
Evaluating brain parcellations using the distance controlled

boundary coefficient

Da Zhia,b, Maedbh Kingd, Jörn Diedrichsena,b,c,∗

aBrain and Mind Institute, Western University, London, Ontario, Canada
bDepartment of Computer Science, Western University, London, Ontario, Canada

cDepartment of Statistical and Actuarial Sciences, Western University, London, Ontario, Canada
dDepartment of Psychology, University of California, Berkeley, CA, U.S.A

Abstract

An important goal of human brain mapping is to define a set of distinct regions that
can be linked to unique functions. Numerous brain parcellations have been proposed,
using cytoarchitectonic data, structural or functional Magnetic Resonance Imaging
(fMRI). The intrinsic smoothness of the brain data, however, poses a problem for cur-
rent methods seeking to compare different parcellations to each other. For example,
criteria that simply compare within-parcel to between-parcel similarity provide even
random parcellations with a high value. Furthermore, the evaluation is biased by the
spatial scale of the parcellation. To address this problem, we propose the Distance
Controlled Boundary Coefficient (DCBC), an unbiased criterion to evaluate discrete
parcellations. We employ this new criterion to evaluate whether existing parcellations
of the human neocortex can predict functional boundaries on a rich multi-domain task
battery. We find that common anatomical parcellations do not perform better than
chance, suggesting that task-based functional boundaries do not align well with sulcal
landmarks. Parcellations based on resting-state fMRI data perform well; in some cases,
as well as a parcellation defined on the evaluation data itself. Finally, multi-modal par-
cellations that combine functional and anatomical criteria perform substantially worse
than those based on functional data alone, indicating that functionally homogeneous
regions often span major anatomical landmarks. Overall, the DCBC advances the field
of functional brain mapping by providing an unbiased metric that compares the pre-
dictive ability of different brain parcellations to define functionally and anatomically
homogeneous brain regions.
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1. Introduction

There is a long history in neuroscience of subdividing the human brain into different

regions based on differences in histology (Brodmann, 1909). It is commonly understood that

brain function arises from the interactions between sub-regions that are structurally and/or

functionally distinct (Felleman and Van Essen, 1991, Eickhoff et al., 2018), While early5

parcellations of the human brain were based on the cytoarchitectonic organisation of the

neocortex (Brodmann, 1909, Zilles et al., 2002, Talairach, 1988), the advent of neuroimaging

allowed an in-vivo assessment of brain organisation. In recent years, many parcellations

based on task-evoked and resting functional magnetic imaging resonance (fMRI) data have

been published, along with multi-modal parcellations that also incorporate structural and10

cytoarchitectonic information (Glasser and Van Essen, 2011, Yeo et al., 2011, Power et al.,

2011, Bellec et al., 2010).

In the study of brain function, parcellations play an important practical role. They are

commonly used to define the regions of interest (ROIs) to summarize functional and anatom-

ical data, or to define the nodes for subsequent connectivity analysis (Sporns, 2011). The15

main function of parcellation is to reduce complexity of the statistical analysis, as the brain-

wide data can be summarized with a smaller number of values, each reflecting measurements

from a region with high homogeneity. Additionally, widely-accepted parcellation maps aid

the direct comparison between studies (Arslan et al., 2018).

Despite the importance of brain parcellations in human neuroscience research, there is20

no commonly accepted evaluation criterion to compare different parcellations. The obvious

reason for this is that different parcellations are generated with different goals in mind. Spe-

cially, some parcellations aim to define regions that have a common anatomical characteristic

(Desikan et al., 2006, Fischl et al., 2004), a shared connectivity fingerprint (Yeo et al., 2011,

Gordon et al., 2016, Power et al., 2011), or a homogeneous task-activation profile (Yeo et al.,25

2015). As such, brain parcellations can be evaluated based on different types of data (Arslan

et al., 2018).

Universally, however, any parcellation should aim to define regions such that the func-

tional profiles (whether anatomical measures, connectivity patterns, or task activation) of

two brain locations in the same region should be maximally similar to each other, whereas30
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two brain locations in different regions should be maximally different. Thus, brain parcella-

tion can be viewed as a clustering problem. As a result, standard machine learning methods

to evaluate clustering solutions, have been applied to brain parcellation. Two such examples

are the measure of global Homogeneity (Gordon et al., 2016, Craddock et al., 2012) and the

Silhouette coefficient (Rousseeuw, 1987).35

However, these two evaluation criteria have the common problem, in that they do not

account for the spatial nature of the underlying data. In the case of the human neocortex, the

functional correlation between two nodes on the cortical surface depends on their distance,

with nearby nodes showing a higher similarity compared to far away ones. This leads to the

fact that even random, but spatially contiguous, parcellations can achieve a relatively high40

global Homogeneity or Silhouette coefficient. To establish whether a parcellation identifies

any real functional boundaries at all, Monte-Carlo simulations using random parcellations

are therefore necessary (Arslan et al., 2018). To complicate matters further, both global

Homogeneity and Silhouette coefficients tend to be higher for finer parcellations. This makes

it difficult to compare between two parcellations with different spatial resolutions.45

In this paper, we address this problem by proposing a novel evaluation criterion, the

Distance-Controlled Boundaries Coefficient (DCBC). As the Silhouette coefficient, it com-

pares within-parcel and between-parcel correlations of the functional profiles. However, the

