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Abstract 
 
In recent years, a growing interest in the characterization of the molecular basis of 
psoriasis has been observed. However, despite the availability of a large amount of 
molecular data, many pathogenic mechanisms of psoriasis are still poorly understood.  
In this study, we performed an integrated analysis of 23 public transcriptomic datasets 
encompassing both lesional and uninvolved skin samples from psoriasis patients. We 
defined comprehensive gene co-expression network models of psoriatic lesions and 
uninvolved skin. Moreover, we collected, curated and exploited a wide range of 
functional information from multiple public sources in order to systematically annotate 
the inferred networks. 
The integrated transcriptomics analysis of public datasets shed light on a number of 
genes which are frequently deregulated in the psoriatic lesion compared with the 
unaffected skin in a large number of studies. In particular, CRABP2, LCN2, S100A12 
and PDZK1IP1 were found to be deregulated in all of the datasets analyzed. 
Furthermore, the analysis of co-expression networks highlights genes showing 
aberrant patterns of connectivity in the lesional network as compared to the network 
inferred from unaffected skin samples. For instance, we identified co-expression 
patterns of SERPINB4, KYNU and S100A12 as being the most affected by the 
disease. Network analysis allowed us to identify YPEL1 and HUS1 as plausible, 
previously unknown, actors in the expression of the psoriasis phenotype. In addition, 
by exploiting topological properties of the network models, we highlighted a set of 250 
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non-deregulated genes, 223 of which have never been associated with the disease 
before, including CACNA1A, HADH, ATP5MC1 and CBARP among others. 
Finally, we characterized specific communities of co-expressed genes sustaining 
relevant molecular functions and specific immune cell types expression signatures 
playing a role in the psoriasis lesion. Overall, integrating experimental driven results 
with curated functional information from public repositories represents an efficient 
approach to empower knowledge generation about psoriasis and may be applicable 
to other complex diseases.  
 
 
Introduction 
 

Psoriasis is a chronic inflammatory disorder of the skin, characterized by abnormal 
keratinocytes differentiation and hyper-proliferation of the epidermis, along with 
infiltration of inflammatory cells  1. Although genetic 2 and environmental factors are 
known to contribute to the aetiology of this polygenic disease, many of the intricate 
mechanisms of molecular alteration underlying the disease remain largely uncovered 
3. Multiple transcriptome studies have pinpointed key pathways altered in lesional 
psoriasis skin 4–8. However, integrated analysis of multiple homogenized datasets is, 
to date, still limited to a few examples 9,10. Although, for instance, Piruzian and 
colleagues, 9 report the results of an integrated meta-analysis of both protein and gene 
expression datasets (and, therefore, integrating different data types), they still 
summarize the results of single datasets. Moreover, the analytical strategies employed 
in such studies have an impact on the ability to disentangle more complex patterns of 
molecular deregulation. In fact, while univariate differential expression analysis shed 
light on hundreds (sometimes thousands) of deregulated genes in the lesional skin, it 
is not straightforward to infer regulatory loops of molecular alterations underlying the 
phenotype.  

This gap of knowledge could be filled by exploiting the large amount of biological data 
accumulated in recent years. In fact, vast amounts of data have been collected in 
public repositories and made freely available to the scientific community.  
However, integrating such a wealth of data sources is still challenging due to the 
heterogeneity of data formats and the need for extensive manual curation 11. 
A rigorous integration and exploitation of public data can provide a double benefit. On 
one side, already available data can inform the design of novel experimental strategies 
in order to achieve new knowledge. On the other hand, publicly available data may 
provide a shortcut to characterize and interpret de novo findings derived from targeted 
experiments. In the context of psoriasis, several repositories, among which Pharos 
(https://pharos.nih.gov/) 12, Target Validation [https://www.targetvalidation.org], 
Human Protein Atlas (https://www.proteinatlas.org) 13 and Clinical Trials 
(https://www.clinicaltrials.gov), report fundamental information about the state of the 
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art of research in this topic, starting from the druggability/tractability of suitable drug 
targets to clinical trials and large scale genetic association studies. Such data has 
never been integrated in order to derive new knowledge about the mechanistic events 
underlying the psoriatic phenotype. 

Graph theory provides effective models to uncover the relevant gene-gene expression 
relationships both in physiological and pathological conditions 14,15. In fact, gene 
coexpression network analysis is currently employed to understand the relationship 
between pairs of genes, and ultimately, gene networks or modules representing a 
marker of impaired biological functions in a disease 16.  

In this study, we have integrated gene expression analysis and co-expression network 
analysis approaches on a large collection of manually curated transcriptomics 
datasets 17 in order to 1) validate and prioritize genes that are already known to be 
associated to psoriasis, 2) uncover novel genes never associated to psoriasis before, 
3) create a gene-centric compendium of psoriasis-related information curated from 
multiple data repositories. 
 
