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Abstract 20 

Identifying differentially abundant microbes is a common goal of microbiome studies. Multiple 21 

methods have been applied for this purpose, which are largely used interchangeably in the 22 

literature. Although it has been observed that these tools can produce different results, there have 23 

been very few large-scale comparisons to describe the scale and significance of these differences. 24 

In addition, it is challenging for microbiome researchers to know which differential abundance 25 

tools are appropriate for their study and how these tools compare to one another. Here, we have 26 

investigated these questions by analyzing 38 16S rRNA gene datasets with two sample groups 27 

for differential abundance testing. We tested for differences in amplicon sequence variants and 28 

operational taxonomic units (referred to as ASVs for simplicity) between these groups with 14 29 

commonly used differential abundance tools. Our findings confirmed that these tools identified 30 

drastically different numbers and sets of significant ASVs, however, for many tools the number 31 

of features identified correlated with aspects of the tested study data, such as sample size, 32 

sequencing depth, and effect size of community differences. We also found that the ASVs 33 

identified by each method were dependent on whether the abundance tables were prevalence-34 

filtered before testing. ALDEx2 and ANCOM produced the most consistent results across studies 35 

and agreed best with the intersect of results from different approaches. In contrast, several 36 

methods, such as LEfSe, limma voom, and edgeR, produced inconsistent results and in some 37 

cases were unable to control the false discovery rate. In addition to these observations, we were 38 

unable to find supporting evidence for a recent recommendation that limma voom, corncob, and 39 

DESeq2 are more reliable overall compared with other methods. Although ALDEx2 and 40 
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ANCOM are two promising conservative methods, we argue that those researchers requiring 41 

more sensitive methods should use a consensus approach based on multiple differential 42 

abundance methods to help ensure robust biological interpretations. 43 

 44 

Introduction 45 

Microbial communities are frequently characterized with DNA sequencing. Marker gene 46 

sequencing, such as 16S rRNA gene sequencing, is the most common form of microbiome 47 

profiling and enables the relative abundances of taxa to be compared across different samples. A 48 

frequent and seemingly basic question to investigate with this type of data is: which taxa 49 

significantly differ in abundance between sample groupings? Newcomers to the microbiome 50 

field may be surprised to learn that there is little consensus on how best to approach this 51 

question. Indeed, there are numerous ongoing debates regarding the best practices for differential 52 

abundance (DA) testing with microbiome data (Allaband et al., 2019; Pollock et al., 2018). 53 

One area of disagreement is whether read count tables should be rarefied (i.e., 54 

subsampled) to correct for differing read depths across samples (Weiss et al., 2017). This 55 

approach has been heavily criticized because excluding data could reduce statistical power and 56 

introduce biases. In particular, using rarefied count tables for standard tests, such as the t-test and 57 

Wilcoxon test, can result in unacceptably high false positive rates (McMurdie and Holmes, 58 

2014). Nonetheless, microbiome data is still frequently rarefied because it can simplify analyses, 59 

particularly for methods that do not control for variation in read depth across samples. For 60 

example, LEfSe (Segata et al., 2011) is a popular method for identifying differentially abundant 61 

taxa that first converts read counts to percentages. Accordingly, read count tables are often 62 

rarefied before being input into this tool so that variation in sample read depth does not bias 63 

analyses. Without addressing the variation in depth across samples by some approach, the 64 

richness can drastically differ between samples due to read depth alone. 65 

 A related question to whether data should be rarefied is whether rare taxa should be 66 

filtered out. This question arises in many high-throughput datasets, where the burden of 67 

correcting for many tests can greatly reduce statistical power. Filtering out potentially 68 

uninformative features before running statistical tests can help address this problem, although 69 

this can also have unexpected effects (Bourgon et al., 2010). Importantly, this filtering must be 70 

independent of the test statistic evaluated (referred to as Independent Filtering). For instance, 71 

hard cut-offs for the prevalence and abundance of taxa across samples, and not within one group 72 

compared with another, are commonly used to exclude rare taxa (Schloss, 2020). This data 73 

filtering could be especially important for microbiome datasets because they are often extremely 74 

sparse. Nonetheless, it remains unclear whether filtering rare taxa has much effect on DA results 75 

in practice. 76 

Another contentious area is regarding which statistical distributions are most appropriate 77 

for analyzing microbiome data. Statistical frameworks based on a range of distributions have 78 

been developed for modelling read count data. For example, DESeq2 (Love et al., 2014) and 79 

edgeR (Robinson and Oshlack, 2010) are both tools that assume normalized read counts follow a 80 
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negative binomial distribution. To identify differentially abundant taxa, a null and alternative 81 

hypothesis are compared for each taxon. The null hypothesis is that the same parameters for the 82 

negative binomial solution explain the distribution of taxa across all sample groupings. The 83 

alternative hypothesis is that different parameters are needed to account for differences between 84 

sample groupings. If the null hypothesis can be rejected for a specific taxon then it is considered 85 

differentially abundant. This idea is the foundation of distribution-based DA tests, including 86 

other methods such as corncob (Martin et al., 2020) and metagenomeSeq (Paulson et al., 2013), 87 

which model microbiome data with the beta-binomial and zero-inflated Gaussian distributions, 88 

respectively. 89 

 Compositional data analysis (CoDa) methods represent an alternative to these 90 

approaches. It has recently become more widely appreciated that sequencing data are 91 

compositional (Gloor et al., 2017) meaning that sequencing only provides information on the 92 

relative abundance of features and that each feature is dependent on the relative abundance of all 93 

other features. This characteristic means that false inferences are commonly made when standard 94 

methods, intended for absolute abundances, are used with taxa relative abundances. CoDa 95 

methods circumvent this issue by reframing the focus to ratios of taxa relative abundances 96 

(Aitchison, 1982; Morton et al., 2019). The difference between CoDa methods considered in this 97 

paper is what quantity is used as the denominator, or the reference, for the transformation. The 98 

centred log-ratio (CLR) transformation is a CoDa approach that uses the geometric mean of the 99 

relative abundance of all taxa within a sample as the reference for that sample. An extension of 100 

this approach is implemented in the tool ALDEx2 (Fernandes et al., 2014) . The additive log-101 

ratio transformation is an alternative approach where the reference is the relative abundance of a 102 

single taxon, which should be present with low variance in read counts across samples. ANCOM 103 

is one tool that implements this additive log-ratio approach (Mandal et al., 2015). 104 

 Evaluating the numerous options for analyzing microbiome data outlined above has 105 

proven difficult. This is largely because there are no gold standards to compare with DA tool 106 

results. Simulating datasets with specific taxa that are differentially abundant is a partial solution 107 

to this problem, but it is imperfect. For example, it has been noted that parametric simulations 108 

can result in circular arguments for specific tools (Hawinkel et al., 2019). It is unsurprising that 109 

distribution-based methods perform best when applied to simulated data based on that 110 

distribution. Nonetheless, simulated data with no expected differences has been valuable for 111 

evaluating the false discovery rate (FDR) of these methods. Based on this approach it has 112 

become clear that many of the methods output unacceptably high numbers of false positives 113 

