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Abstract1

Mind-blanking (MB) is the inability to report mental contents, challenging the view of a constantly thought-oriented mind2

during wakefulness. Using fMRI experience-sampling we show that MB is reported scarcely, fast, and has low transitional3

dynamics, pointing to its role as a transient mental relay. MB’s cerebral profile is linked to an overall positive connectivity4

pattern, bearing great resemblance to neural configurations observed in local sleeps, possibly reflecting neuronal silencing5

during wakefulness. We also find less efficient information flow between the default mode (DMN) and other networks before6

reporting MB. The DMN-salience network segregation was further able to classify MB from other reports in fewer steps,7

suggestive of an early saliency evaluation of contentless phenomenology along the neurocognitive hierarchy. Collectively,8

MB’s unique neurofunctional profile among thought-oriented reports supports the view of instantaneous mental absences9

happening during wakefuless, paving the way for more mechanistic investigations of this particular phenomenology during10

ongoing mentation.11
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1 Introduction12

During spontaneous thinking we tend to traverse different mental states which recruit the activity of multiple neural systems1.13

What is interesting is that, apart from entertaining specific thoughts, there are moments when our minds go nowhere, giving the14

impression that we are empty of mental content. These phenomenological occurrences are known as content-free awareness2 or15

mind blanking (MB)3. What is the position of MB among other mental states during ongoing thinking, and how does the brain16

configure to support this empty-mind phenomenology?17

Behavioral studies indicate that MB happens scarcely during everyday functioning, yet with a considerable frequency. It18

has been shown, for example, that during focused tasks, MB was reported on average 14.5% of the time whenever subjects19

were requested to provide a mental evaluation3, and 18% of the time when participants reported MB by self-catching4. MB was20

also observed in the form of attentional lapses, when participants were engaged in task performance5–7. In terms of neural21

underpinnings, there was evidence for reduced fMRI functional connectivity between the default mode network (DMN) and22

frontal, visual, and salience networks when participants were instructed to "think of nothing" as compared to "let your mind23

wander"8. MB was also associated with deactivation of Broca’s area and parts of the hippocampus, as well as with activation24

of the anterior cingulate cortex, which was interpreted as reduced inner speech9. Decreased functional connectivity in the25

posterior regions of the DMN and increased connectivity in the dorsal attentional network were also found in an experienced26

meditator practicing content-minimized awareness2. Collectively, these studies indicate that the investigation of MB is rising27

over the years. Yet, MB so far has been induced, therefore the estimation of its occurrences across time can be biased. Also,28

MB has been examined in highly-trained individuals, like experienced meditators, therefore limiting the generalizability of its29

occurrences in typical participants. Finally, the neural substrates associated with MB concern a limited number of brain regions,30

leaving the whole-brain functional connectome uncharted.31

The importance of a comprehensive characterization of MB rests on the fact that MB challenges the view of a primarily32

thought-oriented mind, which traverses stimulus-dependent and stimulus-independent thoughts10. Mind states which are33

thought-oriented indeed prevail during wakeful mentation and are characterized by rich spatio-temporal dynamics at the34

brain level11. Inversely, less complex neural architectures of highly segregated organization and less metastable dynamics are35

linked to the inability to report subjective experience as seen in sleep12, anesthetized primates13, typical individuals under36

anesthesia14, and in vegetative/unresponsive patients15. Several theoretical models concur that the reason we cannot report37

in such a segregated state is because the brain is unable to combine divergent signals and distribute them widely so that they38

become reportable16, 17. These theoretical frameworks further hold that the inability to report mental contents can also happen39

in a brain state with extreme functional integration. In this scenario, an abnormally large number of regions work in synchrony,40

and, as a result, the brain becomes no longer capable of processing information in a way that leads to reportability, such as41

during generalized epilepsy18 and local sleeps19. As both neural configurations can occur during ongoing mentation15 and can42

be linked to the inability to report, the emerging question is which one would support the phenomenology of MB. To date, no43

empirical evidence favours one possibility over the other.44
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With the aim to delineate the neurofunctional profile of MB, we used fMRI-based experience-sampling in typical individu-45

als20 in order to: a) account for a representative behavioral quantification of pure (no induction) MB occurrences in a dynamic46

way, b) determine MB’s functional connectome at the whole-brain level, and c) estimate the brain’s segregative/integrative47

organization whenever reporting MB occurrences.48

Results49

Data were acquired from 36 typical participants (27 females, 9 males, mean age: 23y±2.9) within a 3T MRI scanner. Randomly50

presented auditory sounds (n=50) prompted subjects to evaluate and report their mental content as it was prior the probe.51