DCBC takes into account the spatial smoothness of the data by only comparing pairs of

locations with the same distance on the cortical surface. As we will show, the expected value50

of the DCBC for a random parcellation is zero. Thus, no simulations with random parcel-

lations are necessary to establish a baseline measurement; we can directly test the DCBC

against zero. We also show that this baseline value is invariant to the number of parcels in

the random parcellation. This enables us to use the DCBC to directly compare parcellations

of different spatial scales.55

We then use the DCBC to evaluate a set of common parcellations of the human neocortex

(Yeo et al., 2011, 2015, Gordon et al., 2016, Power et al., 2011, Glasser et al., 2016, Schaefer

et al., 2018, Fan et al., 2016, Baldassano et al., 2015, Shen et al., 2013, Arslan and Rueckert,

2015, Tzourio-Mazoyer et al., 2002, Desikan et al., 2006, Fischl et al., 2004). We performed

this evaluation based on task-based fMRI data, specifically on the comprehensive Multi-60
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Domain Task Battery (MDTB) (King et al., 2019), which contains functional contrasts

across many cognitive domains measured in the same participants. In contrast to previous

evaluations on functional resting state data (Arslan et al., 2018, Eickhoff et al., 2018), the

use of task-based data enables an evaluation of functional boundaries that are stable across

a wide range of mental states. A python toolbox for the efficient computation of the DCBC,65

as well as a surface-based version of the MDTB data set are publicly available to download.

2. Methods

2.1. Overview

The DCBC compares the correlation between two brain locations within a parcel to the

correlation between two brain locations across a boundary between parcels. Importantly,70

this comparison is only performed for pairs of brain locations that are separated by the same

spatial distance. The calculation of the DCBC proceeds in four steps. First, we require a

data set that provides a rich characterization of each brain location. This data set defines

the functional profile for each brain location. While the DCBC can be applied to any

high-dimensional data set, such as multi-modal anatomical data or connectivity fingerprints75

based on resting-state fMRI, we focus here on the MDTB data set (King et al., 2019), which

provides 34 activity estimates across a range of motor, cognitive and social tasks. Secondly,

we require a measure of spatial distance between two brain locations, either defined on the

cortical surface, or for subcortical structures, in the volume. Based on these distances, all

location pairs are subdivided into a set of spatial bins. The within-parcel and between-80

parcel correlation is then computed for each spatial bin separately. In the last step, the

results are integrated across spatial bins, using an adaptive weighting scheme. To validate

the method, we employed random parcellations of the human neocortex using a range of

spatial resolutions, as well as sets of smooth artificial functional data sets.

2.2. MDTB dataset85

To define the functional profiles for the evaluation, we are using the publicly available

MDTB data set (King et al., 2019), which contains a wide range of tasks, quantifying pro-

cesses required for motor, cognitive, and social function. Each of the 24 participants (16
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females, 8 males, mean age=23.8) was scanned four times for 80-minutes, while performing

either task set A or B (17 tasks for each, 9 tasks in common). Task set A was performed in90

the first two sessions, task set B in the last two sessions. A total of approximately 5.3 h of

functional data per participant was collected.

In each imaging run, every task was performed once for a 35 s block, starting with

a 5 s instruction period, followed by a 30 s period of continuous task performance. The

task battery included motor (finger tapping, sequence production), working memory (2-back95

task, math), language (verb generation, reading), social (theory of mind, action observa-

tion), executive control (no-go, stroop), attention (visual search), emotion (facial expression,

pleasant/ unpleasant pictures), spatial (mental rotations), introspection tasks (spatial and

motor imagery), movie-based tasks (cartoon, nature, landscapes), and rest (fixation) (King

et al., 2019).100

All fMRI data were acquired on a 3T Siemens Prisma at Western University. The imaging

parameters were as follows: repetition time = 1 s; field-of-view = 20.8 cm; phase encoding

direction P to A; 48 slices; 3 mm thickness; in-plane resolution 2.5×2.5 mm2. For anatomical

localization and normalization, a 5 min high-resolution scan of the whole brain was acquired

(see (King et al., 2019) for more details).105

Data pre-processing was carried out using tools from SPM12 (www.fil.ion.ucl.ac.uk/

spm/doc/spm12_manual.pdf), as well as custom-written scripts written in MATLAB. For all

participants, an anatomical image (T1-weighted MPRAGE, 1mm isotropic resolution) was

acquired in the first scanning session. Functional data were realigned for head motion within

each session, and for different head positions across sessions using the six-parameter rigid110

body transformation. The mean functional image was then co-registered to the anatomical

image and this transformation was applied to all functional images. No smoothing or group

normalization was applied.

2.3. Cortical re-construction and functional profiles

The anatomical image of each of the 24 subjects was processed by standard recon-all115

pipeline of the freesurfer software (version 5.0) (Fischl, 2012), including brain extraction,

white and pial surfaces generation, inflation, and spherical alignment to the new symmetric
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fsLR-32K template (Van Essen et al., 2012). Individual surfaces were then re-sampled into

this standard grid. This resampling led to surfaces with 32,492 vertices that are shared both

across participants and across left and right hemisphere.120

A General Linear Model (GLM) was fitted to the time series data of each voxel for each

imaging run. Each task was modeled as a 30s regressor and all the preceding 5s instructions

were modeled as separate regressors. The regression weights (betas) were estimated for each

run independently and then averaged across the 16 runs for each task set.

