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ABSTRACT
Motivation: Cryo-electron microscopy (cryo-EM) is a widely-used
technology for ultrastructure determination, which constructs the
three-dimensional (3D) structures of protein and macromolecular
complex from a set of two-dimensional (2D) micrographs. However,
limited by the electron beam dose, the micrographs in cryo-EM
generally suffer from extremely low signal-to-noise ratio (SNR), which
hampers the efficiency and effectiveness of downstream analysis.
Especially, the noise in cryo-EM is not simple additive or multiplicative
noise whose statistical characteristics are quite different from the ones
in natural image, extremely shackling the performance of conventional
denoising methods.
Results: Here, we introduce the Noise-Transfer2Clean (NT2C), a
denoising deep neural network (DNN) for cryo-EM to enhance image
contrast and restore specimen signal, whose main idea is to improve
the denoising performance by correctly discovering the noise model of
cryo-EM images and transferring the statistical nature of noise into the
denoiser. Especially, to cope with the complex noise model in cryo-EM,
we design a contrast-guided noise and signal re-weighted algorithm to
achieve clean-noisy data synthesis and data augmentation, making
our method authentically achieve signal restoration based on noise’s
true properties. To our knowledge, NT2C is the first denoising
method that resolves the complex noise model in cryo-EM images.
Comprehensive experimental results on simulated datasets and real
datasets show that NT2C achieved a notable improvement in image
denoising and specimen signal restoration, comparing with the state-
of-art methods. A real-world case study shows that NT2C can improve
the recognition rate on hard-to-identify particles by 19% in the particle
picking task.

1 INTRODUCTION
Cryo-electron microscopy (cryo-EM) is a widely-used technology that
resolves high-resolution three-dimensional (3D) structures of protein
and macromolecular complexes from a series of two-dimensional (2D)
micrographs (Bai et al., 2015). However, the signal-to-noise ratio (SNR)
of raw cryo-EM images is estimated to be only as high as 0.01∼0.1
(Bendory et al., 2020), amongst the lowest in any imaging field,
which extremely decreases the accuracy and efficiency in downstream
analysis of cryo-EM images and reduces the confidence of structures
determination. Therefore, an image restoration operation is usually
necessary before particle picking, structure segmentation, and other
cryo-EM data analysis processes to attain high-resolution cryo-EM 3D
reconstructions.

A variety of conventional methods have been developed to improve
the contrast and decrease the noise level in cryo-EM micrographs, such
as BM3D (Dabov et al., 2007), band-pass filter (Penczek et al., 2010) and
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Wiener filter (Sindelar et al., 2011). For an image restoration algorithm,
additional image prior knowledge will be introduced to repair the missing
and degenerated information, in which human knowledge concluded from
the natural images are usually used. However, the noise model in cryo-
EM micrograph is usually unknown and varies in different data collection
configurations. Therefore, the pre-defined image priors used in these
conventional methods cannot correctly fit the noise model in cryo-EM,
leading to a limited performance when the conventional methods are
applied to cryo-EM data.

Recently, learning-based denoising methods have shown their
advantages. Mao et al., 2016 proposed an encoding-decoding
framework with symmetric convolutional-deconvolutional layers for
image restoration. Ledig et al., 2017 presented a generative adversarial
network (GAN) for image super-resolution (SR) which recovers photo-
realistic textures from heavily downsampled images. However, most
of these learning methods require a clean-noisy paired dataset for
training, therefore, can not be applied to cryo-EM, where ground truth
is unavailable. To overcome this barrier, several methods learned from
paired noisy images or single noisy images are proposed(Krull et al.,
2019). Lehtinen et al., 2018 presented a general machine learning (ML)
framework, called Noise2Noise (N2N), for learning denoising models
from paired noisy images. Chen et al., 2018 proposed a GAN-CNN
based framework, GCBD, for learning denoising models from single
noisy images where GAN (Goodfellow et al., 2012) is utilized to build
paired training datasets and then convolutional neural network (CNN)
is employed for denoising. Specifically, Bepler et al., 2020 proposed a
denoiser called Topaz-Denoise for cryo-EM and cryo-ET, based on an
N2N architecture and trained by thousands of cryo-EM micrographs.