Possible mental states were: i) MB, ii) perception of sensory stimuli without internal thoughts (Sens), iii) stimulus-dependent52

thoughts (SDep), and iv) stimulus-independent thoughts (SInd). With this setup, Rest periods and Response-type periods could53

be determined (Fig.1A).54

Behavioral reports55

We found that MB was reported significantly fewer times than any other mental state (median=2.5, IQR=3, min=0, max=9;56

Fig.2A). There was a main effect of mental state with respect to reaction times (χ2(3) = 66.63, p < 0.001; generalized57

linear mixed model analysis with gamma distribution and inverse link function), with MB being reported faster than SDep58

(z = 3.81, p = 0.0008) and SInd (z = 3.37, p = 0.0042) but with no differences from Sens (z = −0.73, p = 0.89; post-hoc59

Tukey test; Fig.2B). The evaluation of the dynamic transitions among different mental states showed exceptionally low, but60

equal probabilities (0.06) of reporting MB departing from a content-oriented state. Inversely, departures from MB towards61

content-oriented reports were characterized by high transition probabilities (>0.27). Also, the probability to re-enter MB (i.e.62

reporting another MB immediately after a MB report) was particularly low (0.04, Fig.2C). Finally, the hypothesis for a uniform63

distribution of reports across the session could not be rejected either for MB (χ2(9) = 12.31, p = 0.20, φ = 0.35; Fig.2D) or64

for SDep (χ2(9) = 5.25, p = 0.81, φ = 0.10) and SInd (χ2(9) = 4.22, p = 0.90, φ = 0.07). However, Sens reports were not65

equally distributed over time (χ2(9) = 18.15, p = 0.03, φ = 0.23).66

Brain patterns and neurofunctional analysis67

By means of phase-based coherence connectivity analysis and k-means clustering, we determined four brain patterns which68

appeared recurrently across the rest periods (Fig.1B). The patterns were characterized by distinct signal configurations: a69

pattern of complex inter-areal interactions, containing positive and negative phase coherence values between long-range70

and short-range regions (Pattern 1), a pattern showing signal anti-correlations primarily between the visual network and the71

other networks (Pattern 2), a pattern with overall positive inter-areal phase coherence (Pattern 3), and a pattern of overall72

low inter-areal coherence (Pattern 4, Fig.3A). In terms of occurrences, Pattern 4 appeared at a significantly higher rate than73

Pattern 1 (t(35) = 6.23, p < 0.001, Cohen’s d = 1.04), Pattern 2 (t(35) = 5.27, p < 0.001 , Cohen’s d = 0.88) and Pattern 374

(t(35) = 5.50, p < 0.001 , Cohen’s d = 0.92, p-values are FDR corrected at α = 0.05; Fig.3B).75
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To determine which brain pattern was the closest to MB reports, we used the cosine distance as the similarity measure76

between five connectivity matrices preceding a report (i.e., Response-type periods) and the four brain patterns (Fig. 1C). Using77

a generalized linear mixed model fit to the distance measures of each brain pattern separately, we found a significant effect78

of mental state for distance values to Pattern 3 (χ2(3) = 15.47, p = 0.001) and Pattern 4 (χ2(3) = 8.83, p = 0.032). Pattern79

3 further showed higher similarity to MB compared to the reports about Sens (Estimate = 0.09, z = 2.71, p = 0.034), SDep80

(Estimate = 0.11, z = 3.48, p = 0.003), and SInd thoughts (Estimate = 0.12, z = 3.82, p < 0.001; Post-hoc tukey tests, Fig.4).81

Information flow analysis82

To determine each mental state’s integration/segregation profile, we used diffusion maps followed by mental state classification.83

Diffusion-map analysis is a non-linear dimensionality reduction technique based on spectral graph theory21. Applied to brain84

data, a larger distance in the diffusion values between regions indicates smaller between-region transition probabilities, which85

implies that information exchange is less efficient. For each mental state report, diffusion maps were calculated on the average of86

response-type connectivity matrices related to that state. We found that for MB, diffusion values have larger distances between87

regions of the DMN (red range values) and what is broadly defined as the salient network (blue range values). Furthermore,88

the diffusion value distance was smaller for content-oriented reports (Fig.5A). Using subjects’ maps as feature vectors and89

applying a C4.5 decision tree classifier with a 10-fold cross validation scheme, mental state classification was achieved at an90

accuracy of 81.16% (Table1 and Table2). Based on the classifier’s optimum decision tree and the brain regions’ diffusion91

values, the somatomotor network was the region whose diffusion value separated MB from thought-oriented reports (Fig.5B).92