To combine the activity estimates across the two task sets, we used the mean of the125

shared tasks as a common reference point. We subtracted this pattern from the average

beta estimates for each task set separately, and then concatenated the two vectors of activity

estimates. The average beta weights were then divided by the square root of the average

mean-square-residual from the first-level GLM to obtain z-scores for each voxel. This resulted

in functional profiles consisting of 34 pre-whitened activity estimates (set A = 17; set B = 17)130

for each voxel. Finally, we subtracted the overall mean across all tasks from the functional

profile of each voxel.

The functional profiles were then mapped to each individual cortical surface by averaging

the value from voxels along the connecting line between the pial and white-gray matter

surface, using 5 equally spaced locations between the two surfaces.135

2.4. Existing evaluation criteria for brain parcellations

Given that brain parcellation can be viewed as a clustering problem, two common meth-

ods used to evaluate the resultant parcels is the global Homogeneity (Craddock et al., 2012,

Gordon et al., 2016), and the Silhouette coefficient (Rousseeuw, 1987). Homogeneity is de-

fined as the average similarity across all pairs of vertices within a parcel. As the similarity140

measure of two vertices, we used the Pearson’s correlation between functional profiles. The

global Homogeneity is then simply the average with-parcel correlation across all parcels, with

higher homogeneity suggesting a better parcellation.

Another popular metric for evaluation brain parcellation is the Silhouette coefficient

(Rousseeuw, 1987), which compares the average dissimilarity (defined as 1-R, where R rep-145

resents Pearson’s correlation between functional profiles) from one vertex to all other vertices
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in the same parcel (wi), to the average dissimilarity from the same vertex to all the vertices

that assigned to neighbouring parcels (bi) (Yeo et al., 2011, Arslan et al., 2018). For a cortical

vertex vi, the Silhouette coefficient is defined as:

Si =
bi − wi

max(wi, bi)

where wi and bi represents the averaged within- and between-parcel dissimilarity of vertex150

vi. By given a parcellation {P1,P2,...,Pk}, wi and bi can be defined as:

wi =
1

mk − 1

∑
j∈Pk,i6=j

1−R(vi, vj),

bi =
1

N

∑
j∈nb(Pk)

1−R(vi, vj).

where mk indicates the number of vertices that within the parcel Pk. N is the total

number of vertices in all neighbouring parcels and nb(Pk) represents all neighbouring parcels

of Pk. Based on this definition, the Silhouette coefficient for each vertex ranges from -1 to

1, 1 indicates that there is a perfect correlation within each parcel (r = 1) and on average,155

not correlations across parcels (r = 0).

As we will see, both of these measures are biased by the intrinsic smoothness of the

functional profiles on the cortical surface.

2.5. Measuring spatial distance

To account for the intrinsic smoothness of the data, we require a measure of spatial160

distance between any pair of brain locations. For subcortical structures, we have used the

Euclidean distance between pairs of voxels (King et al., 2019). For the neocortex, however,

we ideally would like to use the geodesic distance between vertices on the cortical surface.

As an approximation to this distance, we used Dijkstra’s algorithm (Dijkstra et al., 1959) to

estimate the shortest paths between each pair of vertices on each individual cortical surface.165

For this computation we used the mid-cortical layer which is the average of the pial and white-

gray matter surface. For computational and memory efficiency we only considered distances

up to maximum of 50mm. Inter-vertex distances were then averaged across individuals and

hemispheres. This resulted in a matrix that indicates the average cortical distance between
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nearby brain locations for the atlas brain surface.170

2.6. Distance Controlled Boundaries Coefficient (DCBC)
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Figure 1: Distance controlled boundary coefficient. (a) Correlation between functional profiles
(see methods) of pairs of surface vertices as a function of their spatial distance; (b) Histogram
of the number of within and between vertex pairs as a function of spatial distance for a random
Icosahedron 162 parcellation. (c) Weighting factor across different bins for the Icosahederon 162
parcellation and binning shown in b. (d) Correlation for within- (black) and between-region (red)
node pairs as a function of the spatial distance. The DCBC is defined by the weighted average
distance between the two curves.

2.6.1. The problem of spatial smoothness

The problem with global Homogeneity and Silhouette coefficients is that they do not

take account that function tends to vary in a smooth fashion across the cortical surface. For

instance, if we compute the correlation of vertex pairs across the cortex using task-evoked175
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functional profiles (King et al., 2019) for an individual participant, we can clearly see that

the correlation falls off with the spatial distance between vertices (See Figure 1a). Note that

this smoothness is not an artifact of the data processing; except for motion realignment and

mapping onto the surface, no smoothing was applied to the data. Thus, the dependence on

spatial distance reflects the intrinsic smoothness of functional specialization on the cortex.180

For the Homogeneity coefficient this property favors parcellations with small parcels, as

only close-by vertex pairs will be within the same parcel. Similarly, the spatial smoothness

also biases the Silhoutte coefficient, as the spatial distance for within-parcel pairs is on

average smaller than that for between-parcel pairs. For example in random parcellation

Icosahedron 162 (Fig. 1b), the average spatial distance of within-parcel pairs is 14.5 mm.185

Even if we limit the comparison to vertex pairs from spatially adjacent parcels, as is common

practice in the evaluation of brain parcellations, the between-parcel pairs have a substantially

larger average distance (25.5mm). This discrepancy results in a higher average correlation

of functional profiles for within-parcel pairs compared to between-parcel pairs.