(Calgaro et al., 2020; Feijen et al., 2016; Thorsen et al., 2016; Weiss et al., 2017). Similarly, 114 

based on simulated datasets with spiked taxa it has been shown that these methods can 115 

drastically vary in statistical power as well (Hawinkel et al., 2019; Thorsen et al., 2016). 116 

 Although these general observations have been well substantiated, there is less agreement 117 

regarding the performance of tools across evaluation studies. Certain observations have been 118 

reproducible, such as the higher FDR of edgeR and metagenomeSeq. Similarly, ALDEx2 has 119 

been repeatedly shown to have low power to detect differences (Calgaro et al., 2020; Hawinkel 120 
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et al., 2019). In contrast, both ANCOM and limma voom (Law et al., 2014; Ritchie et al., 2015) 121 

have been implicated as both accurately and poorly controlling the FDR, depending on the study 122 

(Calgaro et al., 2020; Hawinkel et al., 2019; Weiss et al., 2017). To further complicate 123 

comparisons, different sets of tools and dataset types have been analyzed across evaluation 124 

studies. This means that, on some occasions, the best performing method in one evaluation is 125 

missing from another. In addition, certain popular microbiome-specific methods, such as 126 

MaAsLin2 (Mallick et al., 2021), have been missing from past evaluations. Finally, many 127 

evaluations limit their analysis to a small number of datasets that do not represent the breadth of 128 

datasets found in 16S rRNA gene sequencing studies. 129 

 Given the inconsistencies across these studies it is important that additional, independent 130 

evaluations be performed to elucidate the performance of current DA methods. Accordingly, 131 

herein we have conducted additional evaluations of common DA tools across 38 two-group 16S 132 

rRNA gene datasets. We first present the concordance of the methods on these datasets to 133 

investigate how consistently the methods cluster and perform in general, with and without the 134 

removal of rare taxa. Next, based on artificially subsampling the datasets into two groups where 135 

no differences are expected, we present the observed FDR for each DA tool. Lastly, we present 136 

an evaluation of how consistent biological interpretations would be across diarrheal datasets 137 

depending on which tool was applied. Our work enables improved assessment of these DA tools 138 

and highlights which key recommendations made by previous studies hold in an independent 139 

evaluation. Furthermore, our analysis shows various characteristics of DA tools that authors can 140 

use to evaluate published literature within the field.  141 

 142 

Methods 143 

 144 

Code and data availability 145 

All code used for processing and analyzing the data is available in this GitHub repository: 146 

https://github.com/nearinj/Comparison_of_DA_microbiome_methods. The processed datasets 147 

and metadata files analyzed in this study are available on figshare: 148 

https://figshare.com/articles/dataset/16S_rRNA_Microbiome_Datasets/14531724. The 149 

accessions and/or locations of the raw data for each tested dataset are listed in Supplementary 150 

Table 1.  151 

 152 

Dataset processing 153 

Thirty-eight different datasets were included in our main analyses for assessing the 154 

characteristics of microbiome differential abundance tools. Two additional datasets were also 155 

included for a comparison of differential abundance consistency across diarrhea-related 156 

microbiome datasets. All datasets presented herein have been previously published or are 157 

publicly available (Alkanani et al., 2015; Baxter et al., 2016; Chase et al., 2016; De Tender et al., 158 

2015; Dinh et al., 2015; Douglas et al., 2018; Dranse et al., 2018; Duvallet et al., 2017; Frère et 159 

al., 2018; Gonzalez et al., 2018; Goodrich et al., 2014; Hoellein et al., 2017; Ji et al., 2015; Kesy 160 
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et al., 2019; Lamoureux et al., 2017; Lozupone et al., 2013; McCormick et al., 2016; Mejía-León 161 

et al., 2014; Nearing et al., 2019; Noguera-Julian et al., 2016; Oberbeckmann et al., 2016; 162 

Oliveira et al., 2018; Papa et al., 2012; Pop et al., 2014; Rosato et al., 2020; Ross et al., 2015; 163 

Scheperjans et al., 2015; Scher et al., 2013; Schneider et al., 2017; Schubert et al., 2014; Singh et 164 

al., 2015; Son et al., 2015; Turnbaugh et al., 2009; Vincent et al., 2013; Wu et al., 2019; Yurgel 165 

et al., 2017; Zeller et al., 2014; Zhu et al., 2013) (Supp. Table 1). Most datasets were already 166 

available in table format with ASV or operational taxonomic unit abundances while a minority 167 

needed to be processed from raw sequences. These raw sequences were processed with QIIME 2 168 

version 2019.7 (Bolyen et al., 2018) based on the Microbiome Helper standard operating 169 

procedure (Comeau et al., 2017). Primers were removed using cutadapt (Martin, 2011) and 170 

stitched together using the QIIME 2 VSEARCH (Rognes et al., 2016) join-pairs plugin. Stitched 171 

reads were then quality filtered using the quality-filter plugin and reads were denoised using 172 

Deblur (Amir et al., 2017) to produce amplicon sequence variants (ASVs). Abundance tables of 173 

ASVs for each sample were then output into tab-delimited files. Rarefied tables were also 174 

produced for each dataset, where the rarefied read depth was taken to be the lowest read depth of 175 

any sample in the dataset over 2000 reads (with samples below this threshold discarded).  176 

 177 

Differential abundance testing 178 

We created a custom shell script (run_all_tools.sh) that ran each differential abundance tool on 179 

each dataset within this study. As input the script took a tab-delimited ASV abundance table, a 180 

rarefied version of that same table, and a metadata file that contained a column that split the 181 

samples into two groups for testing. This script also accepted a prevalence cut-off filter to 182 

remove ASVs below a minimum cut-off, which was set to 10% (i.e., ASVs found in fewer than 183 

10% of samples were removed) for the filtered data analyses we present. Note that in a minority 184 

of cases a genus abundance table was input instead, in which case all options were kept the same. 185 

When the prevalence filter option was set, the script also generated new filtered rarefied tables 186 

based on an input rarefaction depth. 187 

Following these steps, each individual differential abundance method was run on the 188 

input data using either the rarefied or non-rarefied table, depending on which is recommended 189 

for that tool. The workflow used to run each differential abundance tool (with run_all_tools.sh) is 190 

described below. The first step in each of these workflows was to read the dataset tables into R 191 

(version 3.6.3) with a custom script and then ensure that samples within the metadata and feature 192 

abundance tables were in the same order. An alpha-value of 0.05 was chosen as our significance 193 

cutoff and FDR-corrected p-values were used for methods that output p-values. 194 

 195 

ALDEx2 196 

We passed the non-rarefied feature table and the corresponding sample metadata to the aldex 197 

function from the ALDEx2 R package (Fernandes et al., 2014) which generated Monte Carlo 198 

samples of Dirichlet distribution for each sample, using a uniform prior, performed CLR 199 

transformation of each realization, and performed Wilcoxon tests on the transformed 200 
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realizations. The function then returned the expected Benjamini-Hochberg (BH) FDR-corrected 201 

P-value was then returned for each feature based on the results across Monte Carlo samples. 202 

 203 

ANCOM-II 204 

We ran the non-rarefied feature table through the R ANCOM-II (Kaul et al., 2017; Mandal et al., 205 

