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A B S T R A C T 
 
Large agricultural field trials may display irregular spatial trends that cannot be fully captured 
by a purely randomization-based analysis. For this reason, paralleling the development of 
analysis-of-variance procedures for randomized field trials, there is a long history of spatial 
modelling for field trials, starting with the early work of Papadakis on nearest neighbour 
analysis, which can be cast in terms of first or second differences among neighbouring plot 
values. This kind of spatial modelling is amenable to a natural extension using P-splines, as 
has been demonstrated in recent publications in the field. Here, we consider the P-spline 
framework, focussing on model options that are easy to implement in linear mixed model 
packages. Two examples serve to illustrate and evaluate the methods. A key conclusion is that 
first differences are rather competitive with second differences. A further key observation is 
that second differences require special attention regarding the representation of the null space 
of the smooth terms for spatial interaction, and that an unstructured variance-covariance 
structure is required to ensure invariance to translation and rotation of eigenvectors associated 
with that null space. We develop a strategy that permits fitting this model with ease, but the 
approach is more demanding than that needed for fitting models using first differences. 
Hence, even though in other areas second differences are very commonly used in the 
application of P-splines, our main conclusion is that with field trials first differences have 
advantages for routine use. 
 
Keywords: Kronecker product; Tensor product; Penalized regression; Intrinsic autoregression; 
Null space; Agricultural Field Trial. 
 
 
1. Introduction 
 
Designed field trials play a central role in plant breeding and variety testing for most 
agricultural crops species. The experimental units of such trials (plots) are usually arranged on 
a rectangular grid and typically show spatial covariance among adjacent plots. There is an 
ample literature on analysis of field trials using spatial models. One of the earliest papers is 
Papadakis (1937), who introduced nearest neighbour (NN) methods, an idea taken up later in 
the seminal papers by Bartlett (1978) and Wilkinson et al. (1983) and subsequently developed 
further by other authors to cover a wide spectrum of spatial variance-covariance models in 
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common usage today. Spatial models allow making adjustments for irregular spatial 
heterogeneity and have been shown to improve efficiency in cases where a purely 
randomization-based mixed model cannot adequately capture the major heterogeneity across 
the trial area. 
 
One of the earliest papers applying P-splines in field trials, though only in one dimension, is 
Currie and Durbán (2002). Recently, the use of P-splines (Eilers and Marx, 1996) has been 
suggested for two-dimensional spatial analysis of field trials (Rodríguez-Álvarez et al., 2018). 
In this framework, spatial covariance translates into smooth spatial trend. P-splines have a 
close connection with linear variance and random walk models (Boer et al., 2020). They use 
B-spline bases for regression on covariates and provide a very flexible framework for 
smoothing of trends in multiple dimensions, and some of the most prominent applications for 
this type of modelling are spatial and spatio-temporal smoothing for large environmental 
datasets (Lee, 2010; Lee and Durbán, 2011; Lee et al., 2013). The simplest approach to spatial 
smoothing is by geoadditive models (Ruppert et al., 2003, p. 258), where each spatial 
dimension, i.e. geographical longitude and latitude, is smoothed by separate terms in an 
additive fashion. Often, however, non-additive extensions are needed to allow for interaction. 
A key challenge with environmental data is that measurements may be irregularly spaced and 
hence special care must be taken when modelling the interaction between dimensions. In field 
trials, matters are considerably simplified by the fact that plots are usually arranged on a 
regular grid (Appendix A). 
 
Here we will focus on P-spline approaches that allow the partitioning of total variance in an 
analysis-of-variance (ANOVA) type fashion (Lee and Durbán, 2011; Wood et al., 2013; 
Wood, 2017), which is also at the heart of the recently proposed P-spline based approaches 
for field trials (Rodríguez-Álvarez et al., 2018). We seek to use a P-spline framework that is 
flexible enough for agricultural field trials, yet simple enough for straightforward 
implementation using mixed model packages. In fact, it is a key feature of P-splines that they 
have a mixed model representation, meaning that parameters are amenable to estimation by 
residual maximum likelihood (REML) (Patterson and Thompson, 1971). This makes them 
particularly appealing because the mixed model framework allows accommodating other 
features of plant breeding trial data, including genetic correlation among related breeding 
lines, which can be modelled using genetic marker data (Meuwissen et al., 2001), and random 
design effects arising from the randomization layout of the trial, as others have pointed out 
before us (e.g., Verbyla et al., 2018). Also, embedding in a REML framework allows a 
likelihood-based comparison with other mixed models accounting for spatial correlation.  
 
We consider B-splines with a penalty term of the form DuDu TT , where   is a penalty 
parameter, u  is a vector of regression coefficients with corresponding design matrix B  and 
D  is a differencing matrix (Wood, 2017). In the simplest case, the B-spline basis provides a 
smooth in just one spatial dimension, but it may also be extended in two dimensions using the 
Kronecker product of bases for rows and columns (see Appendix A). The penalty determines 
the smoothness of the coefficients u  along the spatial dimensions, because it strives for small 
values of Du . The mixed model representation of P-splines rests on the fact that the singular 
penalty matrix DDP T  is formally equivalent to a precision matrix of a random effect u . In 
order to exploit that equivalence when using a mixed model package for fitting P-splines, P  
needs to be converted to a suitable variance-covariance matrix. In the mixed model 
representation this leads to a fixed-effects component, representing an unpenalized part, and a 
random-effects component, representing the penalized part (Currie and Durbán, 2002; Wand 
and Omerod, 2008; Lee and Durbán, 2011). The resulting models are very similar to those 
proposed in Verbyla et al. (2018) for smoothing using two covariates based on an integrated 
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squared second derivative penalty used in cubic spline smoothing; but, as will be explained, 
there are slight differences in the way the unpenalized terms are handled. As our main 
impetus for this paper is to provide a P-spline framework that is conveniently implemented in 
a general REML-based mixed model package, we closely follow the philosophy set out in 
Wood et al. (2013), primarily focussing on such penalties that have just a single parameter 
and upon conversion give rise to a variance-covariance matrix that is linear in the parameters. 
It is acknowledged that some penalty matrices that have been proposed for tensor-product P-
splines do not have this desirable property and therefore are not considered here in detail. In 
our discussion, we will briefly review a few important examples of such penalties in order to 
put our framework into perspective. 
 
A particular focus will be on the choice of differencing matrix D . In the context of field 
trials, the early development of NN methods was based on second differences (Papadakis, 
1937; Wilkinson et al., 1983), but later the focus turned to first differences (Besag and 
Kempton, 1986; Kempton et al., 1994) and the closely related linear variance (LV) model 
(Williams, 1986), because they are simpler and often provide a good fit. Second differences 
were rarely used subsequently (but see Green et al., 1985). The recent proposal to use P-
splines (Rodríguez-Álvarez et al., 2018) in field trials, however, has led to a revival of this 
option. In light of the new options that P-splines provide, a revisit of the long-standing 
question in field trials whether first or second differences are preferable is in order. 
 
This paper has several objectives: (i) To provide a thorough derivation of the two-dimensional 
P-spline representation as a mixed model, focusing on an ANOVA-type decomposition and 
paying particular attention to the separation between penalized and unpenalized terms, (ii) to 
show how such P-splines are intimately related to other commonly used spatial models, such 
as LV models, (iii) to compare first and second difference penalties in several field trial 
datasets, and (iv) to compare P-splines empirically with other spatial models such as the first-
order autoregressive (AR1) model (Gilmour et al., 1997). The rest of the paper is structured as 
follows. Section 2 considers a single column of plots to introduce key concepts and notation. 
This is extended to smooth marginal (main) effects for rows and columns in Section 3. 
Section 4 shows how interaction between row and column smooths may be added. The 
framework will be illustrated using examples in Section 5 and compared to other spatial 
models. The paper ends with a discussion in Section 6. 
 