We therefore propose to only compare vertex pairs with a similar spatial distance. For190

this purpose, the DCBC method bins all voxels pairs according to their spatial distance, and

then compares the correlation for within- and between-pairs within each bin. One important

practical decision is the choice of bin size, a question that we address in the results section.

For our neocortical data, a bin size of 1 mm appears to be adequate.

2.6.2. Averaging across bins195

To obtain a single evaluation criterion for each parcellation, the results need to be inte-

grated across spatial distances. This raises the question of what range of spatial distances

to consider, and how to weight the distances within that range. A rational solution to this

problem is to find the weighting that, for any given parcellation, provides us with the best

estimate of the average difference between within- and between-parcel correlations, assum-200

ing that this differences is constant across distances. The variance of the estimate of the

correlation difference (di) for bin i can be approximated by assuming the independence of

the different voxel pairs. In this case, the variance of the estimate depends on the number

of within- (nb,I) and between-parcel vertex pairs (nw,i) in each spatial bin:

9
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var(di) =
1

nb,i

+
1

nw,i

=
nb,i + nw,i

nb,inw,i

For averaging, we define a weight that is proportional to the precision (inverse of the205

variance) of each estimator:

wi =
nb,inw,i

nb,i + nw,i

/
∑
j

nb,jnw,j

nb,j + nw,j

For example, figure 1c shows the weighting factor for each spatial bin of Icosahedron 162

random parcellation using a 1 mm bin width. The DCBC is then the weighted average of

the correlation difference across bins.

2.7. Random Parcellations210

Icosahedron-42 Icosahedron-162 Icosahedron-362 Icosahedron-642 Icosahedron-1002

Figure 2: Random cortical parcellations with different number of parcels.

To evaluate the DCBC for parcellations that on average do not align with real functional

boundaries, we generated a set of random parcellations. If our method successfully controls

for the spatial smoothness of the functional profiles, the average DCBC for such random

parcellations should be zero, i.e there should be no difference between within- and between-

parcel correlations. To test this claim for parcellations at different spatial scales, we used a215

regular hexagonal parcellations of a sphere (Icosahedron) with 42, 162, 362, 642, and 1002

parcels. To generate random alignment of this parcellation with the data, we rotated each

map randomly around the x, y, and z axis. We repeated this process 100 times to obtain

100 random parcellations for each spatial scale.

2.8. Random Functional Maps220

Real data may have functional boundaries that are correlated across participants. As

a consequence, some random parcellations will still by chance align with these boundaries

10
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and yield systematically positive DCBC values; and other random parcellations will mis-

align with the real functional boundaries and yield systematically negative values. To test

the DCBC on functional maps without a systematic boundary structure across participants,225

we also randomly generated 100 cortical functional maps with 34 task conditions. We drew

independent normally distributed values for every condition and vertex for the fsLR-32k

template (Van Essen et al., 2012), and then smoothed these maps on the cortical surface us-

ing -metric-smooth function provided by Connectome Workbench software (Marcus et al.,

2011). The smoothing kernel was set to 12 centimeters, yielding a similar spatial autocorre-230

lation function as in our real data.

2.9. Evaluation of commonly-used group parcellations

We then evaluated a set of commonly used group parcellation of the human neocortex

(Table 1). The majority of the parcellations considered here are based on resting-state

functional connectivity (rs-FC) data. fMRI data is recorded at rest, and the covariance or235

correlations between the time series of different brain locations is submitted to a clustering or

dimensionality reduction approach. Parcellations can also be based on task-evoked activation

maps. For example Yeo et al. (2015) derived a parcellation from 10,449 experiment contrasts

across 83 behavioural tasks. The anatomical parcellations considered here are based on the

macro-anatomical folding structure of the human neocortex, following the major sulci and240

gyri of the human brain. Finally, we also considered 2 multi-modal parcellations, which

combined rs-FC and anatomical criteria.

Within each of these categories, parcellations also differ in the approach used for genera-

tion. For instance, several parcellations were obtained based on a two-level approach, where

subject-level parcellations are derived in a first step, and then integrated across subjects in245

a second step using clustering or majority voting. Other parcellations are directly derived

by clustering group-averaged data (Arslan et al., 2018).

Because the DCBC evaluation considers only vertex pairs up to a specific spatial dis-

tance on the cortical surface, the evaluation is conducted separately for the left and right

hemisphere. For many parcellations, the parcels are separated for the two hemispheres. For250

example, Gordon et al. (2016) used 161 and 172 distinct regions for the left and right hemi-
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sphere respectively, totaling 333 regions. Other parcellations use bi-hemispheric parcels. As

a consequence the 7 and 17 regions in Yeo et al. (2011), were effectively evaluated as 14 and

34 parcels.

Note that three group-level parcellations (Fan et al., 2016, Shen et al., 2013, Tzourio-255

Mazoyer et al., 2002) were only available in volume space. These parcellations were mapped

to HCP standard fsLR-32k cortical surface using the volume-to-surface pipeline described in

Van Essen et al. (2012) and Arslan et al. (2018). All parcellations in this study are available

as a collection in fs-LR 32k surface space at (Zhi and Diedrichsen, 2021).