In this paper, we propose a novel denoising framework, the Noise-
Transfer2Clean (NT2C), to restore the specimen signal and enhance
the image contrast by discovering the unknown noise model from the
cryo-EM image. Firstly, a coarse CNN denoiser is trained to enhance
the contrast of a cryo-EM image, to distinguish the background and
specimen signal. Then, the pure noise patches are extracted from the
micrographs and fed into a GAN to estimate and simulate the noise
distribution. Finally, a fine denoising network is able to be trained
by the clean-noisy pairs simulated from the accurately estimated noise
distribution in GAN. By resolving the noise model in a cryo-EM image,
our strategy is able to further decomplex the specimen signal from the
noisy background. Especially, to cope with the complex noise model
in cryo-EM, we design a contrast-guided noise and signal re-weighted
algorithm to achieve clean-noisy data synthesis and data augmentation,
making our method authentically achieve signal restoration based on
the noise’s true properties. We have tested and compared our denoising
model with several commonly-used cryo-EM denoising algorithms on
both synthetic and real datasets. The experiment results on synthetic
datasets show NT2C’s denoising performance is comparable to current
state-of-the-art methods; and the results on three real datasets demonstrate
NT2C’s ability to deal with real-world high-noise-level cryo-EM images.
A case study on particle picking further proves that our denoising method
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Fig. 1: The overall protocol of NT2C method for cryo-EM image denoising. There are
three main modules in NT2C: (a) noise extraction, (b) noise modeling and (c) denoiser
training.

is able to restore very weak particle signals, improving the recognition
rate on hard-to-identify particles by 19%.

2 THE IMAGING MODEL IN CRYO-EM
The imaging process in cryo-EM involves the conversion of the electron
wave’s intensity distribution into a digital signal via a detector (Vulović
et al., 2013), which introduces multiple complex noises to the final
micrographs. According to the principle of cryo-EM, the detected image
can be written as

I(x, y) =Irn + Idc + CF·

F−1
[
F

[
Poiss

(
Φe · F−1

[
Ĩ0 (q)

√
DQE (q)

])]
· NT F (q)

] (1)

where Ĩ0 (q) is the Fourier spectrum of the noise-free signal, DQE is the
detective quantum efficiency, Φe is the incident electron flux in [e−/area],
F is Fourier transform, F−1 is inverse Fourier transform, Poiss is the
Poisson described shot noise, NT F is the noise transfer function, CF
is a scale factor for detectors, Irn indicates the readout noise and Idc

indicates the dark current of detector. The detective quantum efficiency
DQE is defined as DQE (q) = MT F2 (q) /NT F2 (q), where NT F2 (q) =

NPS out/
(
CF2Φe

)
with NPS being the noise power spectrum and MT F

describes transfer of the signal amplitude for different spatial frequencies.
As described in the formula, the signal propagation can be modeled as
follows: (1) Ĩ0 (q) is damped (multiplied) by the ratio between signal
(MT F) and noise (NT F) transfer, (2) the signal is multiplied by the
integrated electron flux and shot noise contributions are added, (3) the
Fourier spectrum of that noisy signal is damped by the NT F, (4) the
number of electrons are scaled to the image gray values in detector analog-
to-digital unit [ADU]. Therefore, the noise in cryo-EM comes from three
aspects: the shot noise contributions added in the measurement process;
the readout noise Irn and dark current Idc from the detector; blurring
effect caused by detector point spread function PSF (x,y) whose Fourier
transform is the MTF.

3 METHODS
3.1 NT2C protocol
3.1.1 Overview of the procedure
The key idea of NT2C is discovering the noise model of cryo-EM images
over pure noise patches and transferring the statistical nature of noise into
the denoiser. As shown in Figure 1, NT2C contains three modules:

(a) Noise extraction. The noise extraction module takes raw
micrographs as input, and output the pure noise patches of the background
(see subsubsection 3.2.2). Due to the extremely low SNR in cryo-EM
micrographs, distinguishing the background from the particles is a hard
task in raw noisy micrographs. Here, a coarse denoiser (see subsubsection
3.1.2) is trained to roughly enhance the image quality and aid the

extraction of noise patches, based on the simulated datasets with the same
experimental parameters (see subsubsection 3.2.1).

(b) Noise modeling. The statistical properties of noise in cryo-EM
micrograph change with different configurations during data collection.
It is critical to correctly understand the statistical nature of the noise
for image denoising. Here, a GAN noise synthesizer (see subsubsection
3.1.2) is trained to learn the statistical properties of noise, with pure noise
patches as input and simulated noise patches as output.

(c) Denoiser training. The noise synthesizer poses the possibility
of clean-noisy pair generation for cryo-EM, which is critical in denoiser
training. However, as described in section 2, the noise pattern in cryo-EM
is quite complex. Here, we design a contrast-guided noise and signal re-
weighted algorithm (see subsubsection 3.2.3) to transfer the non-additive
noise to a clean image, to achieve clean-noisy pair synthesis and data
augmentation. Based on the abundant synthesized clean-noisy pairs, a
fine denoiser (see subsubsection 3.1.2) is able to be trained to precisely
restore specimen signal from the high-level noise.