 
2. Smoothing along a single column of plots 
 
In this section we will set the stage considering a single column of k plots. Key elements of 
the notation that will be introduced step-by-step, also for use throughout subsequent sections, 
are summarized in Table 1 for ease of reference. Let rB  be a rmk   matrix of q -th degree 

[  1q -th order] B-spline bases (Eilers and Marx, 1996) for the row-coordinates rh  of the 
plots (typically the row numbers). Generally, the first interior knot will be placed at the first 
plot and the last interior knot at the last plot of the column of plots. Often, the remaining 
interior knots are placed at the other plots. Alternatively, the remaining interior knots can be 
placed at larger distances between the first and last plot, which reduces the number of random 
coefficients and hence the dimension of the mixed model equations. The number of B-spline 
bases, rm , will generally be given by the number of interior knots  ri  plus  1q . Thus, if 

the interior knots are placed at every plot, we will have 1 qkmr . 
 
- Table 1 about here - 
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The trend down the column may be modelled by the regression term rruB , where ru  is a 

vector of rm  regression coefficients. To penalize these, we employ the   rr mpm   matrix 

rD  of p-th differences, from which the penalty term is rr
T
rr uPu , where r  is a penalty 

parameter and r
T
rr DDP   is the penalty matrix. Classical spline smoothing adds this penalty 

to the residual sum of squares (Green et al., 1985). If a mixed model representation of P-
splines is used, the penalty is added to the (residual) log-likelihood (Paul Eilers, in discussion 
of Verbyla et al., 1999). The penalty is recognized to be equivalent to the term in the log-
likelihood for normal random effects, when 2 rr  , where 2

r  is a variance parameter, and 

hence the precision matrix is rr P2 . To fit this with a mixed model package, the precision 
matrix must usually be converted to a variance-covariance matrix. This conversion is not 
unique because the precision matrix is singular. To resolve this issue, one may use the spectral 
decomposition   T

rrrr UddiagUP  , where the columns of rU  are the eigenvectors and rd  is 

the vector of eigenvalues. Denote the subvector of rd  containing the pmr   positive 

eigenvalues by rd  and the corresponding eigenvectors by the columns of rU . Further, 

denote the p  eigenvectors corresponding to the zero eigenvalues in rd  by rU0 . Then 

observing that 
rm

T
rr IUU  , the regression term may be reparameterized by a one-to-one 

transformation as 
 

      rrrrr
T

rrrr
T
rrrr

T
rrrrr wZXuUUBuUUBuUUBuB   00   (1) 

 
where rrr UBX 0 , r

T
rr uU0 , rrr UBZ  , and r

T
rr uUw  . Finally, using the fact that 

  T
rrrr UddiagUP   and replacing r

T
ruU   by rw , the penalty becomes 

 
    rr

T
rrr

T
rrr

T
rrrr

T
rr wddiagwuUddiagUuuPu     . (2) 

 
Thus, in the transformed model, only rw  is penalized and is formally equivalent to a random 

effect, whereas r , representing the null space of the penalty, is unpenalized and therefore is 
formally equivalent to a fixed effect in a mixed model. There are several ways to utilize these 
key results to fit the P-splines using a mixed model package. In all of these, as a direct 
consequence of the derivation in (1), it is required to fit the unpenalized fixed-effect term 

rrX   (Wood et al., 2013; Lee et al., 2021). As regards the random term, we may explicitly fit 

rrwZ  with variance-covariance matrix    rrr ddiagw  2var  . This is equivalent to fitting 

rruB  as random with singular variance-covariance matrix    rrr Pu 2var  , where 

  T
rrrr UddiagUP 




  1  is the Moore-Penrose inverse of rP  (Boer et al., 2020), because 

     rr
T
rrrr

T
r wddiagwuuu 

  var  as in (2). In fact, it is proved in Lee et al. (2021) that we 
may use any generalized inverse of the precision matrix as our variance-covariance matrix 
and that this provides a unique fit if we simultaneously fit rrX  , representing the null space 
or unpenalized space, of the penalty matrix. For example, if a positive-definite variance-
covariance matrix is required by the mixed model package, one could use the g-inverse 

T
rrrr UUPP 00  . In what follows, we will use the Moore-Penrose inverse 

rP , computed 

from the spectral decomposition, for convenience and refer to a unique fit whenever the null 
space of rP  is fully represented by fixed effects. It is pointed out here that for 1p , rU0 , and 
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hence rX , is determined only up to an orthogonal rotation, i.e. rU0  can be replaced by RU r0  

for any orthogonal rotation matrix R  (Harville, 1997, p. 538). Statistical packages may differ 
in the particular form of rU0  obtained in the spectral decomposition of a singular matrix. This 

indeterminacy is of no consequence, however, because the fit of rrX   by fixed effects, as 
well as the residual likelihood for the random effects, is invariant to the rotation R . In later 
sections, we will consider two-dimensional extensions of such models that fit specific 
components of rrX   by random effects for smoothing and in this case the fit is not rotation 
invariant. 
 
We note in passing that in addition to the smooth plot effect rruB , we will generally fit an 

independently distributed residual vector e  with variance-covariance matrix ke I2 , 

corresponding to a 'nugget' variance in geostatistical parlance (Piepho and Williams, 2010). 
The full mixed model then takes the usual form eZuXy   , where the null-space term 

rrX   is integrated with the fixed effects X  and the smooth term rruB  is integrated with the 
random effects Zu .   
 
Special cases:  

(i) When 1p  (first differences), then 
rmrrUm 10   and from the properties of B-spline 

bases krrrrr UBmXm 10  , corresponding to the general intercept.  

(ii) When 2p  (second differences), rrr UBX 0  can be replaced with  kk h1 , where 

 khT
k ,...,2,1 , because  kk h1  is in the column space of rX  (Lee, 2010; Lee and Durbán, 

2011; Lee et al., 2021). Thus, to achieve a unique smooth, we may add a regression on the 
serial plot number in the fixed part of the model. While the representation of rX  as a 
regression on plot numbers has some intuitive appeal and is therefore very popular, there is no 
strict need to use this representation, and one can just use the parameterization in terms of the 
original eigenvectors, i.e. rrr UBX 0 . We think that when it comes to a two-dimensional 

extension of the smoothing approach, it is in fact preferable to stick with this parameterization 
(see Section 4.1), because rX  may form part of a term that needs to be smoothed. 
(iii) If 1p  and 1q , and the interior knots are placed at the plots, we have 

kqkmr  1  and kr IB  . This model is equivalent to the LV model of Williams (1986) 

and also to the NN model based on first differences by Besag and Kempton (1986), as well as 
a first-order random walk model (Boer et al., 2020; Appendix B). Specifically, the spatial 
variance-covariance matrix of the LV model can be shown to be another generalized inverse 
of rP  (see Boer et al., 2020).  
(iv) If 2p  and 1q , and the interior knots are placed at the plots, we have 

kqkmr  1  and kr IB  . This model is equivalent to the second-differences NN model 

of Green et al. (1985). For a revealing link of this case with the second-order random walk 
model (Durbin and Koopman, 2001, p. 39) see Appendix B. 
 
 
3. Smooth marginal effects for rows and columns on a rectangular grid of 
plots 
 
Now assume that we have plots placed on a rectangular grid of k  rows and s  columns 
(possibly with some missing data). In row-column layouts it is sensible to fit effects for rows 
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and columns. First consider effects for rows. These may be smoothed using random effects. If 
observations are first ordered by rows and then by columns within rows, this corresponds to 
fitting random effects ru  with the same specifications for the penalty as given in Section 2 

with design matrix srB 1 . In order to make the smooth unique, we require fitting the 

corresponding fixed effects srX 1 . The same kind of effects may be fitted for columns. 

Thus, we fit random effects cu  with design matrix ck B1  and variance-covariance matrix 


cc P2 . This will be unique if we add fixed effects ck X1 , where ccc UBX 0 . We may 

interpret the terms   rsr uB 1  and   cck uB1  as 'smooth' marginal effects for rows and 

columns (Wood 2017, p. 232). When 1p  (first differences), then the two unpenalized terms 

coincide, i.e. skcksr XX 1111  , corresponding to the overall intercept. When 2p  

(second differences) the two unpenalized effects have an alternate representation which, apart 
from the overall intercept, involves a linear regression on row and column numbers with 
design matrices skh 1  and sk h1 , respectively. We re-iterate here that while this 

representation is very popular and is fine for unpenalized terms, we do not advocate this 
representation for penalized terms as will be needed in the next section. 
 