2.10. Parcellation based on the evaluation data260

To estimate how well a group parcellation could theoretically subdivide the neocortex

into functionally distinct regions, we derived a parcellation from the MDTB dataset. We

estimated 12 cortical parcellations with 14 to 1000 parcels, using group-averaged MTDB

functional profiles. This parcellation has an unfair advantage in that the individual used in

the evaluation is also contained within the training set, providing an upper-bound estimate265

of the noise ceiling (Nili et al., 2014). To estimate a lower bound of the noise ceiling, we

used a leave-one-out cross validation approach: We derived a group parcellation from the

averaged data from 23 participants, and then evaluated it on the remaining subject. We

then averaged the DCBC across the 24 different parcellations.

To derive the group parcellation we used spectral clustering. We first down-sampled the270

surface data from 32K vertices to 4002 vertices. Then we performed spectral clustering on

the affinity matrix between the vertices of the down-sampled map. After clustering, we then

restored the map to the original resolution of the surface. The lower resolution ensured

that the resulting parcellations were spatially contiguous. We consider the MDTB group

parcellation as a potential upper bound (see Results 3.4) of how well a group parcellation275

can perform on the MDTB data set.
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Figure 3: (a) Results of four evaluation methods for the random functional maps simulation
in different resolutions: Homogeneity, Silhouette Coefficient, the un-binned average correlation
difference (ACD) of within-parcel and between-parcel, and the binned (bin width = 2.5 mm) ACD
of within-parcel and between-parcel; (b) The weighted and un-weighted DCBC evaluation results
for 100 random functional maps in different bin widths of random parcellations Icosahedron 642.

3. Results

3.1. Binning reduces the bias introduced by spatial smoothness

Existing evaluation methods for brain parcellations have the problem of being biased

by the natural smoothness of functional brain maps. To demonstrate this effect, we first280

tested various evaluation methods using random functional maps and random parcellations

of different spatial scales. As can be seen in Figure 3a, both the Homogeneity and Silhouette

coefficient show highly significant positive values, even for these random maps. Furthermore,

the values for both methods increase when the parcellation increases in spatial resolution (i.e.

have more and smaller parcels). This makes direct comparisons of different parcellations of285

different spatial scales difficult, and necessitates the use of randomisation analyses for each

parcellation to determine the baseline value expected by random chance (Arslan et al., 2018).

A similar problem can also be seen when using the difference between the correlations

within- and between pairs of nodes (un-binned average correlation difference, ACD). This

is caused by the tendency that vertices that are closer together show higher functional290

correlations (Fig 1a), combined with the fact that within-parcel vertex pairs are on average
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closer to each other than between-parcel pairs (Fig. 1b). To remove this bias, the DCBC

calculation involves the binning of vertex pairs according to their spatial distance. We

then calculate the difference between the average correlation between within- and between-

parcel pairs within each spatial bin, thereby only comparing vertex pairs of matched spatial295

distance.

To ascertain that this approach provides an approximately unbiased and stable evaluation

criterion, we first applied the suggested technique on the simulated functional data. As can

be seen (Fig. 3a, binned ACD), even using a relatively course spatial binning of 2.5 mm,

this approach nearly removes all bias caused by the spatial smoothness. For the finest300

parcellation, an Icosahedron with 1002 regions, the binned difference between correlations

(0.009) was approximately 60 times lower than the mean of the difference calculated in each

bin (0.544). This shows that the binning approach dramatically reduces the bias caused by

spatial smoothness.

3.2. Adaptive weighted averaging across bins reduces variance and bias305

After binning, the results need to be integrated across bins to arrive at a single evaluation

criterion. This can be done by simply averaging the differences in correlation across bins.

However, this approach leads to a summary measure with high variability (Fig. 3, b). This

is caused by the fact all bins have equal influence on the average, even though some bins

contain very few vertex pairs. This can be addressed by taking the number of within- and310

between-parcel pairs in each bin into account in an adaptive weighting scheme (see methods).

Indeed, the standard deviation of the weighted DCBC is 2.8 times lower than for the un-

weighted version for 1 mm bins, and 8.1 times lower for the 2.5 mm bins. Furthermore, the

weighted DCBC also shows smaller residual bias than the unweighted DCBC.

3.3. Choosing an appropriate bin width315

An important practical issue in the DCBC calculation is to choose a specific bin width.

This choice is subject to a fundamental trade-off. If the bin width is too wide, the DCBC may

still be biased as a result of the spatial smoothness of the functional profiles. This is because

within each bin, the average spatial distance for within-parcel pairs is still slightly smaller

than for the between-parcel pairs, inducing a systematic difference between the correlations320
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within each spatial bin. Even though this bias is small, it can remain highly significant when

tested across the 100 simulations presented in Fig. 3b for a bin width of 2.5mm. Choosing

a smaller bin width reduces this bias. For bins of size 0.1 mm and 0.2 mm, the same 100

simulated data sets no longer show a significant difference against zero (p = 0.327 and 0.202,

respectively).325

Choosing a very small bin width, however, also comes with some disadvantages. First,

the computational cost of the DCBC calculation increases linearly with the number of bins.