 
Methods 
 
Data collection and preprocessing 
 
All the raw transcriptomics data collected and utilized in this manuscript are publicly 
available in the Gene Expression Omnibus (GEO) repository. The preprocessed data 
consist of 23 microarray-derived gene expression datasets of both lesional (574 
samples) and non-lesional skin (540 samples) of psoriasis patients. GEO IDs of the 
collected datasets are reported in Table S1. 
The preprocessing procedure was carried out as described in Federico et al. 17. 
Differentially expressed genes for each dataset were identified through the use of the 
eUTOPIA software 18 by comparing the lesional skin samples with the non-lesional 
ones. For the analysis, eUTOPIA default parameters were used. 
 
Integrated large scale transcriptome analysis 
 
The lists of differentially expressed genes were combined and the genes ranked on 
the basis of their frequency of differential expression across the datasets. Gene IDs 
conversions were performed through the use of the bioMart 19 and the clusterProfiler 
20 Bioconductor packages. Similarly, for each list of differentially expressed genes, a 
functional annotation was performed by using the ReactomePA R package 21. The lists 
of significantly deregulated pathways were then combined and the pathways ranked 
on the basis of their frequency of deregulation across the datasets. 
The gene and pathway rankings were carried out through the use of custom R scripts. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2021. ; https://doi.org/10.1101/2021.05.10.443441doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.10.443441
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Data scaling 
 
All of the collected microarray datasets were combined for cross-platform 
normalization. In particular, the pamr R package (version 1.56.1) 22 was used to mean-
adjust the combined microarray data based on a batch variable representing the 
different datasets downloaded from GEO.  
 
Integrated Psoriasis Knowledge Base construction 
 
We built a comprehensive gene-centric annotation, namely Integrated Psoriasis 
Knowledge Base (IPKB), reporting aggregated information about psoriasis from 
several categories of databases. In detail, the IPKB contains information annotated in 
14 databases, grouped in 6 categories: druggability/Tractability, Genetic association, 
Cell line-specific expression profiles, HumanKO/Trial, Immune Pathways and 
Modules, and literature derived PSO-association, for a total of 22 gene sets (Figure 
S2). The breakdown of the IPKB is reported in Table S2.  
The IPKB was constructed by collecting data from numerous publications and or public 
databases. Available psoriasis genetic data were retrieved from the NHGRI-EBI 
GWAS catalog of published genome wide association studies 23  by using the 
keywords “Psoriasis” and “Psoriasis vulgaris” and selecting the genes with association 
!"#$%&'( )( *+",-.( $/0( 12'(3!'/(4$56'17( 0$1$8$7'( 24,( 7'%'91:/6( 6'/'7(;:12( 6'/'1:9(

$77<9:$1:</(79<5'(=(,>*(?<5(?&512'5($/$%@7'7. Small molecule and antibody tractability 
data were also retrieved from Open Targets. Small molecule and biologics druggability 
data were collected from Finan et al., 2017 25. Protein localization data were 
downloaded from Pharos26, Human Protein Atlas27 (URL: http://www.proteinatlas.org) 
and from Uva et al., 2010 28. Immune pathway modules were retrieved from the 
Reactome database 29. Human knockout (KO) data were from Saleheen, et al., 2017 
30 and from Narasimhan, et al., 31. Immune cell-specific scRNA-Seq transcriptional 
signatures were collected from the Human Protein Atlas. The IPKB is publicly available 
in Zenodo (doi: 10.5281/zenodo.4740406). 

 
Networks inference and analysis 
 
Two distinct co-expression networks were inferred by using the gene expression 
profiles of the lesional and non-lesional skin samples over all the included studies and 
the genes common to all the platforms. The co-expression networks were inferred 
through the use of the INfORM algorithm 32. We set up INfORM in order to build a 
robust consensus network by using the clr 33, aracne 34 and mrnet 35 algorithms with 
the following correlation and mutual information measures: Pearson correlation, 
Kendall correlation, Spearman correlation, empirical mutual information, Miller-Madow 
asymptotic bias corrected empirical estimator, Schurmann-Grassberger estimate of 
the entropy of a Dirichlet probability distribution and a shrinkage estimate of the 
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entropy of a Dirichlet probability distribution, as implemented in the minet Bioconductor 
package 36. In order to carry out a network community detection we used the walktrap 
algorithm 37, implemented in INfORM. All computations performed on the inferred 
networks were carried out through the use of the igraph Bioconductor package 38. 
 
Functional annotation 
 
The functional annotations carried out in this study were based on the Reactome 
biological pathways and performed through the use of the ReactomePA 21 and 
clusterProfiler Bioconductor packages 20. Moreover, the STRING database 39 was 
used to inspect the functional characteristics of the bridge genes. 
 
Visualisation 
 
Visualisation of the results were performed through the use of the ggplot2 40 and gplots 
41 Bioconductor packages. The rendering of co-expression networks was performed 
by employing the gephi software 42. In this manuscript, we show a reduced 
representation of the actual networks in order to facilitate the reader visualisation. 
 