Subsequently, the final classification between thought-oriented reports (SDep vs. SInd) was achieved with the contribution of93

DMN prefrontal regions. Similarly, MB classification was achieved when the diffusion value was <0.6 in the left fronto-insular94

cortex (salience network). When the diffusion value in this region was higher, the decision between MB and Sens reports95

required more steps and the contribution of right parietal areas, bilateral visual, and left temporal cortices (Fig.5B).96

Discussion97

We investigated the neurofunctional profile of mind blanking (MB) and found that it occupies a unique position among98

though-oriented reports during spontaneous mentation. By means of experience-sampling within the fMRI environment, we99

first show that typical individuals have few number of MB reports, which are reported faster than other mental states. These100

findings are in line with previous studies showing that MB gets reported significantly less often than thought-related content20.101

Our results are also in line with studies reporting similarly fast MB reaction times while participants are involved in sustained102

attention to response task7, 22. Nevertheless, in other investigations MB is reported more slowly compared to other mental states,103

which is interpreted as MB facilitating sluggishness in responses23 or as the result of decreases in alertness and arousal during104

task performance5. Here, we consider that the fast reaction times for MB and the longer reaction times for thought-oriented105

reports (SDep, SInd) might be attributed to an additional cognitive evaluation of the latter. In other words, when thoughts106

are occupied by content, they are translated in longer cognitive evaluation as to the particularities of their content. In that107
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respect, MB, being defined as content-free state, is reported faster. This interpretation supports previous investigations using108

self-paced focused reading with self-catches of MB and mind wandering, which tested how these mental modes affect reading109

comprehension3.110

Regardless of this heterogeneity, it can be generally concluded that MB gets reported despite its content-less phenomenology.111

Therefore, MB can be considered as one more mental state which contributes to spontaneous mentation. Its role among the112

content-oriented states is here determined by the performed dynamic analysis. We show that the probabilities in reporting113

MB (after reporting another state) are low, but equal. At the same time, departures from MB are more likely to lead toward114

content-oriented thoughts, and less likely to lead towards MB again. Collectively, these results indicate that MB might not be115

driven by any specific mental content, therefore serving as a transient mental relay24. In other words, thoughts with content can116

lead towards more mental contents due to semantic associations, hence creating the perception of a stream of consciousness.117

Since MB is not semantically associated with any particular mental content, it does not occur frequently during spontaneous118

thinking. As such, phenomenologically content-less reports might have less of an anchoring effect than content-full reports.119

The eventual finding of a uniform distribution of MB reports over time, also reported elsewhere3, 25, further suggests that MB is120

not a result of fatigue, and therefore confirms its unique place as a default mental state during spontaneous mentation.121

By investigating whole-brain time-varying functional connectivity during the resting periods of the experience-sampling122

task, we show four distinct brain patterns occurring across time. These brain patterns bear great resemblance with what we123

previously reported as recurrent brain configurations during pure resting state fMRI acquisitions across healthy individuals124

and brain-injured patients15. The fact that these patterns appear across independent datasets, and that they are present also in125

non-human primates26, utilizing different paradigms and different brain parcellations, points to their universality and robustness.126

Our finding that Pattern 4 (low inter-areal connectivity) shows the highest occurence probability in comparison to the other127

patterns, is exlpained by the fact that this configuration has the highest similarity to the underlying structural connectome15. As128

such, this pattern may act as a foundation upon which the others can occur, by showing divergence of function from structure,129

which is linked to mental flexibility27. On the other hand, an all-to-all positive inter-areal connectivity has the lowest occurrence130

probability and high similarity to the connectivity matrices preceding MB reports. This global inter-region positive connectivity131

has been previously reported to occur with high prevalence in NREM slow-wave sleep28, 29. In this sleep stage, the brain’s slow132

wave activity reflects minimal neuronal firing. Studies in rats19 show that periods of neuronal silencing can happen also during133

wakefulness in the form of neuronal firing rate reduction leading to slow wave activity, which was indicative of local sleeps.134