More importantly, if a very small bin is chosen, it can result in noisier DCBC estimate, as

very few vertex pairs will fall within each bin. In the extreme case, there would either be

no within- or between- vertex pair in a bin, such that the bin could not be used for the330

difference calculation. For neocortical data projected to the fsLR-32k template (Van Essen

et al., 2012) a bin width of 1mm appears to offer a good balance between bias, accuracy and

computational speed.

3.4. Evaluation of existing group parcellations

Using the MDTB data set (King et al., 2019) and the DCBC, we then evaluated 15335

commonly used group-level cortical parcellations (Fig. 4a, Table 1). These parcellation

relied either on anatomical criteria (cortical folding), task-evoked activation, or functional

resting-state connectivity. A number of multi-modal parcellations (Glasser et al., 2016) relied

on a combination of anatomical and functional features.

3.4.1. Resting-state group parcellations predict functional boundaries340

We first focused on the nine parcellations that are based solely on functional resting state

data (Yeo et al., 2011, Power et al., 2011, Gordon et al., 2016, Arslan and Rueckert, 2015,

Baldassano et al., 2015, Shen et al., 2013, Schaefer et al., 2018, Arslan et al., 2018). As can

be seen in the Fig. 4b, most of these parcellations predicted the functional boundaries in the

MDTB data set substantially better than chance. For example, the within- and between-345

parcel correlations for the Yeo 17 parcellation (Figure 1d) differed by approximately 0.1

across spatial bins, reflected in an average DCBC value for the Yeo 17 parcellation of 0.1020

(SE=0.0053) across the 24 subjects.
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Figure 4: Evaluation of existing group parcellations. (a) The left hemisphere of 15 commonly used
cortical parcellations plus the MDTB cortical parcellation with 7 regions. (b) The DCBC evaluation
of the existing parcellations. The evaluation of the MDTB parcellations is indicated by the gray
area (noise ceiling). The upper and lower bounds are the non-crossvalidated and cross-validated
evaluations respectively. (c) The global homogeneity value for all parcellations; (d) The Silhouette
Coefficient of the same parcellations. Error bars indicate SEM across the 24 evaluation subjects.

Other resting-state parcellations also showed clear differences between the within- and

between-parcel correlations, especially Power 2011 (DCBC=0.1347, SE=0.0088), Yeo 7 (DCBC=0.1271,350

SE=0.0073), and Gordon 2016 (DCBC=0.0876, SE=0.0047). This finding shows that resting-

state group parcellations generally predict task-relevant functional boundaries significantly

better than chance (Tavor et al., 2016).
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3.4.2. Comparison to parcellations derived from the evaluation data set

How well do these group-based resting-state parcellations predict task-based functional355

boundaries, relative to what would be possible? Given the inter-individual variability of

boundaries, and the fact that even individual boundaries are not perfectly sharp, there is

an upper limit to the highest achievable DCBC on our evaluation data set. To obtain an

idea of this approximate “noise ceiling” (Nili et al., 2014), we derived a set of clustering

solutions from the MDTB data itself (see methods, Fig.4a), spanning the range from 14 to360

1000 parcels.

To obtain a range of estimates of this noise ceiling, we derived and evaluated the parcel-

lations in two ways, We either derived and evaluated on all 24 participants, or we derived the

parcellation on 23 of the participants, and evaluated it on the remaining, left-out participant.

The gap between these two performance curves indicates how much of the performance ad-365

vantage of the MDTB parcellation is due to the over-fitting to the particular set of subjects.

As expected, the MDTB-based parcellations (gray area in Fig.4b) generally outperformed

other group parcellations on this data set. Nonetheless, some existing resting-state parcel-

lations showed performance very close or even slightly higher than the MDTB parcellation

(Yeo et al., 2011, Power et al., 2011).370

3.4.3. Anatomical parcellations do not predict functional boundaries

We then evaluated 3 commonly used anatomical group parcellations of the human neo-

cortex: The Desikan parcellations (Desikan et al., 2006) , the Dextrieux atlas (Fischl et al.,

2004), and the Automated Anatomical Labelling (AAL) atlas (Tzourio-Mazoyer et al., 2002).

The averaged correlation between any vertex pairs within a predefined anatomical parcel was375

not much greater than the correlation between vertex pairs across anatomical boundaries

(Fig.4b), resulting in very low DCBC values (Dextrieux: DCBC=-0.0185, SE=0.004; AAL:

DCBC=-0.0077, SE=0.002). The Desikan parcellation (DCBC=-0.0581, SE=0.003) even

showed significantly negative DCBC values across the 24 subjects. This parcellation, based

on the macroanatomical folding structure of the neocortex, therefore defines boundaries380

that are systematically misaligned with the functional subdivisions in task-evoked activity

profiles.
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3.4.4. Multi-modal parcellations do not perform better than resting-state parcellations

We also applied DCBC evaluation to two multi-modal parcellations (Glasser et al., 2016,

Fan et al., 2016) to determine whether combining anatomical and functional data is su-385

perior to unimodal parcellations. The Glasser parcellation had a slightly higher DCBC

score (DCBC=0.0483, SE=0.0038) as compared to the Fan parcellation (DCBC=0.0275,

SE=0.0019). However, both were lower than the average DCBC across the resting-state

parcellations (0.0753). It therefore appears that the combination of multiple modalities

does not systematically lead to a better prediction of task-relevant function boundaries than390

parcellations that are derived on resting-state data alone.