Differential centrality analysis 
 
For each of the networks, their node betweenness, closeness and degree centralities 
were calculated with the Python’s NetworkX package (Python 3.6, NetworkX 2.3). The 
nodes were ranked according to each of the centrality measures. For each of the 
networks, their nodes’ median rank based on the rankings of the three centrality 
measures were calculated. To compare the network of the lesional skin with the non-
lesional one, the absolute difference between the median ranks of the two networks 
was calculated and the genes were ranked accordingly. 
 
Gene set enrichment analysis 
 
One tail gene set enrichment analyses (GSEA) were performed through Kolmogorov-
Smirnov statistics, as implemented in the stats R package. Overrepresentation tests 
were performed by using the bc3net CRAN package 43. 
 
druggability evaluation of the lesional network 
 
The druggability evaluation of the PSO lesional network was performed by using the 
DrugBank annotation (version 5.1.7) 44. The Anatomical Therapeutic Chemical 
classification system (ATC codes) was retrieved from the josetung/atc Github R 
package. In order to increase the specificity of our analysis, we retrieved the drug-
target associations from DrugBank and considered only drugs whose targets are 
included in one module. The analysis was performed by considering the level 2 of the 
ATC codes annotation. 
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Results 
 
S100A12, PDZK1IP1, LCN2 and CRABP2 are the most commonly upregulated 
genes in the psoriatic lesion 
In order to identify genes that are consistently deregulated in transcriptomics 
experiments of lesional skin samples with respect to non-lesional counterparts, we first 
analyzed each dataset individually. The number of differentially expressed genes in 
each dataset ranged from 3,717 in GSE67853 to 100 in GSE57376, with a median of 
1,863 (Supplementary Fig. S1). Therefore, we ranked the differential expressed genes 
on the basis of their occurrence across all the datasets. As a result, S100A12, 
PDZK1IP1, LCN2, and CRABP2 genes were found to be differentially expressed in all 
23 PSO datasets. Furthermore, a set of genes belonging to the S100 and SerpinB 
transcription factor families was differentially expressed in 22 out of 23 datasets. 
Overall, 92 genes were differentially expressed in at least 20 datasets. The top 100 
ranked gene list derived from the integrated gene expression analysis is reported in 
Supplementary Table S3. 
We then assessed which genes showed the highest magnitude of deregulation across 
all the datasets. Therefore, we ranked each differentially expressed gene in each 
dataset by a significance score, calculated as follows: 
 

𝑠𝑠	 = 	−𝑙𝑜𝑔(𝐹𝐶) 	 ⋅ 	𝑙𝑜𝑔(𝑎𝑑𝑗𝑝𝑣𝑎𝑙) 
 
where FC is the fold change between the mean of the expression of the lesional 
samples and the mean of the expression of the non-lesional counterparts; adjpval is 
the Benjamini-Hochberg 45 adjusted p-value as obtained from the differential 
expression analysis. Our analysis highlighted SERPINB4, S100A12, and TCN1 as the 
most deregulated genes over all the datasets (Fig. 1). Among the frequently 
upregulated genes, SERPINB4 showed a median logFC across the datasets of 6.3 
[Q1: 5.4; Q3: 7.2] with a maximum of 7.8 in GSE13355; S100A12 showed a median 
logFC of 5.0 [Q1: 4.5; Q3: 6.0] and a maximum of 6.7 in GSE30768; and TCN1 had a 
median value of 5.1 [Q1: 4.1; Q3: 5.4] and a maximum of 7.2 in GSE57376. On the 
other hand, the top genes found to be downregulated in most of the datasets were 
BTC, with a median logFC of -3.0 [Q1: -3.3; Q3: -2.6], and the strongest 
downregulation reported in GSE50790; WIF1, with a median logFC of -2.5 [Q1: -2.7; 
Q3: -2.3] and a maximum downregulation in GSE50790; and PM20D1 with a median 
of 2,6 [Q1: -2.9; Q3: -2.0] and the lowest logFC of -4.5 in GSE47751. 
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Network analysis highlights genes with aberrant co-expression patterns.  
 