When applied to humans, it has been argued that these instances of local sleeps can be the phenomenological counterpart135

of MB23. In that respect, wakefulness is not a physiological state of constantly on-periods of neuronal function. Rather, the136

fact that our brains show instances of neural down-states even during wakefulness possibly for homeostatic reasons30, can be137

neurally translated as global positive connectivity and phenomenologically interpreted as MB.138

This possibility is further accounted by prominent theoretical models of conscious experience. The Global Neuronal139

Workspace Theory (GNWT)31 posits that a stimulus becomes reportable when some of its locally processed information140
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becomes available to a wide range of brain regions, forming a balanced distributed network32. Therefore, the brain in a141

state of all-to-all positive connectivity provides not some, but all of its locally processed information globally so that, for142

a moment, no information is in a privileged state of processing and available to attention and awareness. This can also be143

similarly explained in the context of the supervisory attentional system (SAS)25, whose all "action systems" (i.e. processing144

structures associated with particular tasks) will have the same dominance, leaving the SAS unable to choose which one to145

bring into awareness. This lack of differentiation is also portrayed in the Integrated Information Theory (IIT16). According146

to this theory, to generate an experience a physical system must be able to discriminate among a large repertoire of states147

(i.e., information). This must be done as a single system that cannot be decomposed into a collection of causally independent148

parts (i.e., integration). The all-to-all positive connectivity pattern is characterized by the highest level of integration and149

efficiency and the lowest level of segregation and modularity compared to the other brain patterns15. Therefore, it is implied150

that such a neural configuration is unable to produce high values of integrated information, leading to limited experience. Here,151

information flow was approximated by the diffusion-map analysis. Before MB reports, we observed a large range of diffusion152

values between DMN and other areas, which is indicative of low between-node transition probabilities. Therefore, MB is linked153

to rigid and inefficient information exchange. Such inefficient information flow between the DMN and other networks has also154

been reported while participants were instructed to think of nothing8. Finally, with respect to the left fronto-insular area (part of155

the salience network), we found that this region predicted MB reports when it was highly segregated from the DMN early and156

in few steps during the classification scheme. The involvement of the salience network does not come as a surprise. Indeed, this157

system has been shown to play an important role in switching between the DMN and the central executive network (CEN),158

making salient and important stimuli available to the focus of attention33. Also recently, it is shown that prestimulus activity of159

anterior insula predicts the conscious perception of visual stimuli, so that this region might act as a gate for conscious access34.160

In a similar line, as MB is free of phenomenological content, it can be that its saliency evaluation happens effortlessly and early161

on during the neurocognitive hierarchy translated in a more laxed inter-network engagement.162

Our study is limited in several ways. First, the experience-sampling task utilized a probe-catching methodology. This means163

that participants were interrupted during spontaneous thinking by a probe, asking them to choose an appropriate report option to164

describe their thought-state. Such a probe-framing technique can restrict the estimation of potential phenomenological switches165

happening between the probes. Indeed, as the probes were appearing in pre-determined time points we cannot exclude the166

possibility of mental contents happening during the inter-probe intervals, and hence they were missed to be reported. Also,167

probe-framing can be suboptimal in capturing spontaneous thinking because it might lead to an inflated number of MB reports.168

This is because participants could choose this category since it was pre-established, which they could otherwise not report if they169

were to identify spontaneously35. The fact, though, that MB occurrences were not reported with a comparable high frequency170

to the content-oriented states might indicate that MB was evaluated in a representative way across the evaluation, leading to171

infrequent occurrences across participants. This small number of MB reports, in turn, could be considered problematic in172

terms of statistical inference. To address this issue, the analysis referred to data which were concatenated across subjects. This173
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technique on the one hand increased the number of MB reports in our statistical models. On the other hand, this solution might174

have influenced the between-subject variability, which was here mitigated by assuming subjects as random effects variable in175

the mixed effect analysis. Finally, the high TR during the fMRI acquisition (2.04s) could also echo the temporal implications of176

the MB profiling. By means of simultaneous EEG-fMRI recordings, more light is expected to be shed on fine-grained temporal177

dynamics of MB. Such simultaneous multi-modal recordings are expected to also illuminate the assumption of slow-wave178

activity as the corresponding neural mechanism of MB. In the absence of vigilance monitoring with EEG or pupil diameter, this179

hypothesis remains to be further tested.180

In conclusion, our study suggests that MB can be considered as a default mental state occupying a unique position among181

content-oriented thoughts. Its rigid neurofunctional profile could account for the inability to report mental content due to the182

brain’s inability to configure complex inter-areal dynamics. The DMN-salience network segregation which appears to lead183

towards MB reporting, paves the way to more mechanistic explorations of MB. Collectively, MB’s unique neurofunctional184

profile among thought-oriented reports supports the view that instantaneous mental absences can happen during wakefulness,185

setting this mental state at a prominent phenomenological position during ongoing mentation.186