We note here that when the trial is randomized according to a resolvable row-column design, 
independent random effects for rows and columns within replicates would be routinely fitted 
in a randomization-based analysis. Thus, we may regard such a model as a baseline for any 
spatial extensions, including P-splines. If marginal smooths for rows and columns are added 
to a randomization-based baseline model, as suggested in this section, they compete with the 
independent row and column effects. Another way of looking at this is that the independent 
random effects for rows and columns capture any remaining non-smooth trend not 
represented by the smooth. Also, the associated variances can be interpreted as nugget for 
rows and column effects in geostatistical terminology.  
 
 
4. Extending the smooth to cover interaction 
 
Analogous to linear models for two-way analysis of variance (ANOVA), we may augment the 
smooth marginal effects   rsr uB 1  and   cck uB1  with a term of the form   rccr uBB  , 

which will expand the spline space to cover interaction (Wood 2017). There are various 
choices for the penalty, and special attention needs to be paid to its null space because this 
may be quite large, e.g., when the penalty is derived from a single Kronecker product of the 
two marginal penalty matrices rP  and cP , as considered in Section 4.1. In Section 4.2 we 

consider a penalty involving a sum of two Kronecker products that is very popular in 
smoothing (Lee and Durbán, 2011; Wood, 2017; Rodríguez-Álvarez et al., 2018) and is 
closely related to the intrinsic autoregressive (IAR) model considered in Besag and Higdon 
(1999). 
 
Before going into details, we would like to stress that our philosophy here is to consider the 
interaction smooth and its null space as a point of departure. This view is different from other 
derivations that start with the marginal smooths and then from these derive the interaction 
smooth terms (e.g., Wood et al., 2013; Wood, 2017; Verbyla et al., 2018). We believe that it 
is helpful to consider the interaction term in isolation initially because this helps to understand 
the associated null space and make sure it is fully accounted for in the overall model. As it 
turns out, in Section 4.1 the null space involves terms that are confounded with the smooth 
marginal terms introduced in Section 3. This fact makes the derivation a bit involved, but we 
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think it is necessary to take this approach to be clear about the origin and fate of all terms 
representing the null space of smooth terms for the interaction. 
 
 
4.1. Penalties derived from a single Kronecker product of the two marginal penalties 
 
In this section, we consider penalized differences rcrcuD , where crrc DDD  , and hence the 

penalty  
 

rcrc
T
rcrc uPu   (3) 

 
with crc

T
cr

T
rrc

T
rcrc PPDDDDDDP  , corresponding to random effects rcu  with 

variance-covariance matrix 
rcrc P2 , where   crrc PPP . The product-nature of the penalty 

already hints that its null space is substantial, so substantial in fact, that a smoothing of that 
null space may be useful, requiring additional penalties, as will be discussed later in this 
section. To determine the fixed effects needed to represent the null space of rcP , note that 

  
cr mm

T
c

T
rcr IIUUUU   and  crcrcrcrcr UUUUUUUUUU    0000 , 

such that using the same approach as in the one-dimensional case [see eq. (1)], the term 
  rccr uBB   can be transformed one-to-one as 

 
    rcrcccrrrc

T
c

T
rcrcr wZXXXuUUUUBB  00000000   (4) 

 
where  
 

   crcrcr XXUUBBX  0000 ,  

   crcrcrr XZUUBBX   00 ,  

   crcrcrc ZXUUBBX  00 , and   

   crcrcrrc ZZUUBBZ     

 
are design matrices, and  
 

  rc
T
c

T
r uUU 0000  ,  

  rc
T
c

T
rr uUU 00   ,  

  rc
T

c
T
rc uUU  00 , and  

  rc
T

c
T

rrc uUUw     

 
are the corresponding regression coefficients. Analogous to the derivation in Section 2, it 
emerges that only the term rcrcwZ  is penalized because it is associated with the positive 

eigenvalues rd  and cd , whereas the terms 0000X , 00 rrX   and ccX 00   represent the null 

space because they are associated with zero eigenvalues and hence need to be fitted as fixed 
effects to obtain a unique smooth. Note that the dimension of rcZ  is    pmpm cr  , 

whereas the null space has dimension    pmpmmm crcr  , which can be quite large 

(Wood, 2017, p. 232). This suggests that p  should be chosen as small as possible.  
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Importantly, the unpenalized terms 00 rrX   and ccX 00   will generally show confounding with 

the marginal smooths introduced in Section 3. It should also be stressed that for 1p  the 
dimension of the space represented by these terms is larger than that of the marginal terms in 
Section 3. This is why we think it is crucial in the derivation to initially consider the 
interaction smooth and its null space in its own right. If we insist that these fixed-effects terms 
be fitted to ensure uniqueness of the smooth rcrcwZ , then the marginal effect smooths of 

Section 3 are absorbed into the fixed effects and hence may be dropped. Alternatively, it may 
be worthwhile to replace the fixed terms 00 rrX   and ccX 00   by smooth equivalents, which 

are fitted as random. In this case, however, the smooth rcrcwZ  is no longer invariant to the 

choice of generalized inverse of the penalty matrix rcP  (Lee et al., 2021). Also, because of the 

confounding, the smooth marginal effects are absorbed by the smooth versions of 00 rrX   and 

ccX 00   (and not vice versa!) and hence may also be dropped in this case. It follows that either 

way, with or without smoothing of 00 rrX   and ccX 00  , there is no need to explicitly add the 

marginal-effect smooths described in Section 3; these are accounted for by the terms in the 
null space of the interaction smooth for   rccr uBB  . 

 
In what follows, we will consider a few important special cases paying particular attention to 
the null space of   rccr uBB   and consider how these can be turned into penalized terms. 

Scrutiny of these special cases then leads to our suggested general approach for tensor-spline 
smoothing for field trials. 
 
 
4.1.1 Special cases 
  

(i) If 1p , then krr Xm 1 , scc Xm 1  and  skcr Xmm 1100  , coinciding with the 

general intercept. The design matrices srrc ZXm 10   and ckcr ZXm 10  have 

dimensions  1rm  and  1cm , respectively, which are usually so substantial that 

smoothing becomes worthwhile, though this will make the smooth non-unique. For example, 
for design matrix 0rX  we may consider random effects 0rw  with variance  12

0

rr ddiag , 

which is equivalent to assuming design matrix srB 1  and random effects 0ru  with variance-

covariance matrix 
rr P2

0 . This is recognized as the smooth marginal effect for rows (Section 

3). Hence, in this case both 0rX  and cX 0  may be absorbed into the smooth marginal effects 

for rows and columns, respectively. Conversely, if we insist that 0rX  and cX 0  are fitted as 

fixed, they will absorb the smooth marginal effects for rows and columns, respectively, 
meaning that the latter can be dropped. 
(ii) If 1p  and 1q , and interior knots are placed at the plots, we have sqsmc  1  

and kqkmr  1 . Moreover, sc IB   and kr IB  . Assuming that the marginal terms 

00 rrX   and ccX 00   are modelled as fixed, this model is equivalent to the LVLV model of 

Piepho and Williams (2010) and also to the NN model based on first differences along rows 
and columns by Kempton et al. (1994) (also see Appendix C; Besag and Higdon, 1999; Boer 
et al., 2020), and all of these models can be viewed as limiting cases of the separable 
AR1AR1 model (Gilmour et al., 1997; Piepho and Williams, 2010). The terms 0000X , 

00 rrX   and ccX 00   correspond to general intercept and row and column effects, respectively. 