The integrated gene expression analysis allowed us to identify genes that are 
deregulated in the psoriatic lesion with respect to the non-lesional skin, giving, then, a 
quantitative perspective of the molecular alterations at a transcriptional level of the 
disease. However, the integrated expression analysis uncovers only one aspect of the 
deregulation underlying the psoriatic phenotype. In fact, the molecular build-up of a 
tissue is not only determined by the expression patterns of individual genes, but also 
by their co-expression relationships. Therefore, to characterize the complex landscape 
of transcriptional alterations that sustain the psoriasis, we identified disrupted patterns 
of gene co-expression. To do so, we inferred two transcriptome-wide gene co-
expression networks from both the lesional and the non-lesional skin sample sets, 
respectively. 
Since the networks were built from all the genes common to all of the microarray 
platforms, both of the networks are composed of 7,310 genes, while the lesional 
network has 1,136,431 edges, the non-lesional one has 1,559,790 edges. 
The patterns of molecular alterations underlying the psoriatic phenotype can be 
characterized by investigating intrinsic topological properties of the inferred networks. 
One aspect that defines the differences between the two networks (lesional and non-
lesional) is the centrality of their genes, a property measuring the number of co-
expression connections that a certain gene holds with the others.  
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The differential centrality analysis allowed us to identify genes with a significant 
difference of connectivity between the lesional and non-lesional network. Table 1 
shows genes whose connectivity is heavily affected by psoriasis, since they are highly 
central in the lesional network while their centrality is lower in the non-lesional one. 
Specifically, the connectivity of SERPINB4, KYNU, S100A12, CASP5, CXCL1 and 
CXCL8 are the most affected. Intriguingly, by comparing the results of the differential 
centrality analysis with the gene rank obtained by the integrated gene expression 
analysis, we observed that several of the top differentially central genes (DCG) were 
also differentially expressed in a large number of datasets. For instance, SERPINB4, 
KYNU, S100A12, PNP and CXCL1, which are among the top 10 DCG, resulted to be 
differentially expressed in more than 20 datasets. On the contrary, some genes such 
as YPEL1 and HUS1 appear at the top of the DCG but are not differentially expressed 
in any of the collected datasets.  
On the other hand, we identified a second set of DCG, which showed an opposite 
pattern of aberrant connectivity compared to the genes reported in Table 1. Indeed, 
the connectivity of a number of genes is affected so that the genes are highly central 
in the non-lesional network while they show a lower centrality in the lesional one (Table 
2). Therefore, these genes lose a high number of co-expression connections in the 
psoriatic lesion in respect of the uninvolved skin. IHH, AQP9, ITGB8, CD55, CMA1 
are the most affected ones, showing this trend of connectivity. Interestingly, their 
frequency of differential expression in the integrated expression analysis is markedly 
low, being detected as differentially expressed in a maximum of 2 datasets, with the 
exception of AQP9, detected in 17 studies. An overview of the impact of PSO on the 
co-expression connections in both the lesional and non-lesional network is shown in 
Supplementary Fig. S3. 
 
 
Identification of novel candidate genes associated with psoriasis 
 
We hypothesized that, by studying the connectivity patterns among known psoriasis 
genes, it is possible to identify additional associated genes. Hence, a gene that is 
connected to two or more known psoriasis-associated genes is a strong candidate to 
be involved in its pathogenesis (Fig. 2). Based on this principle, we identified all the 
genes connecting pairs of differentially expressed genes (previously identified by the 
integrated gene expression analysis) within each of the networks (lesional and non-
lesional, respectively), and hence acting as a bridge (hereafter referred to as “bridge 
genes”). By this analysis, we obtained a set of 1,622 and 1,940 bridge genes (BG) for 
the lesional network and non-lesional networks, respectively. Consequently, we 
selected a set of 250 genes acting as bridges in the lesional network, but not in the 
non-lesional one (Fig. 2). Among the bridge genes connecting a large number of 
differentially expressed gene pairs, we identified CACNA1A (Calcium Voltage-Gated 
Channel Subunit Alpha1 A) and its negative regulator CBARP, connecting 696 and 
562 gene pairs, respectively. Likewise, the genes HADH and ATP5MC1, whose 
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protein products function in mitochondria, connect a high number of deregulated gene 
pairs (562 and 550, respectively) in the lesional network. 
 
 

 
 
 
 
In order to characterize the functional properties of the bridge genes, we performed a 
functional annotation by using the STRING database. STRING shows a peculiar 
clustering of gene products involved in RNA splicing, which is the first enriched term 
in the gene ontology (GO) biological process, followed by cellular nitrogen compound 
metabolic process (both with FDR = 0.0063) (Fig. S4). 

 
 