2015) (https://github.com/FrederickHuangLin/ANCOM) function feature_table_pre_process, 206 

which first examined the abundance table to identify outlier zeros and structural zeros (Kaul et 207 

al., 2017). Outlier zeros, identified by finding outliers in the distribution of taxon counts within 208 

each sample grouping, were ignored during differential abundance analysis and replaced with 209 

NA. Structural zeros, taxa that were absent in one grouping but present in the other, were ignored 210 

during data analysis and automatically called as differentially abundant. A pseudo count of 1 was 211 

then applied across the dataset to allow for log transformation. Using the main function ANCOM, 212 

all additive log-ratios for each taxon were then tested for significance using Wilcoxon rank-sum 213 

tests, and p-values were FDR-corrected using the BH method. ANCOM then applied a detection 214 

threshold as described in the original paper (Mandal et al., 2015), whereby a taxon was called as 215 

DA if the number of corrected p-values reaching nominal significance for that taxon was greater 216 

than 90% of the maximum possible number of significant comparisons. 217 

 218 

corncob 219 

We converted the metadata and non-rarefied feature tables into a phyloseq object, which we 220 

input to corncob’s differentialTest function (Martin et al., 2020). This function first converted the 221 

data into relative abundances and then fit each taxon abundance to a beta-binomial model, using 222 

logit link functions for both the mean and overdispersion. Because corncob models each of these 223 

simultaneously and performs both differential abundance and differential variability testing 224 

(Martin et al., 2020), we set the null overdispersion model to be the same as the non-null model 225 

so that only taxa having differential abundances were identified. Finally, the function performed 226 

significance testing, for which we chose Wald tests (with the default non-bootstrap setting), and 227 

we obtained BH FDR-corrected p-values as output. 228 

 229 

DESeq2 230 

We first passed the non-rarefied feature tables to the DESeq function (Love et al., 2014) with 231 

default settings, except that instead of the default relative log expression (also known as the 232 

median-of-ratios method) the estimation of size factors was set to use “poscounts”, which 233 

calculates a modified relative log expression that helps account for features missing in at least 234 

one sample. The function performed three steps: (1) estimation of size factors, which are used to 235 

normalize library sizes in a model-based fashion; (2) estimation of dispersions from the negative 236 

binomial  likelihood for each feature, and subsequent shrinkage of each dispersion estimate 237 

towards the parametric (default) trendline by empirical Bayes; (3) fitting each feature to the 238 

specified class groupings with negative binomial generalized linear models and performing 239 
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hypothesis testing, for which we chose the default Wald test. Finally, using the results function, 240 

we obtained the resulting BH FDR-corrected p-values. 241 

 242 

edgeR 243 

Using the phyloseq_to_edgeR function (https://joey711.github.io/phyloseq-244 

extensions/edgeR.html), we added a pseudocount of 1 to the non-rarefied feature table and used 245 

the function calcNormFactors from the edgeR R package (Robinson and Oshlack, 2010) to 246 

compute relative log expression normalization factors. Negative binomial dispersion parameters 247 

were then estimated using the functions estimateCommonDisp followed by estimateTagwiseDisp 248 

to shrink feature-wise dispersion estimates through an empirical Bayes approach. We then used 249 

the exactTest for negative binomial data (Robinson and Oshlack, 2010) to identify features that 250 

differ between the specified groups. The resulting p-values were then corrected for multiple 251 

testing with the BH method with the function topTags. 252 

 253 

LEfSe 254 

The rarefied feature table was first converted into LEfSe format using the LEfSe script 255 

format_input.py (Segata et al., 2011). We then ran LEfSe on the formatted table using the 256 

run_lefse.py script with default settings and no subclass specifications. Briefly, this command 257 

first normalized the data using total sum scaling, which divides each feature count by the total 258 

library size. Then it performed a Kruskal-Wallis (which in our two-group case reduces to the 259 

Wilcoxon rank-sum) hypothesis test to identify potential differentially abundant features, 260 

followed by linear discriminant analysis of class labels on abundances to estimate the effect sizes 261 

for significant features. From these, only those features with scaled logarithmic linear 262 

discriminant analysis scores above the threshold score of 2.0 (default) were called as 263 

differentially abundant.   264 

 265 

limma voom 266 

We first normalized the non-rarefied feature table using the edgeR calcNormFactors function, 267 

with either the trimmed mean of M-values (TMM) or TMM with singleton pairing (TMMwsp) 268 

option. During this step (for both options), a single sample was chosen to be a reference sample 269 

using upper-quartile normalization. This step failed in some highly sparse abundance tables, in 270 

which cases, we instead chose the sample with the largest sum of square-root transformed feature 271 

abundances to be the reference sample. After normalization, we used the limma R package 272 

(Ritchie et al., 2015) function voom to convert normalized counts to log2-counts-per-million and 273 

assign precision weights to each observation based on the mean-variance trend. We then used the 274 

functions lmFit, eBayes, and topTable to fit weighted linear regression models, perform tests 275 

based on an empirical Bayes moderated t-statistic (Phipson et al., 2016) and obtain BH FDR-276 

corrected p-values.  277 

 278 

MaAsLin2 279 
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We entered either a rarefied or non-rarefied feature table into the main Maaslin2 function within 280 

the Maaslin2 R package(Mallick et al., 2021). We specified arcsine square-root transformation as 281 

in the package vignette (instead of the default log) and total sum scaling normalization. For 282 

consistency with other tools, we specified no random effects and turned off default 283 

standardization. The function fit a linear model to each feature’s transformed abundance on the 284 

specified sample grouping, tested significance using a Wald test, and output BH FDR-corrected 285 

p-values. 286 

 287 

metagenomeSeq 288 

We first entered the counts and sample information to the function newMRexperiment from the 289 

metagenomeSeq R package (Paulson et al., 2013). Next, we used cumNormStat and cumNorm to 290 

apply cumulative sum-scaling normalization, which attempts to normalize sequence counts based 291 

on the lower-quartile abundance of features. We then used fitFeatureModel to fit normalized 292 

feature counts with zero-inflated log-normal models (with pseudo-counts of 1 added prior to log2 293 

transformation) and perform empirical Bayes moderated t-tests, and MRfulltable to obtain BH 294 

FDR-corrected p-values.    295 

 296 

t-test 297 

We applied total sum scaling normalization to the rarefied feature table, and performed an 298 

unpaired Welch’s t-test for each feature to compare the specified groups. We corrected the 299 

resulting p-values for multiple testing with the BH method. 300 

 301 

Wilcoxon test 302 

Using raw feature abundances in the rarefied case, and CLR-transformed abundances (after 303 

applying a pseudocount of 1) in the non-rarefied case, we performed Wilcoxon rank-sum tests 304 

for each feature to compare the specified sample groupings. We corrected the resulting p-values 305 

with the BH method. 306 

 307 

Comparing numbers of significant hits between tools 308 

We compared the number of significant ASVs each tool identified in 38 different datasets. Each 309 

tool was run as described above using default settings with some modifications suggested by the 310 

tool authors, as noted above. A heatmap representing the number of significant hits found by 311 

each tool was constructed using the pheatmap R package (Kolde, 2012). Spearman correlations 312 

between the number of significant ASVs identified by a tool and the following dataset 313 

characteristics were computed using the cor.test function in R: sample size, Aitchison’s distance 314 

effect size as computed using a PERMANOVA test (adonis; vegan) (Dixon, 2003), sparsity, 315 

mean sample ASV richness, median sample read depth, read depth range between samples and 316 

the coefficient of variation for read depth within a dataset.  317 

 318 

Cross-tool, within-study differential abundance consistency analysis 319 
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We compared the consistency between different tools within all datasets by pooling all ASVs 320 

identified as being significant by at least one tool in the 38 different datasets. The number of 321 

methods that identified each ASV as differentially abundant were then tallied. 322 