3.1.2 Main components
1) CNN denoiser
The CNN denoiser in NT2C is based on a U-net architecture
(Ronneberger et al., 2015), which contains five max-pooling down-
sampling blocks and five nearest-neighbor up-sampling blocks, with
skip connections between down- and up-sampling blocks at each spatial
resolution (shown in Figure 2). Given the set of clean-noisy pairs
{y and x ∼ Noise (y)}, a denoising function f with parameter θ can be
learned. The loss function for our task is

argminθEx∼X
[
‖ fθ (x) − y‖p

]
(2)

where p = 2 is used in NT2C to find f with mean-seeking behavior.
The CNN denoiser has been called twice in NT2C’s procedure: (i)

as a coarse denoiser trained with the simulated clean-noisy pairs (see
subsubsection 3.2.1) to roughly enhance the contrast of cryo-EM images,
for the ease of noise patch extraction; (ii) as a fine denoiser trained
with the clean-noisy pairs produced by the noise and signal re-weighted
algorithm (see GAN noise synthesizer and subsubsection 3.2.3) to capture
the nature of noise statistical properties and restore the specimen signal in
cryo-EM micrographs. Here, the model parameters of the coarse denoiser
could be transferred to the fine denoiser to avoid retrain from scratch.
2) GAN noise synthesizer
The noise model in cryo-EM is too complex to be explicitly described by
an analytical expression. Here, the improved GAN framework (Gulrajani
et al., 2017) is adopted to implicitly learn the latent noise model in cryo-
EM micrographs. This framework contains two components, a generative
network that consists of five fully connected layers, and a discriminative
network which consists of three full connected layers (shown in Figure 3).
Batch Normalization (Ioffe et al., 2015) is used in the generator to secure
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Fig. 2: The network architecture of the CNN denoiser. The U-net model consists of 5
convolutional and down-sampling blocks followed by 5 convolutional and up-sampling
blocks. Skip connections link each down-sampling block to the mirrored up-sampling
block.
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the model stability and Leaky Rectified Linear Unit (LeakyReLU) (Maas
et al., 2013) activation is used in both the generator and the discriminator
to ensure fast learning.

True

Random noise Generator

Discriminator

Fake noise

Real noise

Fake

Fig. 3: The network architecture of the GAN noise synthesizer. The generative network is
trained to generate noise samples, while the discriminative network is trained to determine
whether a noise sample is from real data or the generative network.

The generative network is trained to generate noise samples while the
discriminative network is trained to determine whether a sample is from
real data or the generative network. After the convergence of adversarial
learning, the generative network will be able to produce noise patches
hard to be distinguished from real noise patches. The loss function for our
task is

£GAN = E
x̃∼Pg

[D (x̃)] − E
x∼Pr

[D (x)] + λ E
x̂∼PX̂

[
(‖5x̂D (x̂)‖2 − 1)2

]
(3)

where Pr is the distribution over noise patches, Pg is the generator
distribution, PX̂ is defined as a distribution sampling uniformly along
straight lines between pairs of points sampled from Pr and Pg.

3.2 Detailed algorithm
3.2.1 Simulation based on experimental parameters
The lack of supervised training data hampers the application of learning-
based denoising method in cryo-EM. Here, we adopt the simulation
software InSilicoTEM (Vulović et al., 2013) to generate paired clean-
noisy datasets, which can simulate the photographing process in cryo-EM
based on physical principles.

We set the simulation according to the experimental parameters
used in data collection (shown in Figure 4), including the pixel size,
defocus, voltage, electron dose, and detector type, which make the
limited resolution, contrast transfer function (Wade et al., 1992) and
modulation in the simulation very close to the real-world data. The
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Fig. 4: Simulation based on experimental parameters. The experimental parameters in
photographing process (left) are used for simulation (right), including electron dose,
voltage, defocus, pixel size, and detector type. The homologous protein with similar size
is utilized for sample simulation.

homologous proteins with similar size downloaded from Protein Data
Bank (PDB) (Burley et al., 2017) are used to produce clean ground
truth. Such a simulation is possible to generate datasets with statistical
properties of noise close to the ones in real cryo-EM micrographs.
Consequently, the composed clean-noisy pairs could be fed into the coarse
CNN denoiser to produce a model that achieves roughly denoising and
contrast enhancement on the cryo-EM image, for the ease of noise patch
extraction.