 
Network analysis allows the identification of disease-relevant communities 
 
It is a widespread assumption that genes which are tightly co-expressed (whose 
expression levels are highly correlated) are likely to be also co-regulated, as well as 
involved in common functions 46. Graph models allow the identification and 
characterization of such communities of genes. In this study, we investigated the 
arrangement of co-expressed genes in both the lesional and non-lesional networks by 
performing a community detection analysis. Thus, we identified 13 communities of co-
expressed genes in the lesional network. The biggest community encompasses 1,888 
genes, while the smallest 1 gene, with a median size of 309. In the non-lesional 
network we identified 10 communities with a median size of 756 genes, being the 
biggest composed by 1,723 and the smallest by 1 gene. All our analyses were limited 
to modules composed by at least 10 genes (Supplementary Fig. S5 and S6). 
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An interesting aspect we investigated is whether one or more network communities 
exist that enrich for the putative PSO-associated genes identified through the 
integrated gene expression analysis. In order to fulfill this aim, we performed a GSEA 
on the gene rank derived from the integrated gene expression analysis over the 
identified modules of the lesional network. As a result, we obtained that module 2, 
module 4 and module 7 significantly enriched for the genes at the top of the integrated 
gene expression analysis rank (p=2.41e-23, p=1.25e-24, p=4.89e-07, respectively). 
Similarly, we performed the same analysis to assess whether the communities of the 
lesional network enrich for genes whose centrality is significantly different between the 
lesional and the non-lesional network, previously identified by the differential centrality 
analysis. We obtained that module 6 and module 7 significantly enrich for the top 
differentially central genes (p=0.0054 and p=0.0026, respectively). Finally, the same 
analysis was performed on the bridge genes set, in order to verify their enrichment 
over the modules. We found that module 3 significantly enriches for the bridge genes 
(p= 1.57e-07) (Fig. 3). 
 
 

 
 
We characterized the biological functions of the gene communities identified in the 
lesional network (fdr < 0.05, Fig. 4). Module 2, which is overrepresented by top-ranked 
genes of the integrated gene expression analysis, is significantly enriched in genes 
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belonging to the extracellular matrix organization and proteoglycans, collagen 
formation, integrin cell surface interactions among others, which are expected in skin 
diseases like psoriasis. Interleukin 4 and interleukin 13 signaling pathways are also 
enriched by module 2 and 7. Moreover, interleukins signaling pathway is also enriched 
in module 7, together with other immunological pathways, such as interferon signaling 
pathway. However, Module 4 shows the strongest immunological signature among all. 
In fact, the genes belonging to this module significantly enrich interleukin 10 signaling, 
interleukin 4 and 10 signaling and interferon alpha/beta signaling. Module 5 and 6 
overrepresent pathways related to generic cell cycle functions, like G1/S transition, S 
phase, transcriptional regulation of P53, mRNA splicing. Likewise, module 3, which is 
over-represented by bridge genes, enriches mostly for receptorial functions, such as 
G-Protein Coupled Receptors (GPCRs) ligand binding, rhodopsin-like receptors, and 
peptide ligand-binding receptors. 
 
 
 

 
 
Prior knowledge enables the characterisation of lesional network gene modules 
 
We further performed an overrepresentation analysis of the gene sets collected in the 
IPKB in each community of the lesional network. This analysis highlighted that, for the 
category Human KO/Trial, Module 4 is significantly enriched in two out of three gene 
sets, HumanKOPakistan and ClinicalTrial (p=0.027 and p=0.001, respectively). 
Module 3 and 7 enrich for genes belonging to the HumanKOPakistan and 
HumanKOBritishPakistani sets (p=0.003 and p=0.001, respectively). Module 4 is also 
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enriched for almost all the gene sets of the category Immune Pathways/Modules, with 
the most significant p=5.06E-18 in ImmunePathwayAdaptive. On the other hand, 
Module 7 enriches for the ImmunePathwayCytokineSignalling (p=2.12E-05). 
Additionally, since psoriasis poses its roots in the impairment of the immuno-
inflammatory homeostasis, we wondered whether the modules of the lesional network 
are enriched by genes expressed in a specific manner in immune cell lines, which are 
primarily involved in the aberrant response in psoriasis. By exploiting publicly available 
immune cell type-specific gene expression signatures from the Human Protein Atlas 
database, which we included in the DGI, we performed a GSEA analysis to assess the 
enrichment of cell type-specific genes over the modules of the lesional network. We 
obtained that module 4 is enriched by genes specifically expressed in T-cells 
(p=0.006), monocytes (p=7.93e-05), macrophages (p=0.015) and Kupffer cells 
(p=0.027). Similarly, module 2 is enriched by monocytes-specific genes (p=0.035) 
while module 3 by Kupffer cells genes (p=0.035) (Fig. 3). 
 
 
Immunomodulators and dermatological drugs target specific modules of the 
lesional skin network 
 