 323 

False positive analysis 324 

To estimate the false positives a method might produce during data analysis, eight datasets were 325 

selected for analysis. These datasets were chosen based on having the largest sample sizes, while 326 

also being from diverse environment types. In each dataset, the most frequent sample group was 327 

chosen for analysis to help ensure similar composition among samples tested. Within this 328 

grouping, random labels of either case or control were assigned to samples and the various 329 

differential abundance methods were tested on them. This was repeated 10 times for each dataset 330 

and each tool tested with an additional 90 replications for all tools except for ALDEx2, 331 

ANCOM-II and corncob due to high resource requirements. After analysis was completed, the 332 

number of differentially abundant ASVs identified by each tool was assessed at an alpha value of 333 

0.05.  334 

 335 

Cross-study differential abundance consistency analysis 336 

Two additional datasets were acquired to bring the number of diarrhea-related datasets to five. 337 

The ASVs in each of these datasets were previously taxonomically classified and so we used 338 

these classifications to collapse all feature abundances to the genus level. Note that taxonomic 339 

classification was performed using several different methods, which represents another source of 340 

technical variation. We excluded unclassified and sensu stricto-labelled genus levels. We then 341 

ran all differential abundance tools on these datasets at the genus level. These comparisons were 342 

between the diarrhea and non-diarrhea sample groups. The same processing workflow was used 343 

for the supplementary obesity dataset comparison as well. 344 

 For each tool and study combination, we determined which genera were significantly 345 

different at an alpha of 0.05 (where relevant). For each tool we then tallied up the number of 346 

times each genus was significant, i.e., how many datasets each genus was significant in based on 347 

a given tool. The null expectation distributions of these counts per tool were generated by 348 

randomly sampling genera from each dataset for 100,000 replicates. The probability of sampling 349 

a genus (i.e., calling it significant) was set to be equal to the proportion of actual significant 350 

genera. For each replicate we tallied up the number of times each genus was sampled across 351 

datasets. We then compared the observed and expected distributions of the number of studies 352 

each genus was found to be significant in. Note that to simplify this analysis we ignored the 353 

directionality of the significance (e.g., whether it was higher in case or control samples). We 354 

excluded genera never found to be significant. We performed bootstrap Kolmogorov-Smirnov 355 

tests (10,000 replicates) using the ks.boot function from the Matching R package (Sekhon, 2011) 356 

to compare the expected and observed distributions for each tool. 357 

 358 

 359 
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Results 360 

 361 

Microbiome differential abundance methods produce a highly variable number of 362 

significant ASVs within the same microbiome datasets 363 

 364 

To investigate how different DA tools impact biological interpretations across microbiome 365 

datasets, we tested 14 different differential abundance testing approaches (Table 1) on 38 366 

different microbiome datasets. These datasets corresponded to a range of environments, 367 

including the human gut, plastisphere, freshwater lakes, and urban environments (Supp. Table 368 

1). The features in these datasets corresponded to both ASVs and clustered operational 369 

taxonomic units, but we refer to them all as ASVs below for simplicity.  370 

We also investigated how prevalence filtering each dataset prior to analysis impacted the 371 

observed results. We chose to either use no prevalence filtering (Fig. 1A) or a 10% prevalence 372 

filter that removed any ASVs found in fewer than 10% of samples within each dataset (Fig. 1B).  373 

We found that in both the filtered and unfiltered analyses the percentage of significant 374 

ASVs identified by each DA method varied widely across datasets, with means ranging from 375 

3.8-32.5% and 0.8-40.5%, respectively. Interestingly, we found that many tools behaved 376 

differently between datasets. Specifically, some tools identified the most features in one dataset 377 

while identifying only an intermediate number in other datasets. This was especially evident in 378 

the unfiltered datasets (Fig. 1A).  379 

To investigate possible factors driving this variation we examined how the number of 380 

ASVs identified by each tool correlated with several variables. These variables included dataset 381 

richness, variation in sequencing depth between samples, dataset sparsity, and Aitchison’s 382 

distance effect size (based on PERMANOVA tests). As expected, we found that all tools 383 

positively correlated with the effect size between test groups with rho values ranging between 384 

0.35-0.72 with unfiltered data (Fig. 2A) and 0.31-0.52 for filtered data (Fig. 2B). We also found 385 

in the filtered datasets that the number of features found by all tools significantly correlated with 386 

the median read depth, range in read depth, and sample size. There was much less consistency in 387 

these correlations across the unfiltered data. For instance, only the t-test, both Wilcoxon 388 

methods, and both limma voom methods correlated significantly with the range in read depth 389 

(Fig. 2B). We also found that edgeR was negatively correlated with mean sample richness in the 390 

unfiltered analysis.  391 

 392 

 393 

 394 

 395 

 396 

 397 

 398 

 399 
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Table 1: Differential abundance tools compared in this study 400 

Tool 
  Input Norm. Trans. Distribution Covariates 

Random 
Effects 

  

Hypothesis 
test 

  

FDR Corr. CoDa Dev. For 

ALDEx2 Counts None CLR 
Dirichlet-

multinomial Yes* No 
Wilcoxon 
rank-sum 

Yes Yes RNA-seq, 16S, 
MGS 

ANCOM-II Counts None ALR Non-parametric Yes Yes 
Wilcoxon 
rank-sum 

Yes Yes MGS 

corncob Counts None None Beta-binomial Yes No 
Wald 

(default) 
Yes No 16S, MGS 

DESeq2 Counts 

Modified RLE 
(default is 

RLE) None 
Negative 
binomial Yes No 

Wald 
(default) 