3.2.2 Patch-similarity guided noise patch extraction
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Fig. 5: The illustration of the noise extraction algorithm based on patch similarity. (a) An
illustration of the raw micrograph. (b-d) Three representative patches selected from the raw
micrograph. (e-g) The clean corresponding specimen signals of the selected patches. (h) A
patch enhanced by the coarse CNN denoiser trained with simulator; The patch is divided
into N local patches with N = 4 in here. (i) The calculation of structural similarity (SSIM)
and the determination of pure noise patches.

If we divide a cryo-EM micrograph into patches with suitable size, these
patches could be classified into two categories: patch containing specimen
signal or patch of background with pure noise (shown in Figure 5).
Naturally, the background patches are homogeneous to each other while
the patches containing specimen signals have different patterns. Because
the ice is almost transparent, the background patch represents pure noise.

Here, we proposed a patch-similarity guided algorithm to extract the
noise patches in a cryo-EM micrograph:

1. Given a micrograph I, denoise I with the CNN denoiser trained by
the simulated data in subsection 3.2.1 to get an enhanced image I′;

2. Divide I′ into a set of overlapping patches Θ = {Pi} (d× d pixel2 per
patch) with a step size of s;

3. For each patch Pi ∈ Θ, further divide Pi into N local patches {Pi,k}

and calculate the structural similarity (SSIM) between each Pi,k1 -
Pi,k2 pairs (k1 , k2);

4. For the patch Pi, if ∀k1, k2(k1 , k2), SSIM(Pi,k1 , Pi,k2 ) is large than
a given threshold thre, determine Pi as a background patch;

5. Repeat 1∼3 until all the background patches are identified, extract
the exact patches in the original micrograph I.

It should be noted that the similarity determination is operated
on micrograph I′ but the noise patch is extracted from the original
micrograph I. The similarity measurement SSIM(Pi,k1 , Pi,k2 ) used in our
algorithm is defined as

S S IM
(
Pi,k1 , Pi,k2

)
=

(
2µPi,k1

µPi,k2
+ c1

) (
2σPi,k1 Pi,k2

+ c2
)

(
µ2

Pi,k1
+ µ2

Pi,k2
+ c1

) (
σ2

Pi,k1
+ σ2

Pi,k2
+ c2

) (4)

where µPi,k1
and σPi,k1

are the mean and standard deviation of Pi,k1 , µPi,k2
and σPi,k2

are the mean and standard deviation of Pi,k2 , σPi,k1 Pi,k2
are the

cross-covariance between patch Pi,k1 and Pi,k2 , c1 and c2 are the constants
that have very small values.

3.2.3 Contrast-guided noise and signal re-weighting
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Fig. 6: Contrast-guided noise and signal re-weighting. The noise pattern produced in
the GAN noise synthesizer and the simulated clean signal are re-weighted with optimal
coefficients and then modulated to produce clean-noisy pairs.

Though we have designed an experimental parameters based simulation
to produce simulated clean-noisy pairs (subsubsection 3.2.1), these
simulated data is still not good enough to present the noise pattern in
real cryo-EM images, which is more complex than the principles in the
simulation. On the contrary, the GAN noise synthesizer (subsubsection
3.1.2) is able to produce noise patches with almost the same statistical
properties as the real noise in the cryo-EM image. Here, we design a
contrast-guided noise and signal re-weighted algorithm to transfer the
noise pattern produced in the GAN noise synthesizer to the simulated
clean data, to produce sophisticated clean-noisy pairs for fine CNN
denoiser training.

Figure 6 shows the detailed process of the re-weighted algorithm. The
algorithm accepts the pure noise patches {Vi} generated from GAN and the
clean signal patches {S i} generated from the simulation as input, utilizing
the simulated patches {Xi} corresponding to the exact signal patches from
the simulation as a reference, and outputs a re-weighted dataset {Yi} with
the GAN-synthesized noise transferred to the clean simulated signal. Here
we use the contrast of Xi as a baseline. Denote Yi = F (α∗S i +β∗Vi +γ) (
F (·) is a modulation function), the noise transfer should comply with the
following objective function:

min
α,β,γ

d−1∑
m=0

d−1∑
n=0

‖ (α ∗ S i (m, n) + β ∗ Vi (m, n) + γ) − Xi (m, n) ‖22 (5)

where α, β and γ are scalar coefficients and d is the patch size. Such
a minimizing problem can be easily solved by the least-square method.
Then, with the solved coefficients, the signal will be re-weighted and
modulated, to produce clean-noisy pairs. The constructed clean-noisy
pairs are fed into a fine CNN denoiser to train the model that captures
the true noise statistics and restores specimen signal from noise.