We characterised the druggability potential of the relevant modules identified in the 
previous analytical steps. To this end, we defined module-specific drug-target gene 
maps by exploiting publicly available information available at DrugBank. All of the 
modules except module 5 and 9, encompass a number of drugs which is higher than 
the number of genes composing the module (Fig. 5). Moreover, by considering 
modules with a number of genes >10 and taking into account the frequency of 
druggable genes over the total number of genes composing each module we found 
that module 3, 8, 7, 2 and 4 show a higher amount of drug target genes (38%, 38%, 
31%, 31%, 30%, respectively) compared to other modules.  
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To further characterise the drugs mapping onto the lesional network, we restricted our 
analysis to drugs whose targets belong to one specific module only. By applying this 
restraint, we carried out further analyses on 3090 out of 5317 drugs. 
We characterised the module-specific drugs on the basis of their therapeutic class as 
annotated in the second level of the World Health Organization (WHO) Anatomical 
Therapeutic Chemical (ATC) classification system. Module 8 contains the highest 
number of drugs mapped with respect to the size of the module (140 drugs, 
drugs/genes ratio = 0.92), followed by module 11 (87 drugs, drugs/genes ratio = 0.68), 
module 2 (500 drugs, drugs/genes ratio = 0.61), module 3 (354 drugs, drugs/genes 
ratio = 0.61), module 6 (729 drugs, drugs/genes ratio = 0.59). Module 4, which we 
previously identified to have a marked immunological profile, encompasses target 
genes for 106 drugs, showing a drugs/genes ratio of 0.41.  
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While the most represented drug category in module 8 is anti-emetics and anti-
nauseants (A04), for both module 8 and module 11 dermatologicals belonging to the 
anti-acne preparations category (D10) are predominantly represented (Fig. 6). 
Potassium Voltage-Gated Channel Subfamily H Member 2 (KCNH2) and the Retinoic 
Acid Receptor Alpha (RARA) play a pivotal role in the druggability of module 8. In fact, 
KCNH2 protein is a target of a high number of drugs, including Erythromycin and 
Chlorobutanol, while the retinoic acid receptor alpha is targeted by dermatological 
compounds including tretinoin, isotretinoin and adapalene. Interestingly, RARA is also 
targeted by two other retinoids employed in the treatment of severe psoriasis, 
Tazarotene and Etretinate. In module 11, Dapsone and Resorcinol target the NAT2 
and TPO gene products, respectively. In module 4, the most represented class of 
compounds is immunosuppressant (L04). In fact, Alefacept, targeting the T-cell 
surface antigen CD2, together with Abatacept, Belatacept, targeting the T-
lymphocytes activation antigen CD86 are among the numerous compounds belonging 
to this category. In module 4, also Framycetin is represented in the medicated 
dressings category (D09), which is known to act on the CXCR4 gene product. 
Interestingly, module 4 also encompasses a number of target genes for 
immunostimulant compounds (L03). Our analysis highlighted that IL2RA and IL2RB 
are targets of Aldesleukin, a compound employed in IL2 replacement therapies, while 
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the Colony Stimulating Factor 3 Receptor (CSF3R)  is targeted by several 
immunostimulant drugs, such as Filgrastim, Lenograstim, Pegfilgrastim, 
Lipegfilgrastim. Finally, module 2 is enriched by a wide spectrum of pharmacological 
categories, ranging from drugs employed in the treatment of musculo-skeletrical 
disorders (M09), hematological agents (B06) to drugs used for gastrointestinal 
disorders (A03) and anti-Parkinson drugs (N06).  
 
 
 
Discussion 
 
In this study, we analysed a large collection of transcriptomics datasets recently 
curated 17 in order to gain new knowledge about complex patterns of gene alteration 
with a role in the psoriatic phenotype.  
By analyzing 23 transcriptomics datasets, we identified genes and pathways that are 
consistently deregulated in the psoriatic lesions as compared to the uninvolved skin. 
Our analysis found CRABP2, LCN2, S100A12 and PDZK1IP1 deregulated in all the 
datasets, suggesting their  importance in the definition of the psoriatic phenotype. 
Overall, our differential expression analysis highlighted the upregulation of genes 
involved in inflammatory cascades, such as S100A12 and SERPINB4, and the 
pronounced  downregulation of genes related to developmental pathways, such as 
epidermal growth factor family members (BTC) and genes involved in the WNT 
signalling (WIF1). 
In addition to known genes associated with psoriasis, we also prioritized novel 
candidates, such as SYNCRIP  encoding a protein involved in the control of translation 
such as alternative splicing and mRNA maturation 47, as well as SASH3 whose protein 
product could function as a signaling adapter proteins in lymphocytes 48. 
Since it is well known that genes act in a coordinated manner in both physiological 
and pathological conditions, we inferred and analyzed co-expression network models 
representative of the psoriatic lesion and the uninvolved skin in order to identify the 
disrupted patterns of gene co-expression underlying the psoriatic lesion.  
 