Methods187

Participants188

Participants were healthy right-handed dults who were French speaking, university students or graduates with at least a high189

school diploma without psychiatric or neurological disorders. All subjects gave their written informed consent to take part in190

the experiment and ethics committee of the University Hospital of Liège approved the study.191

Experience-sampling task192

Setup and procedure193

Participants were lying restfully in the scanner with eyes open. At random times, they were interrupted by an auditory tone,194

probing them to report their immediate mental state via button presses. The sampling probes were randomly distributed between195

30 and 60 seconds. Each probe started with the appearance of an exclamation mark lasting for 1000 ms inviting the participants196

to review and characterize the cognitive event(s) they just experienced. Several screens were presented in succession so197

participants could communicate their mental state type. The first screen offered four categories for a broad characterization198

of the cognitive experience: Absence, Perception, Stimulus-dependent thought, and Stimulus-independent thought. Absence199

was defined as mind blanking or empty state of mind. Perceptions represented the acknowledgment of a stimulus through200

one or more senses without any internal thought. Thoughts were distinguished as stimulus-dependent (i.e. with awareness of201

the immediate environment), or stimulus-independent (i.e. with no awareness of the immediate environment). For reporting,202

participants used two response boxes, one in each hand. Participants used an egocentric mental projection of their fingers onto203

the screen so that each finger corresponded to a specific mental category. Depending on the probes’ trigger times and reaction204

times, the duration of the recording session was variable (48-58 min) across subjects. To minimize misclassification rates,205
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participants had a training session outside of the scanner at least 24 hours before the actual session.206

Behavioral statistical analysis207

Analyses were performed using locally developed codes in Python and R. Six paired t-tests were used to analyze the occurrence208

number of each mental state (p-values were FDR-corrected with a significance level of α = 0.05). A generalized linear mixed209

model with a gamma distribution and inverse link function tested the relationship between reaction times and mental states.210

Mental state reports were considered as fixed effects and participants were considered as the random effects with sex and age as211

confound variables. In case of significant main effects, post-hoc Tukey pairwise comparisons were applied. To model dynamic212

relationship between mind states, a Markov model was used to calculate the transition probabilities between participants’213

reports over the experiment. The uniformity of the distribution of each report over the acquisition duration was tested using214

the χ2 test on the report times across all participants. The acquisition duration of each subject was divided into 10 equal time215

bins and number of reports at each bin was counted. To calculate the effect size of the χ2 test, φ measure was used (φ =

√
χ2

n ,216

where n is the number of observations).217

Neuroimaging218

MRI acquisition219

Experiments were carried out on a 3-T head-only scanner (Magnetom Allegra, Siemens Medical Solutions, Erlangen, Germany)220

operated with the standard transmit–receive quadrature head coil. fMRI data were acquired using a T2*-weighted gradient-echo221

EPI sequence with the following parameters: repetition time (TR) = 2040 msec, echo time (TE) = 30 msec, field of view222

(FOV) = 192 × 192 mm2, 64 × 64 matrix, 34 axial slices with 3 mm thickness and 25% interslice gap to cover most of the223

brain. The three initial volumes were discarded to avoid T1 saturation effects. Field maps were generated from a double echo224

gradient-recalled sequence (TR = 517 msec, TE = 4.92 and 7.38 msec, FOV = 230 × 230 mm2, 64 × 64 matrix, 34 transverse225

slices with 3 mm thickness and 25% gap, flip angle = 90◦, bandwidth = 260 Hz/pixel) and used to correct echo-planar images226

for geometric distortion because of field inhomogeneities. A high-resolution T1-weighted MP-RAGE image was acquired227

for anatomical reference (TR = 1960 msec, TE = 4.4 msec, inversion time = 1100 msec, FOV = 230 × 173 mm, matrix size228