Yes No RNA-seq, 16S, 
MGS 

edgeR Counts 

RLE 
(default is 

TMM) None 
Negative 
binomial Yes* No Exact 

Yes No RNA-seq 

LEFse 

Rarefied 
relative 

abundance TSS None Non-parametric 
Subclass factor 

only No 
Kruskal-

Wallis 

No No 16S, MGS 

MaAsLin2 Counts TSS 

AST 
(default is 

log) 
Normal 
(default) Yes Yes Wald 

Yes No MGS 

MaAsLin2 (rare) 
Rarefied 
counts TSS 

AST 
(default is 

log) 
Normal 
(default) Yes Yes Wald 

Yes No MGS 

metagenomeSeq Counts CSS Log 
Zero-inflated 
log-Normal Yes No Moderated t 

Yes No 16S. MGS 

limma voom 
(TMM) Counts TMM 

Log; 
Precision 
weighting 

Normal 
(default) Yes Yes Moderated t 

Yes No RNA-seq 

limma voom 
(TMMwsp) Counts TMMwsp 

Log; 
Precision 
weighting 

Normal 
(default) Yes Yes Moderated t 

Yes No RNA-seq 

t-test (rare) 
Rarefied 
Counts None None Normal No No Welch’s t-test 

Yes No N/A 

Wilcoxon (CLR) 
CLR 

abundances None CLR Non-parametric No No 
Wilcoxon 
rank-sum 

Yes Yes N/A 

Wilcoxon (rare) 
Rarefied 
counts None None Non-parametric No No 

Wilcoxon 
rank-sum 

Yes No N/A 

* The tool supports additional covariates if they are provided. ANCOM-II automatically 401 

performs ANOVA in this case, ALDEx2 requires that users select the test, and edgeR requires 402 

use of a different function (glmFit or glmQLFit instead of exactTest).  403 

Abbreviations: ALR, additive log-ratio; AST, arcsine square-root transformation; CLR, centered 404 

log-ratio; CoDa, compositional data analysis; CSS, cumulative sum scaling; FDR Corr., false-405 

discovery rate correction; MGS, metagenomic sequencing; RLE, relative log expression; TMM, 406 

trimmed mean of M-values; Trans., transformation; TSS, total sum scaling 407 

 408 

 409 
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Figure 1: Variation in the proportion of significant features depending on the differential 411 

abundance method and dataset. Heatmaps indicate the numbers of significant amplicon 412 

sequence variants (ASVs) identified in each dataset by the corresponding tool based on (A) 413 

unfiltered data and (B) 10% prevalence-filtered data. Cells are coloured based on the 414 

standardized (scaled and mean centred) percentage of significant ASVs for each dataset. 415 

Additional coloured cells in the left-most six columns indicate the dataset characteristics we 416 

hypothesized could be driving variation in these results. Darker colours indicate higher values in 417 

these six columns. Datasets were hierarchically clustered based on Euclidean distances using the 418 

complete method. 419 

 420 

Despite the variability of tool performance between datasets, we did find that several 421 

tools tended to identify more significant hits (Supp. Fig 1C-D). In the unfiltered datasets, we 422 

found that limma voom (TMMwsp; mean: 40.5% / TMM; mean: 29.7%), Wilcoxon (CLR; 423 

mean: 30.7%), LEfSe (mean: 12.6%), and edgeR (mean: 12.4%) tended to find the largest 424 

number of significant ASVs compared with other methods. Interestingly, in a few datasets, such 425 

as the Human-ASD and Human-OB (2) datasets, edgeR found a significantly higher proportion 426 

of significant ASVs than any other tool. In addition, we found that limma voom (TMMwsp) 427 

found the majority of ASVs to be significant (73.5%) in the Human-HIV (3) dataset while the 428 

other tools found 0-11% ASVs to be significant (Fig. 1A). Similarly, we found that both limma 429 

voom methods identified over 99% of ASVs to be significant in several cases such as the Built-430 

Office and Freshwater-Arctic datasets. We found similar, although not as extreme, trends with 431 

LEfSe where in some datasets, such as the Human-T1D (1) dataset, the tool found a much higher 432 

percentage of significant hits (3.5%) compared with all other tools (0-0.4%). This observation is 433 

most likely a result of LEfSe filtering significant features by effect size rather than using FDR 434 

correction to reduce the number of false positives. We found that two of the three 435 

compositionally aware methods we tested identified fewer significant ASVs than the other tools 436 

tested. Specifically, ALDEx2 (mean: 1.4%) and ANCOM-II (mean: 0.8%) identified the fewest 437 

significant ASVs. We found the conservative behavior of these tools to be consistent across all 438 

38 datasets we tested.  439 

 Overall, the results based on the filtered tables were similar, although there was a smaller 440 

range in the number of significant features identified by each tool. All tools except for ALDEx2 441 

found a lower number of total significant features when compared with the unfiltered dataset 442 

(Supp. Fig 1C-D). As with the unfiltered data, ANCOM-II was the most stringent method 443 

(mean: 3.8%), while edgeR (mean: 32.5%), LEfSe (mean: 27.6%), limma voom (TMMwsp; 444 

mean: 27.3% / TMM; mean: 23.5%), and Wilcoxon (CLR; mean: 25.4%) tended to output the 445 

highest numbers of significant ASVs (Fig. 1B). 446 

 Finally, we examined the mean relative abundance of the features identified by each tool 447 

to determine whether tools may be biased toward the identification of highly abundant features. 448 

We found that both ALDEx2 (median: 0.013%), ANCOM-II (median: 0.024%) and to a lesser 449 

degree DESeq2 (median: 0.006%) tended to find significant features that were higher in relative 450 
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abundance in the unfiltered datasets. A similar trend for ALDEx2 (median: 0.011%) and 451 

ANCOM-II (median: 0.029%) was also found in the filtered datasets (Supp. Fig 1A-B).  452 

 453 
Figure 2: Dataset characteristics associated with percentage of significant amplicon 454 

sequence variants. The correlation coefficients (Spearman’s rho) are displayed by size and 455 

color. These correspond to the dataset characteristics correlated with the percentage of 456 

significant amplicon sequence variants identified by that tool per dataset. Only significant 457 

correlations (p < 0.05) are displayed. 458 

 459 

High variability of overlapping significant ASVs 460 

We next investigated the overlap in significant ASVs across tools within each dataset. Based on 461 

the unfiltered data, we found that both limma voom methods identified similar sets of significant 462 

ASVs that were different from those of most other tools (Fig. 3A). However, we also found that 463 

many of the ASVs identified by the limma voom methods were also identified as significant 464 

based on the Wilcoxon (CLR) approach, despite these being highly methodologically distinct 465 

tools. Furthermore, the two Wilcoxon test approaches had different consistency profiles despite 466 

using the same hypothesis test. In contrast, we found that both MaAsLin2 approaches had similar 467 

consistency profiles, although the non-rarefied method found slightly lower-ranked features. We 468 

also found that the most conservative tools, ALDEx2 and ANCOM-II, primarily identified 469 

features that were also identified by almost all other methods. In contrast, edgeR and LEfSe, two 470 
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tools that often identified the most significant ASVs, output the highest percentage of ASVs that 471 

were not identified by any other tool: 12.1% and 11.1%, respectively. Corncob, metagenomeSeq, 472 

and DESeq2 identified ASVs at more intermediate consistency profiles. 473 

 The overlap in significant ASVs based on the prevalence-filtered data was similar overall 474 

to the unfiltered data results (Fig. 3B). One important exception was that the limma voom 475 

approaches identified a much higher proportion of ASVs that were also identified by most other 476 

tools, compared with the unfiltered data. Nonetheless, similar to the unfiltered data results, the 477 