The row and column effects may be many, and it may therefore be worthwhile to fit these as 
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random for recovery of inter-block information (Lee et al., 2021). Again, the corresponding 
smooth marginal effects in Section 3 may be regarded as representing these random effects 
already. However, when 00 rrX   and ccX 00   are replaced by smooths, the smooth rcrcwZ  is no 

longer unique, and also there is no longer equivalence with the LVLV model and two-
dimensional first differences. Conversely, if we insist on fixed row and column effects to 
ensure uniqueness, the smooth marginal effects from Section 3 need to be dropped. 
(iii) If 2p , then 00X  has dimension 42 p  and can be represented by fixed effects for 

regressions on the row and column numbers and their cross products (Lee and Durbán, 2011). 
The design matrices 0rX  and cX 0  have dimensions  22  rm  and   22 cm , and 

smoothing is worthwhile. For example, crr XZX 0  could be smoothed separately for the 

two columns of cX , which are in the same column space with s1 . Hence, the smooth would 

be confounded with the smooth marginal effect for rows. It has random effect vector rcw  with 

variance-covariance matrix   2
2
0

1 Iddiag rr  , which is equivalent to design matrix cr XB   

with random effect 0ru  having variance-covariance matrix 2
2
0IP rr  . This smooth would 

represent the smooth marginal effect for rows. It is important to point out here that if cX  was 

replaced by  ss h1 , the covariance structure would change, i.e., the model is not invariant to 

linear transformations with respect to cX , as is well known for random-coefficient models 

(Longford, 1993; Wolfinger, 1996). Also note that our suggestion here involves fitting a 
single penalty for both columns of cX , rather than two, as is commonly done (Wood et al., 

2013; Verbyla et al., 2018). Fitting two separate penalties for crr XZX 0  amounts to 

fitting the variance-covariance matrix     2
20

2
)1(0

1 , rrr diagddiag   for the random effect 

0rw , where the variance  
2

10r  is associated with the first column of cX  and the variance 

 
2

20r  is associated with the second column of cX . This structure may be compared to a 

random coefficient model with random intercepts and slopes. In such models, fitting a 
diagonal variance-covariance for intercepts and slopes means that the model is not invariant to 
linear transformations of the covariate. This is also the main reason, why we do not 
recommend replacing cX  by  ss h1 . Invariance is achieved if we allow a covariance between 

intercept and slope. Such a covariance will also ensure invariance to a rotation of cU 0  and 

hence of cX . Thus, we can use the variance-covariance matrix    0
1

rrddiag  , where the 

two variances on the diagonal of 0r  are  
2

10r  and  
2

20r  and the covariance is  2,10r . It is 

also important to re-iterate that for 1p , the null-space eigenvectors  in 0rU  and cU0 , and 

hence the matrices rX  and cX , are only determined up to an arbitrary orthogonal rotation of 

the eigenvectors (see Appendix D for the special case 2p ). 
(iv) If 2p  and 1q  [a special case of (iii)], the null space can be written in a form 
involving fixed-effects regressions on row numbers within columns and on column numbers 
within rows. If these effects are modelled as random for recovery of information, we 
obviously have a random-coefficient model (Longford, 1993), and this is known to require a 
covariance among intercept and slope to ensure invariance to linear transformations of the 
plot coordinates (row and column numbers). We may either model the intercepts and slopes as 
independent between rows and between columns, or we may use a smooth across the rows 
and across the columns. 
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4.1.2 General case  
 
The confounding of the smooth marginal effect introduced in Section 3 and of effects in the 
null space of rcP  requires adjustment of our notation and actually allows some simplification. 

The general approach emerging here for ANOVA-type smoothing is to fit fixed effects   

with design matrix cr XX  , smooth row marginal effects ru  with design matrix cr XB   

and variance-covariance matrix prr IP 2 , smooth column marginal effects cu  with design 

matrix cr BX   and variance-covariance matrix  cpc PI2 , and smooth interaction effects 

rcu  with design matrix cr BB   and variance-covariance matrix   crrc PP2 . Note that we 

have re-labelled the effects and variance components here to reflect the absorption of 
marginal-effect smooths of Section 3 by null-space terms arising from the interaction smooth. 
We also note that the whole smooth only has three variance components, regardless of the 
order p  of differencing, i.e., one for rows, one for columns and one for the interaction. For 

1p  there are two further alternatives for smoothing the two marginal effects, which are 

described here just for the row smooth: In place of prr IP 2  with homogeneous variance for 

the columns of cX , we may either use the diagonal structure rrP   where 

    22
1 ,..., prrr diag   or rrP  , where r  is an unstructured p-dimensional variance-

covariance matrix. The former makes the smooth invariant to re-scaling of the spatial 
coordinates (Wood, 2017, p. 236), but not to translations or rotations (Appendix D). The latter 
has the advantage of full invariance regarding the representation of rX  and cX . The lack of 

invariance to translations or rotations of the diagonal model is particularly relevant, since for 
1p  the null-space eigenvectors spanning rX  and cX  are determined only up to an 

orthogonal rotation. In difference to the smooth terms, the fixed-effects term with design 
matrix cr XX   is always rotation-invariant for 1p . In summary, for any value of p, there 

are always four terms, i.e., the fixed-effect cr XX  , the two marginal smooths for cr XB   

and cr BX  , and the pure interaction smooth for cr BB  . 

 
What was just described as different options for 1p  can also be taken to subsume 1p  as 

a special case. For example, for general p , the marginal smooth for cr XB   has variance-

covariance matrix     T
crc

T
rrr

T
c

T
rcrcr XXBPBXBPXB   . Then for 1p  this 

reduces to 211 r
T
ss

T
rrr BPB  . This same reduction also holds for the other two options for 

1p , i.e. diagonal and homogeneous. For 1q  this reduces further to 211 r
T
ssrP  , and for 

knots placed at the plots this corresponds to one of the marginal term for rows of the LVLV 
model (Piepho and Williams, 2010). 
 
Despite the invariance of the unstructured model to linear transformations of  rX  and cX , the 

structure is notoriously difficult to fit, as is well known for random-coefficient models in 
general (Longford, 1993). This is because with poor scaling the variance-covariance matrix 

r  or c  can have correlations close to the boundary of the parameter space, and it can 

therefore be difficult to ensure that the matrix remains positive definite. Further problems 
arise when a variance converges to zero during iterations. 
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For 2p , we may address these issues by considering an orthogonal rotation of the null-

space eigenvectors. To illustrate this, consider the design matrix 0BUX   (the subscript r or 

c is dropped here for simplicity) as needed on the marginal smooth for columns. One possible 
set of null-space eigenvectors 0U  is (Lee and Durbán, 2011) 

 
 mm baU 0   , (5) 

 
where ma  is an m-dimensional vector of 1’s, scaled to have unit length, and mb  is the vector 

 m,...,2,1 , centered and also scaled to have unit length. This can be orthogonally rotated to 

any other permissible set of eigenvectors by  RU0 , where 

 

     
    





 






cossin

sincos
R  (6) 

 
for   2,0 . When 0U  is involved in a marginal smooth using the diagonal variance-

covariance structure  , we may find the optimal rotation by a grid search over  . This is 
equivalent to fitting a reparameterized version of the unstructured model  , with   acting as 
a third parameter over which the likelihood is profiled. Thus, our proposed procedure for 
fitting the unstructured model is to perform a grid search identifying a rotation angle that at 
least nearly maximizes the residual likelihood for the diagonal model, and then use that 
rotation to fit the unstructured model. The optimization for the diagonal model will ensure 
that the correlation between the two regression terms associated with the columns of rX  or 

cX  will be close to zero and safely removed from the boundary of the parameter space. For 

this purpose, it is not crucial that the correlation is zero exactly, which is why we only need a 
good guess of the   that would nullify the correlation. 
 