= 256 × 192 × 176, voxel size = 0.9 × 0.9 × 0.9 mm). The participant’s head was restrained using a vacuum cushion to229

minimize head movement. Stimuli were displayed on a screen positioned at the rear of the scanner, which the participant could230

comfortably see using a head coil mounted mirror.231

Preprocessing232

Preprocessing and denoising were performed using a locally developed, freely available online, pipeline written in Python233

(nipype package36) encompassing toolboxes from Statistical Parametric Mapping 1237, FSL 6.038, AFNI39, and ART (http://234

web.mit.edu/swg/software.htm; https://gitlab.uliege.be/S.Mortaheb/mind_blanking/). All235

the functional volumes were realigned to the first volume and then, in a second pass, to their average. Estimated motion236

parameters were then used for artifact detection using ART toolbox. An image was defined as an outlier or artifact image if the237
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head displacement in the x, y, or z direction was greater than 3 mm from the previous frame, if the rotational displacement was238

greater than 0.05 rad from the previous frame, or if the global mean intensity in the image was greater than 3 SDs from the239

mean image intensity for the entire scans. After skull-stripping of structural data (using FSL BET40 with fractional intensity240

of 0.3), realigned functional images were registered to the bias-corrected structural image in the subject space (rigid-body241

transformation with normalized mutual information cost function). After extracting white matter (WM), grey matter (GM), and242

cerebrospinal fluid (CSF) masks, all the data and masks were transformed into the standard stereotaxic Montreal Neurological243

Institute (MNI) space (MNI152 with 2 mm resolution). WM and CSF masks were further eroded by one voxel. For noise244

reduction, we modeled the influence of noise as a voxel specific linear combination of multiple empirically estimated noise245

sources by deriving the first five principal components from WM and CSF masked functional data separately. These nuisance246

regressors together with detected outlier volumes, motion parameters and their first-order derivative were used to create a design247

matrix in the first-level general linear model (GLM). After smoothing the functional data using a Gaussian kernel of 6-mm full248

width at half-maximum, the designed GLM was fitted to the data. Before applying GLM, functional data were demeaned and249

detrended and all the motion-related and tissue-based regressors were first normalized and then demeaned and detrended using250

the approach explained in41. A temporal bandpass filter of 0.008 to 0.09 Hz was then applied on the residuals of the model251

to extract low frequency fluctuations of the BOLD signal. Schaefer atlas42 with 100 ROIs were then used to parcellate each252

individual brain. Average of voxel time series in each region was considered as the extracted ROI time series and were used for253

further analysis.254

Functional connectivity matrices255

We used the phase-based coherence to extract between-region connectivity patterns at each time point of the scanning sessions15.

For each subject i, after z-normalization of time series at each region r (i.e. xi,r(t)), the instantaneous phase of each time series

were calculated using Hilbert transform. However, in order to have a more accurate estimate of the instantaneous phase, a

narrower bandpass filter was applied on the time series (Second order Butterworth filter in range [0.01-0.04] Hz), and then the

Hilbert transform was applied on the time series as:

x̂i,r(t) =
1
πt

∗ xi,r(t), (1)

in which ∗ indicates a convolution operator. Using this transformation, an analytical signal was produced for each regional time

series as:

Xa
i,r(t) = xi,r(t)+ ix̂i,r(t). (2)

From this analytical signal, the instantaneous phase of each time series can be estimated as:

φi,r(t) = ∠Xa
i,r(t) = tan−1(

x̂i,r(t)
xi,r(t)

). (3)
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After wrapping each instantaneous phase signal of φi,r(t) to the [−π,π] interval and naming the obtained signal as θi,r(t),

a connectivity measure for each pair of regions was calculated as the cosine of their phase difference. For example, the

connectivity measure between regions r and s in subject i was defined as:

conni,r,s(t), cos(θi,r(t)−θi,s(t)). (4)

By this definition, completely synchronized time series lead to have a connectivity value of 1, completely desynchronized time

series produce a connectivity value of zero, and anti-correlated time series produce a connectivity measure of -1. Using this

approach, a connectivity matrix of 100×100 was created at each time point t of each subject i that we called it Ci(t):

Ci(t), [conni,r,s(t)]r,s. (5)