3.3 Implementation details
All the models are trained on two NVIDIA 2080Ti with 12GB VRAM.

The GAN noise synthesizer adopts a WGAN-GP network with the
weights initialized from a standard Gaussian distribution with σ = 0.02.
The slope of the leak of the LeakyReLU activation for both generator and
discriminator is set to 0.2. Adam optimizer is used for model training with
hyper-parameters set to 0.5, weight updating β1 = 0.999, and a learning
rate of 0.0002.

The coarse CNN denoiser used for rough micrograph enhancement
is trained with simulated datasets (subsubsection 3.2.1) with default
initialization (Paszke et al., 2019). The fine CNN denoiser used for
final denoising is trained with clean-noisy pairs generated by the GAN
synthesizer and signal re-weight algorithm, initialized from the previous
model weights. These two models are all trained using the Adagrad (Lydia
et al., 2019) with a learning rate of 0.001. Given a trained denoiser, the
denoising for a full-size micrograph is performed in overlapping patches.
A padding approach is adopted to avoid the artifacts occurring at the
patches’ edge.

4 EXPERIMENTS AND RESULTS
4.1 Datasets
Four simulated datasets and three real-world datasets are used to evaluate
the performance of NT2C. The simulated datasets are generated with
InsilicoTEM utilizing proteins downloaded from PDB and real-world
datasets are collected from public repositories, including EMPIAR-10025
(abbr. EM25) (Campbell et al., 2015), EMPIAR-10028 (abbr. EM28)
(Wong et al., 2014) and EMPIAR-10077 (abbr. EM77) (Fischer et al.,
2016). The detailed information on these seven datasets are summarized
in Table 1.

4.2 Results
4.2.1 Robustness of simulation-based noise pattern discovery

2wrj 5lzf

1kd1 1gr5

Fig. 7: Illustration of the proteins used for simulated datasets generation and validation.
PDB 2wrj is specified to generate the dataset to be denoised, while PDB 5lzf, 1kd1,
and 1gr5 are the proteins used to generate peer simulation used in coarse CNN denoiser.
Comparing with 2wrj, 5lzf has a similar structure and size, 1kd1 has a similar structure and
smaller size, 1gr5 has a completely different structure and smaller size.

The simulation based on experimental parameters is the start point for
coarse CNN denoiser training, which is critical to noise patch extraction
and the consequent noise model discovery. However, the protein adopted
in the simulation may be quite different from the unknown biological
structures in real data.

To demonstrate the robustness of simulation-based noise pattern
discovery, we generated four simulated datasets of protein 2wrj.pdb,
5lzf.pdb, 1kd1.pdb, 1gr5.pdb with the same simulation parameters and
denoted them as SIM1, SIM2, SIM3, SIM4, respectively. Specifying
SIM1 as the dataset to be denoised, we firstly trained three coarse CNN
denoisers with SIM2-4 to roughly enhance the image contrast of SIM1.
Then, we extracted the noise patches from SIM1 and learned the noise
properties of these patches by a GAN noise synthesizer. The synthesized
noise patches were then transferred to the clean signal patches of SIM2-4
for the training of fine CNN denoisers. The denoiser trained on clean-
noisy pairs synthesized from xxxx.pdb is denoted as NT2C-xxxx. We
tested these different denoisers on SIM1, whose results are shown in
Figure 8. The NT2C-2wrj acts as a reference for comparison, which learns
true noise patterns directly from clean-noisy pairs. It can be found that all
these four denoisers have correctly resolved the specimen signal from the
degenerated micrographs, resulting in a denoised output almost identical
to each other.

Furthermore, with the availability of ground truth, we are able to
quantitatively measure the denoising performance of different denoisers.
The peak signal-to-noise ratio (PSNR) (Huynh-Thu et al., 2008), SSIM,
and Pearson correlation coefficient (Pearson CC) (Benesty et al., 2009)
between the denoised micrograph and the ground-truth were calculated
and summarized in Table 2. It can be found that the size and structure
of protein used in simulation hardly affected the noise pattern discovery
and signal restoration of NT2C. Compared to NT2C-2wrj which reveals
true noise distribution, the other three denoisers that trained with datasets
simulated from different proteins achieved almost the same performance
on all criteria.
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Table 1. Three real-world datasets and four simulated datasets used for the denoisers training.