 
4.2. Penalties derived from sum of Kronecker products 
 
Lee and Durbán (2011) consider a penalty of the form 
 

  rccmrcmrrc
T
rc uPIIPu

rc
 21  .  (7) 

 
Wood (2017, p. 232) points out that penalties of the form (7) can provide smoother fits than 
those outlined in Section 4.1. A major advantage of (7) over the interaction smooth in Section 
4.1 is that its null space is cr XX   and only has dimension 2p . For 1p , the null space 

corresponds to just the intercept (Dutta and Mondal, 2015), whereas for 2p  it also 
comprises the regression on the row and column numbers and their products (Rodríguez-
Álvarez et al., 2018). These null spaces can always be accommodated in the fixed-effects part 
of the mixed model at virtually no cost. A further important consequence of the low 
dimensionality of the null space is that there is no confounding with the marginal smooths 
introduced in Section 3, which may be seen as a major advantage of the IAR model. 
Interestingly, for 1p , 1q , and knots placed at the plots, taking the conditional 

expectation of jiu , , the fertility value for the interior plot in the i-th row and j-th column (i.e., 

the i,j-th element of vector rcu ), given all other jiu , -values, one obtains 
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       jijijijiji uuuuuE ,1,11,1,, 1
2

1
    (8) 

 

with    21, 1var2 rcrcjiu   , where  212 rcrcrc    (modified from Dutta and 

Mondal, 2015). This is recognized as an NN model, where the central plot is regressed on the 
nearest row and column neighbours (Julian Besag, in discussion of Bartlett, 1978; Kempton 
and Howes, 1981). Besag and Higdon (1999) refer to this as the intrinsic autoregressive (IAR) 
model. Despite this appealing connection with NN models, the penalty (7), as well as 
variations considered for field trials (McCullagh and Clifford, 2006; Mao et al., 2020), is 
more difficult to translate to a standard mixed model framework because more than one 
parameter is involved and hence the inverse of the precision matrix is not linear in the 
parameters (Wood et al., 2013, p. 345). A convenient option to fit (7) using a mixed model 
package is by profiling the residual log-likelihood for , i.e., via a grid search over  1,0  

(Besag and Kooperberg, 1995). It must just be kept in mind that when  maximizes the 
residual likelihood at either 0  or 1 , the penalty in (7) changes to one with a single 
penalty parameter having a much larger null space, thus sacrificing its desirable properties. 
This is perhaps the main disadvantage of the IAR model. To obviate the problem at the 
boundary, a constraint may be imposed such that 10  , as is done in the Separation of 
Anisotropic Penalties (SAP) algorithm of Rodríguez-Álvarez et al. (2015). Rodríguez-Álvarez 
et al. (2018) consider a simplified version of (7), 
 

     rccmmr
T
rcrc wddiagIIddiagw

rc    , (9) 

 
with an associated simplification of (8), which only has a single penalty parameter, allowing 
this to be fitted easily with a mixed model package. The models implemented in SpATS 
involve adding marginal smooths for rows and columns with diagonal variance-covariance 
structures as described in 4.1. 
 
 
5. Examples 

 
5.1. A barley trial 
 
Durbán et al. (2003) consider a trial with 252 barley lines laid out as a resolvable row-column 
design with 2 replicates, 8 rows and 34 columns per replicate [Figure 1(a)]. The replicates 
were adjacent so that the trial had 16k  rows and 34s  columns in total. We reanalyse this 
data using several special cases of our P-spline approach. In all models with spatial 
covariance, we allow the spatial covariance to extend across replicates. For P-splines with 
both 1p  and 2p , and also for other models, we fit row and column coordinates and their 
product as fixed regression terms so that the deviance and Akaike information criterion based 
on the residual likelihood, using twice the number of variance parameters as penalty term, can 
be used to compare all models (Wolfinger, 1996). 
 
- Figures 1 and 2 about here - 
- Tables 2, 3, 4, and 5 about here - 
 
Table 2 shows several models fits for 2p , kir   and sic  , i.e., interior knots are placed at 

the plots. Model M12 with 3q  and diagonal structures ( ) for both marginal smooths was 
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used to perform a grid search determining rotation angles maximizing the deviance 
approximately (Figure 2). These values were then used to fit the marginal smooths with 
unstructured covariance ( ). We considered  3q  (cubic splines) and 1q  (ordinary 
second differences; Green et al., 1985). A few observations are as follows: 
(i) The unstructured model is confirmed to ensure translation invariance, as opposed to the 
models with diagonal or constant variance. This can be seen by comparing models M3-M6 to 
M6-M8, where only ur is fitted. The diagonal models M6 and M8 fitted quite well compared 
to the invariant unstructured models (M3-M5). When also fitting uc, we were not able to fit 
models M16-M17 with unstructured r and c  because positive definiteness of these 

matrices could not be enforced during iterations. Fixing the covariance in c  at zero, 

convergence was achieved. Note, however, that M16-M17 are equivalent to M15, which we 
were able to fit and which fitted best among the models in Table 2. 
(ii) M20 could not be fitted with 3q  (again fixing the covariance in c  at zero allowed 

convergence), but fitted second best with 1q , giving a fit that was almost identical to M15. 

(iii) Using the kk h1  as the representation of Xr in the marginal smooth gave poorer fits and 

also was more difficult to get to converge.  
(iv) There is only a very small difference between fits for 1q  and 3q , suggesting that the 
B-splines with 1q  are not strictly needed and we can revert to simple first or second 
differences (Eilers, 2003) as in classical NN (Besag and Kempton, 1986; Williams, 1986; 
Wilkinson et al., 1983). 
 
Table 3 shows results for first differences 1p . These are quite competitive with second 
differences ( 2p ). Reducing the number of knots had hardly any effect. The best fit is 
obtained for 1q  and knots placed at the plots (M26) [see Figure 1(b) for the smoothed 
trend]. Table 4 shows the fits obtained with the IAR model with penalty (7) (Section 4.2) for a 
step size of 0.1 for  in the grid search. Again, first differences seemed to do better than 
second differences. Model M41 with 1q  fitted best among all models considered for this 

dataset. For 2p , we also fitted smooth marginal terms involving the full rX  and cX , 

though this would not be necessary to represent the null space of the interactions smooth. We 
faced the same problems when trying to fit the marginal penalty for columns with 
unstructured c . When fixing the covariance to zero, convergence was easy to achieve. With 

the diagonal models for the marginal smooths, convergence was also unproblematic. For this 
model, we also report the fit for fixed 5.0  (M45 and M46), corresponding to the penalty 
in (9), for the case 3q . This model is the one used in Rodríguez-Álvarez et al. (2018) and 
implemented in the SpATS R package, available from CRAN (https://cran.r-
project.org/package=SpATS). The model is doing quite well in terms of AIC, but several 
others reported in Tables 3 and 4 fare slightly better. The best model was often obtained for 

0.1 , in which case the null space is not fully represented by the model; these models 
would need to be extended to fully cover the null space, which we have not pursued here. We 
also fitted the LVLV model (Piepho and Williams, 2010), which is linear in the parameters, 
and the AR1AR1 model, which is nonlinear (Gilmour et al., 1997) (Table 5). Both models 
also have good fits, with an edge in favour of the latter when a nugget was added. That model 
(M56) had a very similar fit to the best P-spline model in Table 3 (M26) but was inferior to 
the best model in Table 4 (M41). 
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5.2. A wheat trial 
 
Stroup et al. (1994) report a trial for 56 wheat varieties laid out in 11k  rows and 22s  
(Figure 3) (this is the 'Alliance' trial in their paper). The dataset displays a strong spatial trend, 
which is described by Stroup (2002) in these terms: 'The pattern is typical of spatial 
variability. In this case, relatively low yields tend to be clustered in the northwest corner. This 
pattern is explained by a low rise in this part of the field causing increased exposure to winter 
kill from wind damage, and hence depressed yield.' We here use the version of the dataset that 
is available in the 'agridat' package of R (Wright, 2021; https://CRAN.R-
project.org/package=agridat), which has the yield expressed in bushels per acre. The four 
replicates are not arranged as a rectangular array, with some rows divided up between two 
replicates. We fitted the exact same models as for the barley data (Tables 2 to 5). The general 
picture emerging from this second example is rather similar to that from the first, so details 
will not be dwelt on here. It is worth mentioning that M46, which corresponds to SpATS 
(Rodríguez-Álvarez et al,. 2018), gives a good fit in terms of AIC, landing in the mid-range of 
the other models reported in Tables 3 and 4. The unstructured models for the marginal 
smooths could only be fitted with the rotation determined by a two-dimensional grid search 
for the diagonal model (Figure 4). Even with this rotation, it was not easy to achieve 
convergence, mainly due to a variance component approaching zero. All other models were 
easy to fit. The results for 2p  do confirm that the diagonal model is not invariant to 
rotations but the unstructured model is. One main conclusion from this example is that first 
differences work quite well. 
 
