

Another misunderstanding we found in the literature is interpreting the noise 232

term σ2
noise as aleatoric uncertainty. When the observation noise is considered as a 233

hyper-parameter, it will likely bias the overall residual variance V ar(y−yreference). The 234

overall residual variance is a good approximation of homoskedastic aleatoric 235

uncertainty V ar(y|x). It is, however, not valid for cases with heteroskedastic residuals, 236

which is the main motivation for using normative modeling. Although the value of the 237

noise term is biased to estimate overall residual variance during the optimization, the 238

mathematical/physical meanings are pre-defined by the model. Moreover, in 239

homoskedastic aleatoric uncertainty cases, further investigation is needed to verify 240

whether K(X∗,X∗)−K(X∗,X)
[
K(X,X)+Σ2

noise

]−1
K(X,X∗) will still be a good 241

approximation of epistemic uncertainty with such a biased estimation of observation 242

noise level.12 243

12Σ2
noise � Σ2

aleatoric, so Σ2
noise+Σ2

aleatoric ≈ Σ2
aleatoric in Eq. 10.
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Conclusion 244

In this paper, we present the mathematical derivation with a general formula to 245

demonstrate that the derived prediction variance from GPR does not model the 246

heterogeneity V ar(y|x), which in general is necessary for a normative model. GPR with 247

a linear kernel and an RBF kernel are used as examples to illustrate this statement on 248

one dimensional input datasets. Overall, the derived variance from GPR cannot be 249

utilized in a normative model alone. 250
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S1 Appendix. This file contains Eq. S1, Fig. S1, and Table S1. Eq. S1, a 252

detailed derivation for Eq. 9. Fig. S1 and Table S1, results for modified Datasets 3-4. 253
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