Dataset Electron Dose (e−/Å2) Voltage(Kv) Defocus Max (nm) Defocus Min (nm) Pixel Size (Å) Detector camera Protein

EM25 53 300 2400 900 0.66 K2 1ryp
EM28 20 300 3800 800 1.34 Falcon II 2wrj
EM77 25-35 300 2600 700 1.16 K2 5lzf
SIM1 20 300 3200 2500 1.34 K2 2wrj
SIM2 20 300 3200 2500 1.34 K2 1kd1
SIM3 20 300 3200 2500 1.34 K2 5lzf
SIM4 20 300 3200 2500 1.34 K2 1gr5

Table 2. Comparison of four denoisers trained with different proteins based on SSIM,
PSNR (in dB) and Pearson CC. (larger is better)

Denoiser SSIM PSNR Pearson CC

NT2C-2wrj 0.846 29.78 0.823
NT2C-5lzf 0.842 29.78 0.823
NT2C-1kd1 0.841 29.78 0.821
NT2C-1gr5 0.843 29.77 0.822

Raw Ground truth NT2C-2wrj

NT2C-1kdl NT2C-5lzf NT2C-1gr5

GaussianLowpass BM3D

N2N-general N2N NT2C-coarse

Fig. 8: 1) Robustness of simulation-based noise pattern discovery. The first two rows
show raw micrograph, ground truth and denoised micrographs of denoisers trained with
datasets simulated from 2wrj.pdb, 1kd1.pdb, 5lzf.pdb and 1gr5.pdb. 2) Denoising with
NT2C improves micrograph interpretability and PSNR in simulated datasets. The
last two rows show comparison of different denoising methods on dataset generated with
2wrj.pdb, from left to right are Lowpass filter (2x binning), Gaussian filter, BM3D (third
row), N2N-general, N2N and NT2C-coarse (last row). Detailed views of boxed region are
shown at lower right corner of the micrograph.

Denoising with NT2C improves micrograph interpretability and
PSNR in simulated datasets. We compared NT2C with four mainstream

cryo-EM denoising methods, including three conventional methods, Low-
pass filter, Gaussian filter (Haddad et al., 1991), BM3D, and a learning-
based methods, N2N (Noise2Noise). Topaz-Denoise is employed for N2N
where the general model provided by Topaz-Denoise is denoted as ’N2N-
general’ and the Topaz-Denoise model retrained with a specific dataset
is denoted as ’N2N’. We also provide a coarse CNN denoiser that is
used for roughly image contrast-enhancing in the noise extraction module
of NT2C, denoted as NT2C-coarse. The comparison among different
methods is carried on SIM1. Here, NT2C-1kd1 is adopted for comparison.
The NT2C-coarse is trained with SIM2 that is generated with protein
1kd1.pdb.

The last two rows of Figure 8 present the denoised results of Low-
pass filter (2x binning), Gaussian filter, BM3D, N2N-general, N2N,
and coarse-NT2C. It can be found that both N2N and NT2C remove
background noise while preserving the structural features significantly
better than conventional methods. The very weak particle signals in the
raw micrograph are clearly restored after denoised by N2N and NT2C.
The image contrast is greatly enhanced by N2N-general. However, the
noise is not completely removed. Especially, as shown in the small
representative area, the image denoised by NT2C-coarse contains artifacts
around the specimen signal, which do not appear in NT2C. NT2C can
correctly capture the true noise distribution in SIM1 and remove it from
the micrograph.

We further quantitatively assessed the performance of different
methods based on the SSIM, Pearson CC and PSNR (in dB). As shown
in Table 3, N2TC achieves the best performance on all three assessment
criteria. Especially, our method improves SSIM by 0.05, Pearson CC by
0.06 and PSNR by >3 dB over N2TC-coarse which lacks true noise, and
improves Pearson CC by 0.03 and PSNR by roughly 4 dB over N2N
methods.

Raw Lowpass Gaussian

BM3D N2N NT2C

Fig. 9: Denoising with NT2C improves micrograph interpretability in real-world
datasets. Comparison among different denoising methods is carried out on real-world
datasets EM28. A small region is selected to illustrates that NT2C performs better in noise
smoothing and signal enhancing than both conventional (Lowpass filter, Gaussian filter,
BM3D) and learning-based methods (N2N).
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Raw Lowpass Gaussian

BM3D N2N NT2C

Fig. 10: NT2C accurately resolve complex noise model and restore clear specimen signal. Two regions, one containing pure noise and the other containing specimen signal, are
selected from one micrograph of EMP25 to illustrate the performance of NT2C. Comparing with Lowpass filter, Gaussian filter, BM3D, and N2N, NT2C can thoroughly remove noise and
decomplex structured features from noise.