- Figures 3 and 4 about here - 
 
 
6. Discussion 
 
We considered a framework that allows the use of P-splines to model spatial trends in field 
trials (Rodríguez-Álvarez et al., 2018). The methodology requires making several choices, 
i.e., the order of differencing (p), the degree of the B-spline basis (q), and the number of knots 
(ir, ic), which in field trials are always placed on a regular grid. As the two examples illustrate, 
there is indeed a very large number of options, and this means that model choice could easily 
become an overwhelming exercise. It would be advantageous for routine use if a limited set of 
models could be identified that works well over a broad range of settings, not requiring an 
'intricate process of tailoring models to individual datasets' which always entails 'an element 
of subjectivity which will be difficult to eliminate' (Rob Kempton, in discussion of Verbyla et 
al., 1999). A natural starting point for the placement of knots are the plot locations, and this is 
our general recommendation. Our results for the barley and wheat data suggest that there is 
little gain from trying other options. We also found little difference in goodness-of-fit for 
different choices of the degree of the B-spline basis, with the simplest choice of 1q  
(implying the simplification IB  ) working quite well, corresponding to the classical NN 
modelling with first or second differences for 1p  and 2p , respectively. The examples 
further showed that first differences seemed to be sufficient for smoothing the spatial trend. 
Certainly, more empirical experience is needed to further provide guidance for routine use of 
the framework. We do conjecture based on our experience so far that a viable 
recommendation is to stick with the most parsimonious options, such as 1p , 1q , kir  , 

and sic  . These models are particularly easy to fit. This option is also very closely related to 

earlier approaches to NN analysis of field trials and so will be easy to communicate to 
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researchers wanting to use P-splines. For practical implementation, one may either use the 
specialized SpATS R package, which implements a subset of the models considered in this 
paper, or a general linear mixed model package such as SAS, for which sample code is 
provided in the supplemental material. 
 
Careful consideration needs to be given to the null space of the interaction smooth, especially 
for the models described in Section 4.1. As detailed there, this null space can have a rather 
larger number of dimensions for 2p  than for 1p  when the penalty in (3) is used. If one 
insists on representing this null space by fixed effects in order to make the fit invariant to the 
choice of g-inverse for the singular precision matrix Prc, efficiency of the analysis may be 
adversely affected, and it is therefore worthwhile to fit these effects as random. In particular, 
the P-spline framework allows smoothing these terms, combining them with the marginal 
smooth for rows and columns as prescribed by the ANOVA-type approach to spline 
smoothing (Wood et al., 2013; Wood, 2017). It must be acknowledged, however, that this 
sacrifices the invariance to the choice of g-inverse for Prc. We note in this context that the 
LVLV model gives the same fit as the P-spline approach for 1p , 1q , kir  , and 

sic  , when the null space is modelled by fixed effects for rows and columns, but not when 

these effects are modelled as random (Boer et al., 2020), or are smoothed (Tables 3 and 5). An 
advantage of the IAR model with the penalty in (7) is the small size of the null space for the 
interaction smooth, even for 2p , with a simple fixed-effects regression on row and column 
numbers to cover that null space. Thus, there is no confounding with the marginal smooths 
and so these can be considered in their own right, there being no strict need to fit them. Care 
is needed with the interaction smooth, however, when   converges to either 0 or 1 (this 
happened with both examples), because in that event the null space changes, increasing 
considerably, which may be seen as a disadvantage of the IAR model. One way out is to 
constrain the grid search so that   stays clear of the lower and upper bound, or use 
specialized procedures such as the SAP algorithm outside standard mixed model packages 
(Rodríguez-Álvarez, 2015), and implemented in the SpATS R-package. 
 
We have included fixed-effects regression terms for row and column numbers and their 
interaction in all models, even those that do not involve P-splines, and also for P-splines with 
first-difference penalty, where these terms are not needed to represent the null space of the 
smooth. This was done so we could use the REML-based likelihood for comparing all models 
on the same basis. These terms only cost three degrees of freedom in the fixed part of the 
model, and it may therefore be worth including them in their own right in order to capture 
global trends, even if they are not needed to represent the null space of the smooth terms. 
 
A general advantage of the P-spline framework is that most of the variance-covariance 
structures are linear in the parameters, which makes them easy to fit and minimizes 
convergence problems which may befit spatial variance-covariance models that are nonlinear 
in the parameters (Piepho et al., 2015; Velazco et al., 2017). This plays out most when the 
random terms are all independent, i.e. the smooth terms correspond to a variance-components 
model with no covariances among random effects. As we have shown, when 1p , the 
marginal smooth associated with the penalty (3) for the interaction  may require allowing a 
covariance among random intercept and slope terms, a key result that seems to have been 
overlooked by others, and this can be difficult to fit on account of the need to ensure positive 
definiteness of the variance-covariance structure. Such difficulties pose an obstacle for routine 
use, and they speak in favour of the simpler P-spline options based on first differences. In this 
regard, it is interesting to observe that the AR1AR1 model with a nugget variance (M56), 
which fitted quite well, had relatively large correlations along rows and columns (0.8598 and 
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0.8952 for the barley data and 0.7488 and 0.9064 for the wheat data), in which case the 
covariance is well approximated by a linear variance model (Williams, 1986), corresponding 
to the simpler P-spline for 1p , 1q , kir  , and sic  . 

 
On a final note we would like to stress the importance of design, which often does not receive 
the attention it deserves. Sometimes, the large number of modelling options for spatial 
analysis may raise the false impression that design does not matter, and that a sophisticated 
analysis takes care of everything. Nothing could be further from the truth. Certainly, given the 
large number of options for analysis, the design issue becomes more challenging and is far 
from resolved. Rather than focusing the design on a specific route of analysis, one may 
consider searching for a good design without a specific analysis in mind (Piepho et al., 2021), 
striving for robustness to model choice. 
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Appendices 
 
A. Row-wise Kronecker products 
 
Eilers and Marx (2003) proposed the use of row-wise Kronecker products, also known as box 
products or tensor products of B-spline bases for non-additive smoothing. A salient feature of 
field trials, however, is that plots are usually placed on a regular grid, for which the tensor 
product coincides with the usual Kronecker product (Lee and Durbán, 2011). Thus, if r  
denotes the row-wise Kronecker product and   denotes the ordinary Kronecker product, then 
for a B-spline basis matrix rB  with k rows and arbitrary number of columns corresponding to 

regularly spaced knots and a B-spline basis matrix cB  with s rows and an arbitrary number of 

columns (knots), we have 
 

    crckrsrrc BBBBB  11 .  (A1) 
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This important fact can hardly be over-emphasized for those wanting to use P-splines for 
analysis of spatial data on a regular grid in general and on a regular grid of field trial plots in 
particular, but drawing on a literature that seeks to embrace irregularly gridded data as the 
dominant application case, e.g. in longitudinal studies. In the case of field trials this means 
that a row-wise Kronecker product can be written as an ordinary Kronecker product of 
matrices associated with rows and columns (Verbyla et al., 2018), which greatly simplifies the 
notation and also clarifies the relationship with other spatial modelling approaches for field 
trials, such as the LVLV model (Williams and Piepho, 2010) and the AR1AR1 model 
(Gilmour et al., 1997). We make use of the important equation (A1) as a design matrix 
throughout this paper to model spatial interactions between rows and columns. Readers less 
familiar with P-splines should be aware that the simplified notation arising from (A1) may 
look somewhat unfamiliar compared to results for P-splines applicable to irregular spatial 
grids (Lee and Durbán, 2011; Wood, 2017, p. 232), even though the regular case is just a 
special version of the irregular one.  
 
 
B. Relations with state-space models 
 
The use of differences among neighbouring plots (Besag and Kempton, 1986) has close ties 
with state-space models (Harvey, 1989; Durbin and Koopman, 2001), which in turn can also 
be represented as mixed models (Tsimikas and Ledolter, 1997; Piepho and Ogutu, 2007). 
Specifically, we may assume that the response iy  on the i-th plot is related to a latent level i  

according to iii ey   , where  2,0~ ei Ne  . If we further assume that the state on the 

neighbouring (i+1)-th plot is related to that on the i-th plot by iii u  1 , where 

 2,0~ ui Nu  , then i  follows a first-order random walk model, which is a simple form of 

state-space model. For first differences we then have  2
1 ,0~ uiii Nu   , demonstrating 

the connection between the use of first differences and state-space models as used mostly for 
time series. By comparison, the AR1 model is known as damped model in state-space 
modelling and written as iii u  1  with  2,0~ ui Nu  , where 10    is the 

autocorrelation (Harvey, 1989, p. 46). 
 