3.4.5. Comparison across different spatial resolutions

For simulated random functional maps, we have shown that the expected value of the

DCBC is zero, no matter how fine the parcellation (Fig.3b). In contrast, the value of the

global Homogeneity and Silhouette coefficient increases for finer parcellations even for ran-395

dom maps (Fig.3a).

This bias can also be observed for real parcellations. The value of the global Homogeneity

(Fig.4c) and Silhouette coefficient (Fig. 4d) clearly increases for finer parcellations, whereas

there is no strong relationship between the DCBC and the number of parcels (Fig. 4b).

In this context, the set of Schaefer 2018 parcellations (Schaefer et al., 2018) is es-400

pecially interesting, as it provides a nested set of subdivisions with an increasing num-

ber of parcels, all aligned with Yeo 7 networks. To statistically evaluate the change in

evaluation metric with parcel size, we conducted a repeated-measures analysis of variance

(ANOVA) across the 10 Schaefer 2018 parcellations, ranging from 100 to 1000 parcels. As ex-

pected, both the Homogeneity (F9,207 = 667.6, p = 1.11× 10−147)and Silhouette coefficient405

(F9,207 = 1483.2, p = 1.05× 10−183) clearly showed significant increases for an increasing

number of parcels. Given that such increases were also found for random functional maps

and parcellations, it is not clear whether the finer parcellations identified functional bound-

aries better, the same, or worse than coarser parcellations.

In contrast, the unbiased DCBC shows that the Schaefer parcellation reaches the best410

performance around 200 parcels, and then slowly declines for finer parcellations (Fig.4b).
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The ANOVA showed a significant change with number of parcels (F9,207 = 193.70, p =

1.07× 10−95). Indeed, for the finest parcellation (1000 parcels), performance did not differ

significantly from chance (t23 = 2.67, p = 0.0137). One possible reason for this is that when

defining more than 200 functional parcels, the defined boundaries do not consistently predict415

discontinuities in the functional organisation at the group level anymore.

In summary, the application of the novel DCBC criterion to known cortical parcellations

allowed for the following conclusions: (1) anatomical parcellations based on cortical folding

do not align with functional boundaries in the neocortex ; (2) resting-state parcellations pre-

dict task-relevant functional boundaries, outperforming other types of cortical parcellations;420

(3) multi-modal parcellations did not improve performance as compared to pure resting-state

parcellations.

3.5. Open-source toolbox/data support evaluation

The code for DCBC evaluation is published as an open-source toolbox written in Python

at (Zhi and Diedrichsen, 2021). The package also contains the pre-processed contrast maps425

for all task conditions of the MDTB data set (n=24 subjects), sampled to the standard

fsLR-32k template.

4. Discussion

In this study, we introduce a novel evaluation criterion for brain parcellations, the Dis-

tance Controlled Boundary Coefficient (DCBC). The method takes into account the spatial430

smoothness of the data by controlling the distance of the vertex pairs when comparing within-

and between-parcel correlations. We used an earlier form of this approach to evaluate cere-

bellar parcellations (King et al., 2019). Here, we further improve the approach by adaptively

weighting over the spatial distance bins, resulting in a global measure with low bias and

variance. Our evaluation on simulated smooth data shows that the new criterion overcomes435

the size- and shape-dependent bias of other homogeneity-type evaluation criteria (Craddock

et al., 2012, Rousseeuw, 1987). The advantage of the DCBC is twofold: 1) it enables a direct

comparison between group brain parcellations that have different spatial resolutions, and 2)
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it provides a direct test of how well a parcellation subdivides the brain into homogeneous

regions than expected by chance.440

We used the DCBC to evaluate a range of existing cortical surface-based parcellations.

We found that the parcellations derived from resting-state fMRI data largely succeed in

predicting task-evoked activity boundaries, replicating earlier work (Tavor et al., 2016, King

et al., 2019). These results demonstrate again the practical utility of resting state data in

identifying brain networks that work together during active task performance. Even though445

the correlation structure across the cortex does clearly change in a task-dependent fashion

(Hasson et al., 2009, Salehi et al., 2020a,b), our results emphasize the existence of a basic

scaffold that determines functional specialization across a wide range of tasks, as well as

during rest.

In contrast, anatomical parcellations (Desikan et al., 2006, Fischl et al., 2004, Tzourio-450

Mazoyer et al., 2002) did not perform better than chance. All three selected anatomical

parcellations showed an approximately zero, or even significantly negative DCBC score on

the MDTB dataset. This finding corroborates previous work that shows a misalignment be-

tween macroanatomical folding structure and functional boundaries in the neocortex (Arslan

et al., 2018) and the cerebellum (King et al., 2019). An inspection of the differences between455

functional and anatomical parcellations (Fig. 4a) suggest an explanation of why this may

be the case. Cortical motor areas, for example, are subdivided in all anatomical parcella-

tions along the central sulcus, which separates the primary motor cortex (M1) from primary

somatosensory cortex (S1). In this case, the macro-anatomical folding roughly aligns with

the cyto-architectonic boundaries between the two regions (Brodmann, 1909, Amunts and460

Zilles, 2015, Fischl et al., 2008). In contrast, functional parcellations typically separate the

motor regions along a ventral-dorsal axis, that is, into foot, hand and mouth regions. Within

each body zone, these parcellations leave M1, S1, and premotor regions in the same parcel,

likely reflecting the high functional correlations between regions responsible for the control

of a body part. Similar observations can be made in the visual system - with functional465

parcellations separating areas associated with foveal and peripheral vision, rather than sub-

dividing known cytoarchitectonic regions (V1, V2, V3). This anti-correlation of functional

and anatomical boundaries partly explains why the Desikan atlas showed a significantly
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negative DCBC.