In the context of graph models, genes are co-expressed with variable numbers of other 
genes (interactors), signifying their relative importance in defining the phenotype 
underlying the gene network. We identified the genes with the most different number 
of interactors in the two networks derived from lesional and nonlesional samples, 
respectively. 
This result highlights two important aspects. First, the deregulation of distinct genes in 
the lesional skin affects the co-expression relationships with other genes, which are 
not necessarily deregulated. Second, this highlights the importance of going beyond 
the classical gene expression analysis, which is focused on the evaluation of individual 
genes, failing to capture the complex relationships sustaining biological processes. In 
fact, we identified a few genes with an aberrant co-expression connectivity in the 
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lesional network as compared with the non-lesional one, which do not show a 
differential expression. Among others, YPEL1 and HUS1. While YPEL1 may play a 
role in the regulation of cell division and in the polarization of fibroblasts towards an 
epithelial-like morphology 49, HUS1 product is involved in the arrest of cell cycle upon 
DNA damage. In fact, HUS1 gene is one of the top associated genes with Xeroderma 
pigmentosum variant, since it is responsible for the impaired repair capacity of UV-
mediated DNA damages. 
While differential expression analysis identified genes deregulated in psoriatic lesions, 
gene network analysis investigating the connectivity patterns among such genes in 
the lesional network revealed 250 non-deregulated genes connecting (bridging) 
deregulated ones. As previous attempts to identify genes associated with psoriasis by 
transcriptomics relied mainly on differential expression, it is not surprising that 223 of 
our 250 newly identified genes have not been associated with psoriasis so far 
according to Opentargets. Thus, we here describe a completely new group of genes 
related to transcriptional deregulation in psoriatic lesions, which we call “bridge genes”, 
since they connect couples of differentially expressed genes within the lesional 
network, and, therefore, they are putatively associated to psoriasis.  
The bridge gene connecting the highest number of differentially expressed genes is 
CACNA1A (Calcium Voltage-Gated Channel Subunit Alpha1 A). This gene encodes a 
calcium channel, which regulates intracellular processes such as contraction, 
secretion, neurotransmission and gene expression, suggesting that bridge genes have 
superior/broad-spectrum roles in cell regulation. CACNA1A not only is followed by its 
related gene CBARP (CACN Subunit Beta Associated Regulatory Protein), but also 
by a number of genes involved in mitochondrial metabolic activities such as HADH, 
whose enzymatic activity is exploited in the fatty-acid beta-oxidation process, and 
ATP5MC1, coding for a subunit of the mitochondrial ATP synthase and responsible 
for the synthesis of ATP during oxidative phosphorylation by exploiting the protonic 
gradient across the mitochondrial inner membrane. 
 
The analysis of communities of co-expressed genes allowed us to both identify genes 
that can be functionally involved in psoriasis and their characteristics in terms of 
immune cell-specific expression and druggability. 
Interestingly, we found that many bridge genes are significantly co-expressed within 
module 3, which is enriched by genes involved in biological processes such as GPCR 
ligand binding, transmission across chemical synapses, and potassium channels 
indicating that bridge genes are related to broadly receptorial functions.  
Pilar Pedro et al. 50 reports about the role of the GPCRs in the translation of 
extracellular signals into intracellular cascades that regulate the activation of 
keratinocytes proliferation and differentiation, including major signalling pathways, 
such as Hedgehog, Hippo YAP1 and WNT/B-catenin. In the same work, the authors 
underline the role of the neural-epithelial connection, mediated by β-adrenergic 
receptor (βAR) signaling in triggering keratinocyte proliferation, which is over-activated 
in the psoriatic lesion.  
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Moreover, module 3 is particularly rich in genes which are expressed in a specific 
manner in monocytes. The role of hyper-reactive monocytes in the psoriatic phenotype 
has long been known 51. In fact, Golden et al., observed elevated adhesion of 
monocytes and, in turn, increased formation of aggregates, which they also correlated 
with disease severity and underlying a major role of the innate immunity in the disease 
progression 52.  
Module 4 is overrepresented by deregulated genes whose activity lies in immune-
related pathways, including signaling by interleukins, interferon signaling and 
chemokines and their receptors. Moreover, it encompasses genes which are 
specifically expressed in a reservoir of immune cell lines, such as T-cells, monocytes, 
macrophages and Kupffer cells, underlying its role in the chronic auto-inflammatory 
response characteristic of psoriasis. Indeed, a pivotal role for T-cells, and cells of the 
myeloid lineage, including monocytes and macrophages is well established 53–58.  
The immune-related nature of module 4 is reflected also by the druggability analysis 
of the lesional network model. In fact, several genes belonging to module 4 are targets 
of both immunostimulant and immunosuppressive drugs, such as interleukins and 
chemokines. This suggests that this module could be a good reservoir of putatively 
novel pharmacological targets for the development of therapeutic approaches with an 
immunomodulatory action to treat psoriatic lesions. Along with these categories of 
compounds, dermatological medications were also represented in module 4. 
Framycetin (also known as neomycin sulphate), among others, is a neomycin 
component employed in the treatment of ocular and skin bacterial infections. To the 
best of our knowledge, this compound is currently not employed for the treatment of 
the psoriatic plaques. Furthermore, module 8 showed an interesting scenario 
regarding its drug target content. In fact, we found that the retinoic acid receptor alpha 
(RARA), is the target of a plethora of chemical compounds already employed in the 
treatment of severe psoriasis plaques. For instance, the topical agent Tazarotene, and 
oral agent Acitretin (and its predecessor Etretinate), are compounds largely used in 
the treatment of psoriatic plaques 59,60. Tazarotene is a retinoid drug which has been 
approved in 2019  from Food and Drug Administration (FDA) in combination with 
Halobetasol in PSO affected adults61. On the other hand, Acitretin is used in severe 
psoriatic manifestations, but due to its high lipophilic capacity shows teratogenic 
effects and it is contra-indicated in pregnancy and for 3 years prior to conception 62. 
Etretinate, a metabolic product of Acitretin,  is a high lipophilic retinoid which was used 
in severe psoriatic manifestations 63, but its use was suspended between 1996 and 
1998 for its teratogenic effects 64 .  
The limited amount of clinical data made available along with the transcriptional 
profiles annotated in public repositories poses some limitations to the present study. 
The lack of detailed clinical information makes the identification of gene markers or 
co-expression communities associated with clinical characteristics impossible, 
hampering the predictive power of the present study. Moreover, this hinders the 
possibility of translating this study to a precision medicine level, making possible the 
characterization of the impaired molecular relationships at a single-patient resolution.  
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In conclusion, in this study we combined an integrative gene expression analysis with 
co-expression network analysis in order to identify novel aspects of the psoriatic lesion 
at a molecular level. Our approach allowed us to give an insight into the known 
alterations associated with psoriasis by identifying novel genes which can putatively 
act as disease biomarkers. Future mechanistic studies elucidate their role in the 
disease onset and progression while epidemiological studies will be necessary to 
assess their clinical relevance. 
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Figure legends 