The first-order random walk model can be extended to what is known in state-space 
modelling as local linear trend model. The starting point is a simple linear regression of the 
form ii 10   . One idea to make this deterministic trend stochastic is to let both 0  and 

1  vary randomly, but this would lead to discontinuities at the plots (Harvey, 1989, p. 37). A 

better option is to work directly with the current level, i  in place of the intercept 0 . Noting 

that the deterministic trend can be rewritten as 11   ii  with 00   , we may consider 

updating both the current level and the slope term by a random walk as follows: 
 

iiii ub 01   ,   2
00 ,0~ ui Nu   (B1) 

iii ubb 11  ,  2
11 ,0~ ui Nu   (B2) 

 
where ib  is the random slope at the i-th plot with 10 b . Thus, on the i-th plot we have 

linear trend ib , and this is updated by a random increment iu1 , i.e. by a random walk, as we 

move to the (i+1)-th plot. The intercept at the i-th plot is iba iii   , and hence 

  iiii ubia 01 1   . Essentially, we have randomly varying regression lines, pieced 
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together at the plots. Due to the update iu0 , however, there are discontinuities at the plots 

(Figure 1). In the limiting case when 02
0 u , the trend is a polygon with breaks at the plots 

but no discontinuities. Interestingly, the model then is equivalent to iiii u111 2    , 

which is a second-order random walk and involves second differences (Durbin and Koopman, 
2001, p. 39). To see this, we may subtract the state equation 110   iii b  from 

iii b  1 , yielding 1,11111 22   iiiiiiii ubb  . By comparison, the first-

order random walk model for i  can be depicted as horizontal regression lines with jumps at 

the plots (Figure B1). It is worth observing that both the local linear trend and its limiting case 
with 02

0 u , which is equivalent to use of second differences, have the fixed trend 

component i10   , corresponding to the null space of P-splines with second differences 

penalty. Thus, the state-space view provides a very natural explanation why a fixed intercept 
as well as a fixed slope are needed with second differences. 
 
- Figure B1 about here - 
 
 
C. Two-dimensional first differences 
 
Kempton et al. (1994) formulate a correlation structure that is separable between rows and 
columns. Their assumption is that first differences along rows and along variances have 
variances 2 rr   and 2 cc  , respectively, and that plot differences calculated across 

both rows and columns, i.e., 1,11,,1,   jiijjiji vvvv , where 1,11,,1,   jiijjiji vvvv  is the 

plot value in the i-th row and j-th column, have variance    222  crrc  . In what 

follows, we will relate this model to the LVLV model (Piepho and Williams, 2010) and P-
splines with 1p , 1q , kir  , and sic  . We may collect plot values for spatial trend into 

a random vector rcv . Following Kempton et al. (1994), the first differences across rows can 

then be assumed to have variance 
 

   rspkrcsr AIvID  var   (C1) 

 
for some ss  correlation matrix sA . For first differences across columns, we may postulate 

accordingly that 
 

   cpskrcck IAvDI var   (C2) 

 
for some kk   correlation matrix kA , and for differences across both rows and columns 

 
   rcpspkrccr IIvDD  var   (C3) 

 
In line with our P-spline approach, the variance-covariance matrix for rcv  may be assumed to 

take the form 
 

  222var rccrcckrsrrc FFFJJFv    (C4) 
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for suitable variance-covariance matrices rF  and cF . This can also be expressed in terms an 

ANOVA-type decomposition  
 

rccksrrc uuuv  11   (C5) 

 
with   2var rrr Fu  ,   2var ccc Fu   and   2var rccrrc FFu  . We now need to find rF  and 

cF  such that pk
T
rrr IDFD   and ps

T
ccc IDFD  . For rF , e.g., we can meet these assumptions 

using  rr PF  or  r
T
rrr PUUF 00 , corresponding to our P-spline approach, but this does not 

yield the desired form of sA . One (but not the only) choice that will yield the desired form of 

sA  is   kkkr LkJMF  12 , where kL  is an kk   matrix with (i1, i2)-th element equal to 

21 ii  , corresponding to the LVLV model (Piepho and Williams, 2010). To see this, we 

first use (C4) to find 
 

      
 2222

222var

rccrspkrcc
T
rrrrs

T
rrr

s
T
rrccrcckrsrsrrcsr

FJIFDFDJDFD

IDFFFJJFIDvID











 (C6) 

 
Comparing coefficients with (C1), we find 22

rccrsrs FJA   . Then using kr MF 2 , we 

find that the diagonal elements of rsA   equal   22 1
2

1
rcr k   , and hence 

  22 1
2

1
rcrr k   . Similarly,   22 1

2

1
rccc s   . Moreover, 

   2var rcccc
T
rrrrccr DFDDFDvDD  , from which    211

4

1
rcrc sk   .  

 
 
D. Orthogonal rotations of the null-space eigenvectors for 2p  
 
It is interesting to observe the connection of a diagonal variance-covariance model 
with rotation parameter with an unstructured model. Let   be a diagonal 
matrix 
 











2

1

0

0




. (D1) 

 
Then using    RbaU mm 0  [see eqs. (5) and (6)] we have 

 

   Tmmmm
T babaUU   00  (D2) 

 
where 
 

   
      

       




















1
2

2121

212
2

21

cos2sin
2

1

2sin
2

1
cos




 TRR  (D3) 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 11, 2021. ; https://doi.org/10.1101/2021.05.10.443463doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.10.443463


 22 

 
If   21 , we have 2I , showing that if we chose the identity matrix, the 
eigenvectors can be chosen arbitrarily, i.e. the model does not depend on the rotation 
parameter  . 
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Table 1: Notation for matrices and vectors used for P-splines 
 
Matrix$ Description Dimensions§ 

rh  Row coordinates of plots 1k  

rB  q-th degree B-spline bases for rh  rmk   

rD  Differencing matrix   rr mpm   

rP  Penalty matrix; r
T
rr DDP   rr mm   

rU  All eigenvectors of rP  rr mm   

rU  Eigenvectors of rP  with positive 
eigenvalues 

 pmm rr   

rU0  Eigenvectors of rP  with zero eigenvalues  pmr   

rd  Vector of all eigenvalues of rP  1rm  

rd  Vector of positive eigenvalues of rP    1 pmr  

ri  Number of interior knots 11  

rm  Number of B-spline bases% 11  

 
$ The subscript r  refers to rows. For columns, replace subscript r  with c  (for columns). 
§ k  = number of rows; p  = order of differences. For columns, replace k  with s  (the number 

of columns) and rm  with cm  (the number of B-spline bases used for columns). 

% 1 qim rr , where q is the degree of the B-spline bases; 1 qkmr  when the interior 

knots are placed at the plots. For columns, replace rm  with cm  (the number of B-spline bases 

used for columns). 
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Table 2: Analysis of barley data of Durbán et al. (2003) and wheat data of Stroup et al. (1994) using P-spline approach with 2p  (second 

differences), kir  , sic  , and the penalty in (3) for rcB . All models have fixed effects for replicates, genotypes, row numbers rh , column numbers 

ch  and their product crhh . 