After collecting connectivity matrices of all time points of all participants, k-means clustering was applied on the matrices256

just related to the resting parts of the experiment. With this technique, four robust and reproducible patterns were extracted as257

the centroids of the clusters and each resting connectivity matrix was assigned to one of the extracted patterns. The occurrence258

rate of each pattern was simply calculated by counting the number of matrices which were assigned to each specific pattern at259

each subject separately. Significant differences between patterns occurrence rates were analyzed using paired t-test and FDR260

correction of p-values over six possible pairwise comparisons.261

Neurofunctional analysis262

To evaluate the similarity between mental states’ functional connectivity patterns and the four main resting state recurrent

functional configurations, we extracted the five connectivity matrices preceding each probe (as the functional repertoire of each

specific mental state) and then calculated their cosine distance to the four main resting state patterns. Cosine distance between

two sample matrices of A and B can be calculated as:

dist(A,B) =
Tr(AT B)√

Tr(AT A)Tr(BT B)
, (6)

where Tr(.) indicates trace of a matrix. Subsequently, for each mental state the distribution of distances to all four centroids263

were created. A generalized linear mixed effect model with gamma distribution and log link function was applied to test the264

relationship between the distances to each pattern and the mental states. In this model, mental state reports were considered as265

fixed effects and participants as random effects with sex and age as confound variables.266

Diffusion maps267

Diffusion-map analysis is a non-linear dimensionality reduction technique based on spectral graph theory21 that checks the268

information flow between nodes based on the transition probabilities denoted by the connection weight between the nodes.269

The resulting diffusion map summarizes that the larger the distance in the diffusion values between regions, the smaller the270
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transition probability, which indicates less efficient information exchange.271

To extract diffusion map of a sample connectivity matrix, the following steps were taken:272

273

• For connectivity matrix W100×100, set all the negative weights to zero.274

• Define a diagonal matrix (node strenght) D100×100, such that Dii = ∑
100
j=1 Wi j275

• Create the transition probability matrix M100×100, such that Mi j =Wi j/Dii (an asymmetric matrix denoting transition276

probability from region i to region j)277

• Create a symmetric matrix Ms with the same eigenvalues as M: Ms = D1/2MD−1/2
278

• Perform eigen decomposition on Ms to obtain its eigenvalues and corresponding orthonormal eigenvectors and sort them279

from the largest eigenvalue to the smallest.280

• Take the first eigenvector as the main diffusion map of the connectivity matrix.281

In this study, diffusion maps were estimated for the averaged connectivity matrices of each mental state. For the subsequent282

analysis, all the diffusion maps should also be aligned over the participants. Here, diffusion maps estimation and their alignment283

over participants have been performed using an open source package (https://github.com/satra/mapalign)43. As284

in this package, a singular value decomposition (SVD) technique is used to align the estimated diffusion maps, and SVD result285

is slightly different in various system configurations, we here report that in this study, diffusion map analysis were performed in286

a MacBook Pro 2018 TOUCH BAR MV962, processor Intel Core i5-8269U, using Python version 3.7.4 and Numpy version287

1.17.2.288

Mental state classification289

Estimated diffusion maps were used as feature vectors and a C4.5 decision tree classifier44 was used to classify mental states290

based on diffusion maps. This is a very efficient algorithm for representation of rule classification which locates the most291

robust features for the initial separation of the dataset, and then selects potential subtrees affected by noisy features, and292

prunes them. The pruned features are removed from the initial dataset and C4.5 re-runs since there is an improvement on293

the classification accuracy. In this study, the J48 (a Java implementation of C4.5 Classifier) decision tree, implemented in294

the Waikato Environment for Knowledge Analysis (WEKA)45 was employed. The confidence factor (C) was set to 0.25 and295

the minimum number of instances per leaf (M) was set to 3. Classification accuracy was computed using the 10-fold cross296

validation strategy. According to this strategy, the dataset is divided into ten non-overlapping subsets (folds), where nine are297

used for training and one for testing. Accuracy is then defined as the ratio of the correctly classified instances divided by the298

total number of instances. To minimize the sampling bias, this procedure is repeated 10 times so each subset serves as a testing299