It is therefore also unsurprising that multi-modal parcellations that combine functional470

and anatomical criteria did not outperform the pure resting-state parcellations. For example,

Glasser et al. (2016) used resting-state connectivity, intra-cortical myelin signal, and cortical

folding, thereby improving alignment with cytoarchitectonically defined areas. The inclusion

of anatomical information likely also led to the division of functionally correlated brain

regions. This does not imply that cytoarchitectonic parcellations of the neocortex are of475

lesser value. Instead, our finding simply illustrates that the goal of isolating anatomically

consistently organised regions is unrelated to, and in some cases conflicts with, the goal of

defining functionally uniform brain regions.

Therefore, the evaluation results in our study would have looked different had we used

anatomical data rather than task-evoked activity profiles as an evaluation data set. It is480

worth stressing, however, that the DCBC as a method to control for the influence of spatial

smoothness can be used with any suitable data set. For instance, anatomical data, such as

myelin measures (Tozer et al., 2005) or anatomical connectivity fingerprints derived from

diffusion data (Behrens et al., 2003, Johansen-Berg et al., 2004) can be used to evaluate how

well parcellations isolate anatomically homogeneous regions. Functional resting-state data485

would provide another basis for evaluation (Arslan et al., 2018, Eickhoff et al., 2018). In

this case, the functional task profiles used here would simply be replaced by the resting-state

time series. Given that these data types exhibit a smooth organisation across the brain, the

automatic bias correction and optimal integration approach generalizes to these applications.

In the current study we focused solely on task-evoked fMRI data as an evaluation target.490

This was motivated by the fact that a common goal of brain parcellations is to define regions

with a homogeneous response across a wide range of tasks and mental states. From this

perspective, unless we want to explicitly study the brain at rest, parcellations based on

resting-state fMRI data are only interesting insofar as they predict which brain regions work

together during activity (Tavor et al., 2016) - and should therefore be evaluated that way.495

A possible extension of the current work is to develop a parcellation algorithm that

explicitly optimizes the DCBC. Given the nature of the DCBC, such an algorithm would

have to be a local, rather than a global parcellation algorithm (Schaefer et al., 2018), such as
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a region-growing algorithm proposed in Gordon et al. (2016) or Salehi et al. (2020a). Such

an algorithm would very likely improve the DCBC beyond what was achieved by spectral500

clustering, which does not consider the spatial arrangement of the vertices. In the current

paper, rather than proposing a novel group parcellation, our main aim was to estimate an

“upper bound” of how well a group parcellation could perform on our data set. While

cross-validated across subjects, the parcellation is still overfit to the specific task set.

Even more substantial improvement in the quality of the parcellations can be expected505

when moving from a group to an individual parcellation. Recent results have shown that

the inter-individual differences in the exact spatial location of functional boundaries are

substantial (Salehi et al., 2020b, King et al., 2019). Of course, individual parcellations can

suffer from having too little individual data to reliably establish the parcellation. Optimal

ways of fusing group and individual-level data (Buckner et al., 2013), which also makes510

parcels comparable across subjects (Salehi et al., 2020a) clearly provides a promising future

addition to the neuroimaging toolkit. In these efforts, the DCBC can provide a bias-free

and reliable evaluation criterion that can be calculated without computationally expensive

simulation studies.

When developing, using, and evaluating brain parcellations, it is of course important to515

consider the fundamental issues in choosing this form of brain representation (Bijsterbosch

et al., 2020). It remains an open question to what degree segmenting the brain into discrete

regions with hard boundaries (Van Essen and Glasser, 2018) is a useful description at all,

or to what degree this functional organisation is better explained through a set of smooth

gradients (Tononi et al., 1994, Dohmatob et al., 2021, Huntenburg et al., 2018, Guell et al.,520

2018). The DCBC evaluation presented here clearly provides an important data point in this

debate. If brain functions only varied in smooth gradients across the cortical surface, the

DCBC should not be systematically above zero, at least not when evaluated on a novel set of

tasks. However, most resting-state parcellations identified boundaries that also aligned with

more rapid changes in the active functional response. Thus, as for the human cerebellum525

(King et al., 2019), this demonstrates the existence of task-invariant functional boundaries

on the cortical surface. On the other hand, not all boundaries are equally strong, and not

all boundaries are equally stable across tasks. The ability of DCBC to evaluate individual

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2021. ; https://doi.org/10.1101/2021.05.11.443151doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.11.443151
http://creativecommons.org/licenses/by-nc-nd/4.0/


boundaries, as done in King et al. (2019), therefore provides an important tool to evaluate

both functional segregation, as well as continuous functional integration (Eickhoff et al.,530

2018) in a region-specific way.

A Python-based software toolbox for the evaluation of surface-based parcellations on the

MDTB activity maps is made publicly available at (Zhi and Diedrichsen, 2021). The toolbox

is also designed to allow users to evaluate parcellations on other types of data. We hope

that the new evaluation criterion will support and facilitate researchers in understanding the

functional compartmentalization of the human brain.
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