Figure 1 - Occurrence of each gene as differentially expressed across the included studies 
(n=23). The table reports the top ranked genes and their differential expression frequency. 
 
Figure 2 - Schematic representation of bridge genes. In blue is shown as an example of gene 
co-expression network. In green are shown the bridge genes, acting as connectors among 
couples of differentially expressed genes, shown in red. The table reports the rank of bridge 
genes based on the number of connected couples of differentially expressed genes. 
 
Figure 3 -  Evaluation of the enrichment of differentially central genes (DCG), bridge genes 
(BG), immune cell specific genes as well as immune-related pathways over the modules 
detected in the lesional network. The size of the circle is proportional to the dimension of the 
module.  
 
Figure 4 - Module-specific pathway enrichment based on the Reactome database. On the x 
axis are indicated the module and the number of genes contributing to the enrichment (in 
parentheses). On the y axis are indicated significantly enriched pathways. 
 
Figure 5 - Evaluation of the module-based druggability profile in the PSO lesional network. In 
brown is shown the number of genes composing the module, in green the number of drugs 
and in blue the number of druggable genes. 
 
Figure 6 - Characterisation of module-specific drugs based on the Anatomical Therapeutic 
Chemical classification system (ATC). The figure shows the modules with the highest 
drugs/genes ratio. The plots of the remaining modules are shown in Supplementary materials. 
 
 

Tables 

 

Top 
differentially 
central genes 
between 
lesional and 
non-lesional 
networks 

Rank position 
in the lesional 
network 

Rank position 
in the non-
lesional 
network 

Difference 
between the 
networks’ 
ranks 

Frequency of 
differential 
expression in 
the integrated 
expression 
analysis 

SERPINB4 552 7,128 6,576 22 
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KYNU 911 7,046 6,135 22 

S100A12 697 6,620 5,923 23 

CASP5 1,043 6,875 5,832 11 

CXCL1 1,107 6,218 5,783 20 

CXCL8 1,781 7,135 5,354 18 

SLC23A2 1,637 6,983 5,346 21 

YPEL1 1,336 6,675 5,339 0 

PNP 1,177 6,377 5,200 21 

HUS1 1,048 6,232 5,184 0 
 
Table 1 - Top ten differentially central genes (DCG) between the lesional and the non-lesional 
network. The rank position in the lesional and non-lesional network, the difference between 
the ranks and the frequency of differential expression of each gene are reported.  
 
 
 
 

Top 
differentially 
central genes 
between 
lesional and 
non-lesional 
networks 

Rank position 
in the lesional 
network 

Rank position 
in the non-
lesional 
network 

Difference 
between the 
networks’ 
ranks 

Frequency of 
differential 
expression in 
the integrated 
expression 
analysis 

IHH 6,575 1,447 5,128 0 

AQP9 5,756 631 5,125 17 

ITGB8 6,880 1,780 5,100 1 

CD55 6,023 949 5,074 1 

CMA1 5,874 852 5,022 2 

SRPK3 6,711 1,693 5,018 0 

ITPR1 6,458 1,529 4,929 1 

TUBGCP3 5,865 971 4,894 0 

SYCP2 6,570 1,820 4,750 0 
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NMB 6,389 1,726 4,663 3 
 
Table 2 - Top ten differentially central genes (DCG) between the lesional and the non-lesional 
network. The rank position in the lesional and non-lesional network, the difference between 
the ranks and the frequency of differential expression of each gene are reported.  
 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2021. ; https://doi.org/10.1101/2021.05.10.443441doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.10.443441
http://creativecommons.org/licenses/by-nc-nd/4.0/