Wilcoxon (CLR) significant ASVs displayed a bimodal distribution and a strong overlap with 478 

limma voom methods. We also found that overall, the proportion of ASVs consistently identified 479 

as significant by more than 12 tools was much higher in the filtered data (mean: 38.5; SD: 15.8) 480 

compared with the unfiltered data (mean: 17.3; SD: 22.1). In contrast with the unfiltered results, 481 

corncob, metagenomeSeq, and DESeq2 had lower proportions of ASVs at intermediate 482 

consistency ranks. However, ALDEx2 and ANCOM-II once again produced significant ASVs 483 

that largely overlapped with other tools. 484 

The above analyses summarized the variation in tool performance across datasets, but it 485 

is difficult to discern which tools performed most similarly from these results alone. To identify 486 

overall similarly performing tools we conducted principal coordinates analysis based on the 487 

Jaccard distance between significant sets of ASVs (Fig. 3C, 3D). One clear trend for both 488 

unfiltered and filtered data is that edgeR and LEfSe cluster together and are separated from other 489 

methods on the first principal coordinate. Interestingly, corncob, which is a methodologically 490 

distinct approach, also clusters relatively close to these two methods on the first PC. The major 491 

outliers on the second principal coordinate differ depending on whether the data was prevalence-492 

filtered. For the unfiltered data, the main outliers are the limma voom methods, followed by 493 

Wilcoxon (CLR; Fig. 3C). In contrast, ANCOM-II is the sole major outlier on the second 494 

principal component based on filtered data (Fig. 3D). These visualizations highlight the major 495 

tool clusters based on the resulting sets of significant ASVs. However, the percentage of 496 

variation explained by the top two components is relatively low in each case, which means that 497 

substantial information regarding potential tool clustering is missing from these panels (Supp. 498 

Fig. 2 and Supp. Fig. 3). For instance, ANCOM-II and corncob are major outliers on the third 499 

and fourth principal coordinates, respectively, of the unfiltered data analysis, which highlights 500 

the uniqueness of these methods.  501 
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 502 
Figure 3: Overlap of significant features across tools and tool clustering. (A and B) The 503 

number of tools that called each feature significant, stratified by features called by each 504 

individual tool for the (A) unfiltered and (B) 10% prevalence-filtered data. The features 505 

correspond to the amplicon sequence variants (and operational taxonomic units) from all 38 506 

tested datasets. Results are shown as a percentage of all ASVs identified by each tool. The total 507 

number of significant features identified by each tool is indicated by the bar colors. (C and D) 508 

Plots are displayed for the first two principal coordinates (PCs) for both (C) non-prevalence-509 

filtered and (D) 10% prevalence-filtered data. These plots are based on the mean inter-tool 510 

Jaccard distance across the 38 main datasets that we analyzed, computed by averaging over the 511 

inter-tool distance matrices for all individual datasets in order to weight each dataset equally. 512 

 513 
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False discovery rate of microbiome differential abundance tools depends on the dataset  514 

We next investigated the FDR of each DA tool across eight datasets. For each dataset we 515 

selected the most frequently sampled group and randomly reassigned them as case or control 516 

samples. Each DA tool was then run on those samples and results were compared. This was 517 

repeated a total of 10 times for each filtered dataset and 100 times for each unfiltered dataset 518 

(except for corncob, ANCOM-II and ALDEx2). We used a higher number of replicates for the 519 

unfiltered datasets because they were less stable across replicates. The percentage of significant 520 

ASVs after BH multiple-test correction was relatively low for most tested tools on the filtered 521 

data (Fig. 4B). Two outliers were edgeR (mean: 10.3%; SD: 9.0%) and LEfSe (mean: 4.4%; SD: 522 

1.2%), which consistently identified more significant hits compared with other tools (range of 523 

other tool means: 0% - 2.2%). Both limma voom methods output highly variable percentages of 524 

significant ASVs, especially based on the unfiltered data (Fig. 4A). In particular, in 5/8 of the 525 

unfiltered datasets, the limma voom methods identified more than 5% of ASVs as significant on 526 

average. Interestingly, while these two methods exhibited similar performance overall, the 527 

performance within the unfiltered Freshwater-Treatment dataset was highly different between the 528 

methods with the TMMwsp method identifying 0.001% and the TMM method identifying 9.0%. 529 

Only ALDEx2 and the t-test (rare) approach consistently identified no ASVs as significantly 530 

different in this analysis.  531 

 Overall, we found that the raw numbers of significant ASVs were lower in the filtered 532 

dataset than in the unfiltered data (as expected due to many ASVs being filtered out), and that 533 

most tools identified only a small percentage of significant ASVs, regardless of filtering 534 

procedure. The exceptions were the two limma voom methods, which had high FDRs with 535 

unfiltered data, and edgeR and LEfSe, which had high FDRs on the filtered data. Although these 536 

tools stand out on average, we also observed that in several replicates on the unfiltered datasets, 537 

the Wilcoxon (CLR) approach identified almost all features as statistically significant (Supp. 538 

Fig. 4). This was also true for both limma voom methods, which highlights that a minority of 539 

replicates are driving up the average FDR of these methods. Such extreme values were not 540 

observed for the filtered data (Supp. Fig 5).  541 

Investigation into these outlier replicates for the Wilcoxon (CLR) approach revealed that 542 

the mean differences in read depth between the two tested groups were consistently higher in 543 

replicates in which 30% or more of ASVs were significant. Interestingly, this pattern was absent 544 

when examining replicates for the limma voom methods (Supp. Fig 6). 545 
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 546 
Figure 4: Variation in false discovery rate across the tested differential abundance tools in 547 

the context of simple simulations. Heatmap of the percentage and number of significant 548 

amplicon sequence variants (ASVs) identified by each tool in eight simulation datasets based on 549 

applying (A) no prevalence filter and (B) a 10% prevalence filter. Cell colours indicate the 550 

percentage and the number of significant ASVs is written in each cell. Mean numbers higher 551 

than one were rounded to the nearest integer for visualization. Significant ASVs were identified 552 

after applying the Benjamini-Hochberg (BH) false discovery rate procedure and then using a cut-553 

off of 0.05.  554 

 555 

 556 

Tools vary in how consistently they identify the same significant genera within diarrhea 557 

case-control datasets  558 

Separate from the above analysis comparing consistency between tools on the same dataset, we 559 

next investigated whether certain tools provide more consistent signals across datasets of the 560 

same disease. This analysis focused on the genus-level across tools to help limit inter-study 561 

variation. We specifically focused on diarrhea as a phenotype, which has been shown to exhibit a 562 

strong effect on the microbiome and to be relatively reproducible across studies (Duvallet et al., 563 

2017). 564 

We acquired five datasets for this analysis representing the microbiome of individuals 565 

with diarrhea compared with individuals without diarrhea (see Methods). We ran all DA tools on 566 

each individual filtered dataset. Similar to our ASV-level analyses, the tools substantially varied 567 

in terms of the number of significant genera identified. For instance, ALDEx2 identified a mean 568 

of 17.6 genera as significant in each dataset (SD: 17.4), while edgeR identified a mean of 46.0 569 

significant genera (SD: 12.9). Tools that identify more genera as significant in general are 570 

accordingly more likely to identify genera as consistently significant compared with tools with 571 

fewer significant hits. Accordingly, inter-tool comparisons of the number of times each genus 572 

was identified as significant would not be informative. 573 

Instead, we analyzed the observed distribution of the number of studies that each genus 574 

was identified as significant in compared with the expected distribution given random data. This 575 
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approach enabled us to compare the tools based on how much more consistently each tool 576 

performed relative to its own random expectation. For instance, on average edgeR identified 577 

significant genera more consistently across studies compared with ALDEx2 (mean numbers of 578 

datasets that genera were found in across studies were 1.67 and 1.54 for edgeR and ALDEx2, 579 

respectively). However, this observation was simply driven by the increased number of 580 

significant genera identified by edgeR. Indeed, when compared with the random expectation, 581 