Table 3. Comparison of denoising methods based on SSIM, Pearson CC, PSNR and
estimated SNR (in dB, larger is better)

Datasets
SIM1 EM25 EM28

SSIM Pearson CC PSNR SNR SNR
Raw 0.40 0.43 20.87 -0.16 -0.34

Lowpass 0.44 0.53 22.18 -0.04 -0.24
Gaussian 0.49 0.58 21.60 -0.14 -0.18
BM3D 0.44 0.60 22.60 0.07 -0.27

TopazDe-gen 0.67 0.72 25.36 - -
TopazDe 0.84 0.79 26.77 0.21 1.04

NT2C-coarse 0.79 0.76 27.50 - -
NT2C 0.84 0.82 29.78 4.88 7.65

4.2.2 Evaluation with Real Noise To demonstrate NT2C’s ability to
deal with complex latent noise in real cryo-EM images, we evaluated the
performance of NT2C on three real-world datasets and compared it with
Lowpass filter, Gaussian filter, BM3D and N2N.
Denoising with NT2C improves micrograph interpretability and
SNR. Figure 9 shows a representative region selected from EM28 and
denoised results of Low-pass filter (2x binning), Gaussian filter, BM3D,
N2N, and NT2C. It can be seen that two learning-based methods, N2N
and NT2C are better than conventional methods in noise smoothing and
specimen signal enhancing. Moreover, NT2C achieves a stronger noise
removal performance and reserved clearer specimen signal than N2N,
therefore provides better interpretability.

Furthermore, we quantitatively assessed denoising performance by
measuring the SNR of raw micrographs and micrographs denoised with
different methods. Due to the nonexistent ground truth, the SNR is
estimated in a similar way to Bepler et al., 2020. Firstly, we select 10
paired signal and background regions across 10 micrographs where the
background regions are as close as possible to the corresponding signal
region. Given N signal and background pairs, xi

s, xi
b, the mean and

variance of each background region is marked as µi
b,vi

b. We define the

signal for each region as si = xi
s − µ

i
b and calculate the mean and variance

of signal region, µi
s, vi

s. The average SNR in dB for the regions is defined
as:

S NR =
10
N

N∑
i=1

log10
(
vi

s) − log10(vi
b

)
(6)

This SNR has no physical meaning, just criteria for comparison. As
shown in Table 3, the conventional methods only improve roughly 0.1 dB
over raw micrographs. NT2C method improves SNR by 8 dB over raw
micrographs and roughly 6 dB over N2N methods.
NT2C accurately resolve complex noise model and restore clear
specimen signal. To further study the NT2C’s performance on noise
removal and specimen signal restoration, we selected two representative
regions from dataset EM25, one containing specimen signals and the
other containing pure noise. Figure 10 presents the raw micrograph and
denoised results of Lowpass filter, Gaussian filter, BM3D, N2N, and
NT2C. It can be found that the pure noise region denoised by NT2C is
cleaner than all other methods, where N2N removes most of the noise
and the conventional methods achieve the poorest performance on noise
smoothing. Moreover, as shown in the region containing specimen signal,
NT2C correctly decomplex structured features from complex noise. The
signal restored by N2TC presents distinct structures and the particles with
different projections are easily distinguished. Table 3 gives quantitative
analysis on SNR, which further proves the notable performance achieved
by NT2C. It improves SNR by 4.91 dB, 4.54 dB and >4.6 dB over raw
micrograph, N2N and conventional methods.
Denoising with NT2C enables more complete picking of hard-to-
identify particles. We tested NT2C on micrographs with particularly
difficult-to-identify particle projections, EM77, where the contrast of
images is extremely low. Figure 11A shows representative micrographs
before and after denoising. Before denoising, many particles were
indistinguishable from noise by eye, such as the black-boxed regions a-c.
After denoising, these particles in particular became readily identifiable.
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Fig. 11: Denoising with NT2C enables more complete picking of difficult particle projections. (A) Micrograph from EM77 is split into the NT2C denoised and raw micrographs along
the diagonal. (B) Micrograph from EM77 is split into the NT2C denoised and N2N denosied micrographs along the diagonal. (C) Particles picked by Topaz using raw micrograph (red
circle) and micrograph denoised with NT2C (blue circle). (D) Particles picked by Topaz using micrograph denoised with N2N (red rectangle) and NT2C (blue circle). (E) The detailed
views of particles boxed in black.

Since Topaz-Denoise is the most commonly-used denoising algorithm
in cryoEM, we compared NT2C with Topaz-Denoise on improving
particle picking. Figure 11B shows representative micrographs denoised
by NT2C and Topaz-Denoise (denoted as N2N). Figure 11E d-g shows
the particles that can be clearly recognized in micrograph denoised by
NT2C. However, though the images contrast is enhanced by Topaz-
Denoise, these particles are still difficult to indentify from background.
NT2C greatly increases protein density confidence and allows researchers
to identify low-density particle views from micrographs.