 
Barley data Wheat data 

1q  3q  1q  3q  
Model  ruvar $ cX §  cuvar $ rX §  rcuvar  

Deviance AIC  Deviance AIC  Deviance AIC  Deviance AIC  
M1 1 

s1  1 
k1  - 295.22 301.22 295.70 301.70 1076.03 1082.03 1075.93 1081.93 

M2 1 
s1  1 

k1    crrc PP2  292.20 300.20 293.09 301.09 1075.78 1083.78 1071.88 1079.88 

M3   
cX  - - - 378.69 386.69 378.56 386.56 1075.45 1083.45 1075.51 1083.51 

M4   
ss h1  - - - 378.69 386.69 378.56 386.56 % % % % 

M5   
ss ba   - - - 378.69 386.69 378.56 386.56 % % % % 

M6   
cX


 - - - 378.72 384.72 378.62 384.62 1078.49 1084.49 1075.15 1079.15 

M7   
ss h1  - - - 381.95 387.95 383.41 389.41 1082.32 1088.32 1081.92 1087.92 

M8   
ss ba   - - - 378.87 384.87 378.72 384.72 1081.76 1087.76 1081.08 1087.08 

M9 
2I  

cX


 2I  
rX


 - 296.46 302.46 296.56 302.56 1058.02 1064.02 1060.05 1066.05 

M10 
2I  ss h1  2I  kk h1  - 317.58 323.58 316.77 322.77 1087.29 1093.29 1082.64 1088.64 

M11 
2I  ss ba   2I  kk ba   - 296.45 302.45 297.13 303.13 1058.02 1064.02 1059.84 1065.84 

M12   
cX


   
rX


 - 296.41 306.41 295.23 305.23 1049.91 1059.91 1057.51 1067.51 

M13   
ss h1    

kk h1  - 291.15 301.15 291.52 301.52 1057.10 1067.10 1057.34 1067.34 

M14   
ss ba     

kk ba   - 287.88 297.88 288.27 298.27 1057.45 1067.45 1059.24 1069.24 

M15   
cX    

rX  - 283.65 297.65 284.12 298.12 1043.37 1057.37 1044.22 1058.22 

M16   
ss h1    

kk h1  - % % % % % % % % 

M17   
ss ba     

kk ba   - % % % % % % % % 

M18 
2I  

cX


 2I  
rX


   crrc PP2  293.23 301.23 293.60 301.60 1058.02 1066.02 1060.05 1068.05 
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M19   
cX


   
rX


   crrc PP2  293.16 305.16 292.28 304.28 1049.91 1061.91 1057.49 1067.49 

M20   
cX    

rX    crrc PP2  280.12 296.12 280.27 296.27 1042.80 1058.80 1044.22 1058.22 

 
$ 1: 2

rrP   or  cc P2 ; 2I : 2
2IP rr   or  cc PI2

2 ;  : rrP   or  cc P ;  : rrP   or  cc P  

§ Representation of rX  or cX  in the marginal smooth; X


: obtained using 0U  of spectral decomposition of P  as obtained by software (IML 

procedure of SAS); X : obtained using near optimal orthogonal rotation (Figures 2 and 4) 
% Did not converge due to poor scaling of rX  and/or cX  
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Table 3: Analysis of barley data of Durbán et al. (2003) and wheat data of Stroup et al. (1994) 
using P-spline approach with 1p  (first differences) and the penalty in (3) for rcB . All 

models have fixed effects for replicates, genotypes, row numbers rh , column numbers ch  and 

their product crhh . The marginal smooths use   2var rrr Pu   , scX 1 ,    ccc Pu 2var   

and krX 1  for all models. 

 
Model q  

ri  ci   rcuvar  Barley data Wheat data 

     Deviance AIC  Deviance AIC  
M21 3 k  s  -  293.37 299.37 1072.47 1078.47 

M22 3 k  s    crrc PP2  279.28 287.28 1046.40 1054.40 

M23 2 k  s  -  293.56 299.56 1071.91 1077.91 

M24 2 k  s    crrc PP2  279.18 287.18 1046.06 1054.06 

M25 1 k  s  -  295.78 301.78 1075.14 1081.14 

M26 1 k  s    crrc PP2  278.45 286.45 1047.12 1055.12 

M27 3 10 20 -  292.92 298.92 1073.38 1079.38 

M28 3 10 20   crrc PP2  281.18 289.18 1056.41 1064.41 

M29 2 10 20 -  291.61 297.61 1073.27 1079.27 

M30 2 10 20   crrc PP2  279.74 287.74 1057.09 1065.09 

M31 1 10 20 -  296.75 302.75 1075.43 1081.43 

M32 1 10 20   crrc PP2  281.31 289.31 1052.41 1060.41 
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Table 4: Analysis of barley data of Durbán et al. (2003) and wheat data of Stroup et al. (1994) 
using the IAR model with the penalty in (7) for rcu  with kir   and sic   with and without 

marginal smooths added. All models have fixed effects for replicates, genotypes, row 
numbers rh , column numbers ch  and their product crhh . Fits obtained by a grid search over 

 1.01,0 .  
 
Model q  p  Marginal 

smooth§ 
Barley data Wheat data 

      Deviance AIC    Deviance AIC  
M33 3 1 - 0.5 284.53 290.53 0.9 1052.33 1058.33 
M34 2 1 - 0.5 283.94 289.94 0.9 1053.18 1059.18 
M35 1 1 - 0.6 281.52 287.52 0.8 1055.06 1061.06 
M36 3 2 - 0.6 295.90 301.90 0.9 1063.35 1069.35 
M37 2 2 - 0.6 296.58 302.58 0.9 1064.66 1070.66 
M38 1 2 - 0.6 297.00 303.00 0.9 1064.94 1070.94 
M39 3 1 1 0.9 274.84 284.84 0.9 1050.84 1058.84 
M40 2 1 1 0.9 274.85 284.85 1.0 1050.61 1060.61 
M41 1 1 1 0.9 273.81 283.81 0.9 1053.08 1063.08 
M42 3 2 1 1.0 284.63 294.63 0.9 1059.55 1069.55 
M43 2 2 1 1.0 284.79 294.79 0.9 1060.54 1070.54 
M44 1 2 1 1.0 284.94 294.94 0.9 1061.39 1071.39 
M45% 3 2   0.5 283.58 295.58 0.5 1063.57 1077.57 
M46§ 3 2   0.5 290.92 302.92 0.5 1052.70 1066.70 
M47 3 2   1.0 285.24 297.24 1.0 1049.40 1063.40 
M48 2 2   1.0 287.06 299.06 1.0 1044.35 1058.35 
M49 1 2   1.0 287.20 299.20 1.0 1046.99 1060.99 
M50 3 2   1.0 273.67 289.67 1.0 1044.28 1062.28 
M51 2 2   1.0 274.77 290.77 1.0 1041.51 1059.51 
M52 1 2   1.0 273.51 289.51 1.0 1038.81 1056.81 
 
§ 1: for 1p  just the intercepts for rows and columns.  : for 2p  using rrP   and 

 cc P  with cX


 and rX


, respectively.  : using rrP   and  cc P  with cX  and rX , 

respectively; X


: obtained using 0U  of spectral decomposition of P  as obtained by software 

(IML procedure of SAS); X : obtained using near optimal orthogonal rotation (Figures 2 and 
4) 
% Fit for fixed 5.0 ; using cX


 and rX


 for cX  and rX , respectively. 

§ Fit for fixed 5.0 ; using ss ba   and kk ba   for cX  and rX , respectively (Rodríguez-Álvarez 

et al. 2018). 
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Table 5: Analysis of barley data of Durbán et al. (2003) and wheat data of Stroup et al. 
(1994) using other common models. All models have fixed effects for replicates, genotypes, 
row numbers rh , column numbers ch  and their product crhh . 

 
Model Description Barley data Wheat data 
  Deviance AIC  Deviance AIC  
M53 Baseline§ 410.19 412.19 1101.53 1103.53 
M54 Baseline + row & column$ 352.40 358.40 1083.52 1089.52 
M55 AR1AR1 299.60 305.60 1067.32 1073.32 
M56 AR1AR1 + nugget 278.20 286.20 1050.34 1058.34 
M57 LVLV 283.71 291.71 1051.33 1059.33 
 
§ Model with fixed effects for genotype, replicate, linear regression on row and column 
numbers as well as their product, and i.i.d. residual error. 
$ Baseline, adding random effects for rows and columns nested within replicates 
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Figure 1: Heatmap of barley data of Durbán et al. (2003). (a) Raw data; (b) Smooth trend 
fitted by model M26 (Table 2). 
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Figure 2: Deviance profiled for r  and c  for barley data using model M12 with 3q  and 

diagonal structures ( ) for both marginal smooths (Table 2). Minimum at 27r  and 
11c . 
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Figure 3: Heatmap of wheat data of Stroup et al. (1994). (a) Raw data; (b) Smooth trend fitted 
by model M26 (Table 2). 
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Figure 4: Deviance profiled for r  and c  for wheat data using model M12 (Table 2). 

Minimum at 52r  and 48c .  
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Figure B1: Simulated trend for three state-space models. RW1 = first-order random walk; 
RW2 = second-order random walk; LLT = local linear trend; 000  b ; 1.02

1
2
0  uu  . 
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