ALDEx2 displayed a 1.35-fold increase (p < 0.0001) of consistency in calling significant genera 582 

in the observed data. In contrast, edgeR produced results that were only 1.10-fold more 583 

consistent compared with the random expectation (p = 0.02). 584 

 ALDEx2 and edgeR represent the extremes of how consistently tools identify the same 585 

genera as significant across studies, but there is a large range (Fig. 5). Notably, all tools were 586 

significantly more consistent than the random expectation across these datasets (p < 0.05) (Table 587 

2). In addition to ALDEx2, the other top performing approaches based on this evaluation 588 

included both MaAsLin2 workflows, limma voom (TMM), and ANCOM-II. 589 

We conducted a similar investigation across five obesity 16S datasets, which was more 590 

challenging to interpret due to the lower consistency in general (Supp. Table 2). Specifically, 591 

most significant genera were called in only a single study and only MaAslin2 (both with non-592 

rarefied and rarefied data) and the t-test (rare) approaches performed significantly better than 593 

expected by chance (p < 0.05). The MaAsLin2 (rare) approach produced by far the most 594 

consistent results based on these datasets (fold difference: 1.23; p = 0.006). 595 
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 596 
 597 

Figure 5: Observed consistency of significant genera across diarrhea datasets is higher than 598 

the random expectation overall. These barplots illustrate the distributions of the number of 599 

studies for which each genus was identified as significant (excluding genera never found to be 600 

significant). The random expectation distribution is based on replicates of randomly selecting 601 

genera as significant and then computing the consistency across studies. 602 

 603 

 604 

 605 

 606 

 607 

 608 
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Table 2: Results of Kolmogorov-Smirnov tests comparing observed and expected 609 

consistency in differentially abundant genera across five diarrhea datasets 610 

 611 

Tool 
  

No. sig. 
genera 

Max 
overlap 

Mean 
exp. 

Mean 
obs. 

Fold 
diff. 

D 
  

p 
  

ALDEx2 57 3 1.14 1.544 1.354 0.304 < 1e-4 

MaAsLin2 (rare) 74 3 1.204 1.595 1.325 0.309 < 1e-4 

limma voom (TMM) 76 4 1.223 1.618 1.323 0.267 < 1e-4 

ANCOM-II 15 3 1.033 1.333 1.29 0.234 0.0009 

MaAsLin2 79 3 1.211 1.557 1.286 0.271 < 1e-4 

Wilcoxon (rare) 88 4 1.27 1.625 1.28 0.244 < 1e-4 

metagenomeSeq 66 3 1.164 1.485 1.276 0.239 < 1e-4 

limma voom (TMMwsp) 85 4 1.238 1.565 1.264 0.181 < 1e-4 

Wilcoxon (CLR) 82 3 1.225 1.549 1.264 0.218 < 1e-4 

t-test (rare) 62 3 1.145 1.403 1.225 0.201 0.0001 

corncob 87 5 1.276 1.552 1.216 0.136 0.0030 

DESeq2 82 4 1.245 1.512 1.214 0.17 0.0001 

LEfSe 117 5 1.402 1.615 1.152 0.095 0.0300 

edgeR 138 5 1.511 1.667 1.103 0.096 0.0210 
 612 

Column descriptions: 613 
No. sig. genera: Number of genera significant in at least one dataset 614 
Max overlap: Max number of datasets where a genus was called significant by this tool 615 
Mean exp.: Mean number of datasets that each genera is expected to be significant in (of the genera that are 616 
significant at least once) 617 
Mean obs.: Mean number of datasets that each genera was observed to be significant in (of the genera that are 618 
significant at least once) 619 
Fold diff.: Fold difference of mean observed over mean expected number of times significant genera are found 620 
across multiple datasets 621 
D: Kolmogorov-Smirnov test statistic 622 

 623 

 624 

 625 

 626 

 627 

 628 

 629 

 630 

 631 
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Discussion 632 

Herein we have compared the performance of commonly used DA tools, primarily on actual 16S 633 

datasets. While it might be argued that differences in tool outputs are expected given that they 634 

test different hypotheses, we believe this perspective ignores how these tools are used in practice. 635 

In particular, these tools are frequently used interchangeably in the microbiome literature. 636 

Accordingly, an improved understanding of the variation in DA method performance is crucial to 637 

properly interpret microbiome studies. We have illustrated here that these tools can produce 638 

substantially different results, which highlights that many biological interpretations based on 639 

microbiome data analysis are likely not robust to DA tool choice. Our findings should serve as a 640 

cautionary tale for researchers conducting their own microbiome data analysis and reinforce the 641 

need to honestly report the findings of a representative set of different analysis options to ensure 642 

robust results are reported. Despite the high variation across DA tool results, we were able to 643 

characterize several consistent patterns produced by various tools that researchers should keep in 644 

mind when assessing both their own results and results from published work. 645 

Two major groups of DA tools could be distinguished by how many significant ASVs 646 

they tended to identify. We found that limma voom, edgeR, Wilcoxon (CLR), and LEfSe output 647 

a high number of significant ASVs on average. In contrast, ALDEx2 and ANCOM-II tended to 648 

identify only a relatively small number of ASVs as significant. We hypothesize that these latter 649 

tools are more conservative and have higher precision, but with a concomitant probable loss in 650 

sensitivity. This hypothesis is related to our observation that significant ASVs identified by these 651 

two tools tended to also be identified by almost all other differential abundance methods, which 652 

we interpret to be ASVs that are more likely to be true positives. 653 

 Given that ASVs commonly identified as significant are likely more reliable, it is 654 

noteworthy that significant ASVs in the unfiltered data tended to be called by fewer tools. This 655 

was particularly true for both limma voom approaches and the Wilcoxon (CLR) approach. 656 

Although it is possible that many of these significant ASVs are incorrectly missed by other tools, 657 

it is more likely that these tools are simply performing especially poorly on unfiltered data due to 658 

several reasons, such as data sparsity. 659 

This issue with the limma voom approaches was also highlighted by high false positive 660 

rates on several unfiltered randomized datasets, which agrees with a past FDR assessment of this 661 

approach (Hawinkel et al., 2019). It is also important to acknowledge that our randomized 662 

approach for estimating FDR is not a perfect representation of real data; that is, real sample 663 

groupings will likely contain some systematic differences in microbial abundances—although 664 

the effect size may be very small—whereas our randomized datasets should have none. 665 

Accordingly, identifying only a few significant ASVs under this approach is not necessarily 666 

proof that a tool has a low FDR in practice. However, tools that identified many significant 667 

ASVs in the absence of distinguishing signals likely also have high FDR on real data.  668 