In order to quantify NT2C’s improvements on particle picking, we
trained three Topaz (Bepler et al., 2019) particle denoising models
with about 300 particles manually picked from raw micrographs
and micrographs denoised by Topaz-Denoise and NT2C, marked as
raw-picker, N2N-picker and NT2C-picker. The inference of NT2C-
picker generates 45300 particles, N2N-picker generates 41998 particles,
while raw-picker generates 38088 particles, where NT2C achieves the
improvements on the recognition rate of hard-to-identify particles by

roughly 8% over Topaz-Denoise and by 19% over raw micropgraphs.
Figure 11C-D shows the particles picked from Figure 11A-B, where
the particles from raw-picker, N2N-picker and NT2C-picker are denoted
by red circles, red rectangles and blue circles. A lot of hard-to-
identify particles, such as black-boxed regions, are recognized after the
micrograph denoised by NT2C. The excellent denoising performance of
NT2C will greatly relieve the difficulty of particle picking.

5 DISCUSSION AND CONCLUSION
In this article, we proposed a denoising framework for image contrast
enhancement and specimen signal restoration in cryo-EM. The key idea
of NT2C is discovering the noise model of cryo-EM images over pure
noise patches and transferring the statistical nature of noise into the
denoiser, making the denoising based on noise’s true properties. To cope
with the complex noise model in cryo-EM, we further design a contrast-
guided noise and signal re-weighted algorithm to achievie clean-noisy
data synthesis and data augmentation for denoiser. To our knowledge,
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NT2C is the first denoising method that resolves the complex noise model
in cryo-EM images. Comprehensive experiments on both simulated and
real-world datasets demonstrate that NT2C is able to deal with high-level
complex noise in cryo-EM images. A case study further demonstrates
that NT2C can improve the recognition rate on hard-to-identify particles
by 19% in the particle picking task.

Our follow work will further explore the complex relationship
between image formation theory adopted in simulation and the real
imaging process of cryo-EM, thus improving NT2C’s ability to restore
information in real cryo-EM datasets.

REFERENCES
Bai X, McMullan G, Scheres S H W (2015). How cryo-EM is revolutionizing

structural biology[J]. Trends in biochemical sciences, 40(1), 49-57.
Zhang Y, Sun B, Feng D. et al (2017). Cryo-EM structure of the activated GLP-1

receptor in complex with a G protein[J]. Nature, 546(7657), 248-253.
Parmenter C D J, Cane M C, Zhang R. et al (2008). Cryo-electron microscopy of

coagulation Factor VIII bound to lipid nanotubes[J]. Biochemical and biophysical
research communications, 366(2), 288-293.

Bendory T, Bartesaghi A, Singer A. (2020). Single-particle cryo-electron
microscopy: Mathematical theory, computational challenges, and
opportunities[J]. IEEE Signal Processing Magazine, 37(2), 58-76.

Dabov K, Foi A, Katkovnik V. et al (2007). Image denoising by sparse 3-
D transform-domain collaborative filtering[J]. IEEE Transactions on image
processing, 16(8), 2080-2095.

Buades A, Coll B, Morel J M. (2005). A non-local algorithm for image denoising[C].
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), 2, 60-65.

Dong W, Zhang L, Shi G. et al (2012). Nonlocally centralized sparse representation
for image restoration[J]. IEEE transactions on Image Processing, 22(4), 1620-
1630.

Gu S, Zhang L, Zuo W. et al (2014). Weighted nuclear norm minimization with
application to image denoising[C]. Proceedings of the IEEE conference on
computer vision and pattern recognition, 2862-2869.

Mairal J, Bach F, Ponce J. et al (2009). Non-local sparse models for image
restoration[C]. 2009 IEEE 12th international conference on computer vision,
2272-2279.

Mao X J, Shen C, Yang Y B. (2016). Image restoration using convolutional auto-
encoders with symmetric skip connections[J]. arXiv preprint arXiv:1606.08921

Jain V, Seung S. (2008). Natural image denoising with convolutional networks[J].
Advances in neural information processing systems, 21, 769-776.

Lehtinen J, Munkberg J, Hasselgren J. et al (2018). Noise2noise: Learning image
restoration without clean data[J]. arXiv preprint arXiv:1803.04189.

Krull A, Buchholz T O, Jug F. (2019). Noise2void-learning denoising from single
noisy images[C]. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2129-2137.

Chen J, Chen J, Chao H. et al (2018). Image blind denoising with generative
adversarial network based noise modeling[C]. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 3155-3164.

Goodfellow I, Pouget-Abadie J, Mirza M, et al (2012). Generative adversarial
networks[J]. Communications of the ACM, 63(11), 139-144.

Bepler T, Kelley K, Noble A J, et al (2020). Topaz-Denoise: general deep denoising
models for cryo-EM and cryoET[J]. Nature communications, 11(1), 1-12.
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