set and the model’s overall accuracy is defined as the average of the 10 single-fold accuracies.300
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Figure 1. Experience-sampling task and analysis pipeline. (A) Participants’ resting state was interrupted by auditory
probes, inviting them to evaluate and report their mental state as this was before the probe, choosing among four pre-defined
options (Response-types). (B) For brain pattern extraction, phase-based coherence was first used to estimate scan-wise
connectivity matrices during the Rest Periods of the paradigm (green-shaded scans). Then, unsupervised machine learning
with k-means estimated variant emerging signal configurations, which could recurrently appear across the acquisition. (C)
To determine which brain pattern supported the reported mental states, a similarity measure was used, which compared the
cosine distance between the five connectivity matrices preceding each report (red-shaded scans, Response-type periods) and the
previously emerged brain patterns.
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Figure 2. Mind blanking occupies a unique position among content-oriented reports. (A) Participants reported signifi-
cantly fewer MB events than sensory-oriented (Sens), stimulus-dependent (SDep) and stimulus-independent (SInd) thoughts,
confirming the less frequent yet non-negligible occurrence of MB across time (paired t-tests, FDR corrected at α = 0.05). (B)
Thought-oriented reports (SDep, SInd) had longer reaction times than MB and sensory-related reports, potentially due to a
second-level cognitive evaluation of mental content that stimulus-related thoughts necessitated before reporting (generalized
linear mixed effect model, adjusted p-values at p<0.05). (C) The probability of reporting MB was low yet equal when departing
from content-oriented states (markov chain modelling; numbers indicate transition probability matrix values). Also, the
particularly low likelihood to re-enter MB indicates that MB might not be driven by specific mental content, hence serving as
a transient mental relay.(D) The distribution of MB reports follows a uniform shape, indicating that MB occurrences spread
equally over time and therefore may comprise a default mental state. Notes: catplots represent count, boxplots represent
medians with interquartile range (25th-75th percentile), histogram with 10 bins related to the equal divisions of experiment
duration to its 10% time slots.
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Figure 3. Four distinct signal configurations were recurrently present across resting periods. (A) Pattern 1 showed
complex inter-areal functional configurations, characterized by short- and long-range connectivity, of positive and negative
valence. Pattern 2 showed mainly functional anti-correlations between visual areas and regions of other networks. Pattern
3 showed all-to-all positive functional connectivity among the areas of the studied networks. Pattern 4 showed overall low
inter-areal connectivity. (B) When estimating each pattern’s occurrence rate, Pattern 4 had significantly the highest probability
to appear across the resting periods while Pattern 3 had the lowest (paired t-tests, FDR corrected at α = 0.05). Brain regions
are organized in networks as indicated by the Schaefer atlas; 100 regions (DMN: Default Mode Network, Cont: Executive
Control Network, SM: Somatomotor, Lm: Limbic, VA: Ventral Attentional, DA: Dorsal Attentional, Vis: Visual). Colorbar
indicates coherence values between any pair of regions.
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Figure 4. The positive all-to-all inter-areal connectivity pattern was the most similar configuration to MB reports.
There was a significant effect of mental state on the distance values to Pattern 3 and Pattern 4. Post-hoc tukey test showed that
MB had the highest similarity to Pattern 3 in comparison to all other mind states (error bars indicate asymptomatic confidence
intervals around the difference estimate, *p<0.05, **p<0.01, ***p<0.001).
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Figure 5. Mind blanking is supported by a segregative brain profile, making it easily classifiable. (A) Diffusion map
analysis showed a large range in diffusion values for the periods preceding MB reports, leading to two main clusters broadly
encompassing the salience network (blue-range cluster), and the DMN (red-range cluster). The identified small area-to-area
transition probabilities indicate a less efficient information flow in MB in comparison to content-oriented states. Note: maps
indicate averaged diffusion values across subjects, colorbar indicates z score. (B) Using the diffusion maps as feature vectors in
a decision tree classification scheme, showed that the salience network (somatomotor and insular cortices) was able to classify
MB by separating it from thought-related reports in fewer steps. Notes: the "less than" relational operator indicates higher
resemblance of that cluster to the salience network (blue-range values); the "more than" relational operator indicates higher
resemblance of that cluster to the DMN (red-range values).
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Table 1. Confusion matrix of mental state classification using averaged diffusion
maps for each mental state of each subject as feature vectors and C4.5 classifier

Classified as
MB Sens SDep SInd

R
ep

or
te

d MB 21 8 0 2
Sens 8 25 0 2
SDep 0 0 32 4
SInd 1 0 1 34

Table 2. Classifier performance in classification of each mental state. (FP: false positive, ROC: receiver operating characteristic,
TP: true positive).

TP Rate FP Rate Precision ROC Area
MB 0.677 0.084 0.700 0.838
Sens 0.714 0.078 0.758 0.813
SDep 0.889 0.010 0.970 0.947
SInd 0.944 0.078 0.810 0.917
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