Two additional particularly problematic tools based on this analysis were edgeR and 669 

LEfSe. The edgeR method has been previously found to exhibit a high FDR on several occasions 670 

(Hawinkel et al., 2019; Thorsen et al., 2016) Although metagenomeSeq also has been flagged as 671 
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such (Thorsen et al., 2016), that was not the case in our analysis. This agrees with a recent report 672 

that metagenomeSeq (using the zero-inflated log-normal approach, as we did) appropriately 673 

controlled the FDR, but exhibited low power (Lin and Peddada, 2020). There have been mixed 674 

results previously regarding whether ANCOM appropriately controls the FDR (Hawinkel et al., 675 

2019; Weiss et al., 2017), but the results from our limited analysis suggest that this method is 676 

conservative and controls the FDR while potentially missing true positives. 677 

 Related to this point, we found that ANCOM-II performed better than average at 678 

identifying the same genera as significantly DA across five diarrhea-related datasets despite only 679 

identifying a mean of four genera as significant per dataset. Nonetheless, the ANCOM-II results 680 

were less consistent than ALDEx2, both MaAsLin2 workflows, and limma voom (TMM). The 681 

tools that produced the least consistent results across datasets (relative to the random 682 

expectation) included the t-test (rare) approach, LEfSe, and edgeR. The random expectation in 683 

this case was quite simplistic; it was generated based on the assumption that all genera were 684 

equally likely to be significant by chance. This assumption must be invalid to some degree 685 

simply because some genera are more prevalent than others across samples. Accordingly, it is 686 

surprising that the tools produced only marginally more consistent results than expected.  687 

Although this cross-data consistency analysis was informative, it was interesting to note 688 

that not all environments and datasets are appropriate for this comparison. Specifically, we found 689 

that the consistency of significant genera across five datasets comparing obese and control 690 

individuals was no higher than expected by chance for most tools. This observation does not 691 

necessarily reflect that there are few consistent genera that differ between obese and non-obese 692 

individuals; it could instead simply reflect technical and/or biological factors that differ between 693 

the particular datasets we analyzed (Pollock et al., 2018). Despite these complicating factors, it is 694 

noteworthy that the MaAsLin2 workflows produced more consistent results than expected based 695 

on these datasets. 696 

 We believe the above observations regarding DA tools are valuable, but many readers are 697 

likely primarily interested in hearing specific recommendations. Indeed, the need for 698 

standardized practices in microbiome analysis have recently become better appreciated(Hill, 699 

2020). One goal of our work was to validate the recommendations of another recent DA method 700 

evaluation paper, which found that limma voom, corncob, and DESeq2 performed best overall 701 

(Calgaro et al., 2020). Based on our results we do not recommend these tools as the sole methods 702 

used for data analysis, and instead would suggest using more conservative methods such as 703 

ALDEx2 and ANCOM-II. Although these methods have lower statistical power (Calgaro et al., 704 

2020; Hawinkel et al., 2019), we believe this an acceptable trade-off given the higher cost of 705 

identifying false positives as differentially abundant. However, MaAsLin2 (particularly with 706 

rarefied data) could also be a reasonable choice for users looking for increased statistical power 707 

at the potential cost of more false positives. We can clearly recommend that users avoid using 708 

edgeR (a tool primarily intended for RNA-seq data) as well as LEfSe for conducting DA testing 709 

with 16S data. Users should also be aware that limma voom and the Wilcoxon (CLR) approaches 710 
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may perform especially poorly on unfiltered data. This is especially true for the Wilcoxon (CLR) 711 

approach when read depths greatly differ between groups of interest. 712 

 More generally, we recommend that users employ several methods and focus on 713 

significant features identified by most tools, while keeping in mind the characteristics of the 714 

tools presented within this manuscript. For example, authors may want to present identified 715 

taxonomic markers in categories based on the tool characteristics presented within this paper or 716 

the number of tools that agree upon its identification. Importantly, applying multiple DA tools to 717 

the same dataset should be reported explicitly. Clearly this approach would make results more 718 

difficult to biologically interpret, but it would provide a clearer perspective on which 719 

differentially abundant features are robust to reasonable changes in the analysis. 720 

A common counterargument to using consensus approaches with DA tools is that there is 721 

no assurance that the intersection of the tool outputs is more reliable; it is possible that the tools 722 

are simply picking up the same noise as significant. Although we think this is unlikely, in any 723 

case running multiple DA tools is still important to give context to reporting significant features. 724 

For example, researchers might be using a tool that produces highly non-overlapping sets of 725 

significant features compared with other DA approaches. Even if the researchers are confident in 726 

their approach, these discrepancies should be made clear when the results are summarized. This 727 

is crucial for providing honest insight into how robust specific findings are expected to be across 728 

independent studies, which often use different DA approaches. 729 

 How and whether to conduct independent filtering of data prior to conducting DA tests 730 

are other important open questions regarding microbiome data analysis (Schloss, 2020). 731 

Although statistical arguments regarding the validity of independent filtering are beyond the 732 

scope of this work, intuitively it is reasonable to exclude features found in only a small number 733 

of samples (regardless of which groups those samples are in). The basic reason for this is that 734 

otherwise the burden of multiple-test correction becomes so great as to nearly prohibit 735 

identifying any differentially abundant features. Despite this drawback, many tools identified 736 

large numbers of significant ASVs in the unfiltered data. However, these significant ASVs 737 

tended to be more tool-specific in the unfiltered data and there was much more variation in the 738 

percentage of significant ASVs across tools. Accordingly, we would suggest performing 739 

prevalence filtering (e.g., at 10%) of features prior to DA testing, although we acknowledge that 740 

more work is needed to estimate an optimal cut-off rather than just arbitrarily selecting one 741 

(McMurdie and Holmes, 2014). 742 

 Another common question is whether microbiome data should be rarefied prior to DA 743 

testing. It is possible that the question of whether to rarefy data has received disproportionate 744 

attention in the microbiome field: there are numerous other factors affecting an analysis pipeline 745 

that likely affect results more. Indeed, tests based on rarefied data in our analyses did not 746 

perform substantially worse than other methods on average. More specifically, the most 747 

consistent inter-tool methods, ANCOM-II and ALDEx2, are based on non-rarefied data, but 748 

MaAsLin2 based on rarefied data produced the most consistent results across datasets of the 749 

same phenotype. Accordingly, we cannot definitively conclude that rarefying data prior to DA 750 
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testing is always inadvisable. It should be noted that we are referring only to rarefying in the 751 

context of DA testing: whether rarefying is advisable for other analyses, such as prior to 752 

computing diversity metrics, is beyond the scope of this work (McMurdie and Holmes, 2014; 753 

Weiss et al., 2017). 754 

In conclusion, the high variation in the output of DA tools across numerous 16S rRNA 755 

gene sequencing datasets highlights an alarming reproducibility crisis facing microbiome 756 

researchers. Unfortunately, this high variation across tools implies that biological interpretations 757 

will often drastically differ depending on which DA tool is used. One incomplete solution to this 758 

problem would be to normalize the practice of reporting results based on a range of DA tools, 759 

which would help ensure that any key conclusions were robust to the researchers’ analysis 760 

choices. 761 
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