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Abstract This paper presents a method to derive the virtual fields for
identifying constitutive model parameters using the Virtual Fields Method
(VFM). The VFM is an approach to identify unknown constitutive parameters
using deformation fields measured across a given volume of interest. The
general principle for solving identification problems with the VFM is first
to derive parametric stress field, where the stress components at any point
depend on the unknown constitutive parameters, across the volume of interest
from the measured deformation fields. Applying the principle of virtual work
to the parametric stress fields, one can write scalar equations of the unknown
parameters and solve the obtained system of equations to deduce the values
of unknown parameters. However, no rules have been proposed to select the
virtual fields in identification problems related to nonlinear elasticity and there
are multiple strategies possible that can yield different results. In this work,
we propose a systematic, robust and automatic approach to reconstruct the
systems of scalar equations with the VFM. This approach is well suited to
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2 Yue Mei et al.

finite-element implementation and can be applied to any problem provided
that full-field deformation data are available across a volume of interest. We
also successfully demonstrate the feasibility of the novel approach by multiple
numerical examples. Potential applications of the proposed approach are
numerous in biomedical engineering where imaging techniques are commonly
used to observe soft tissues and where alterations of material properties are
markers of diseased states.

Keywords Nonlinear elasticity · Virtual fields method · Finite-element
method · hyperelasticity · material identification · soft biological tissues

List of symbols

A Index in tensorial expressions
Ao Matrix obtained after assembling the N linear equations of the VFM
α Material parameter (used in the Mooney-Rivlin model)
bo Second member vector obtained after assembling the N linear

equations of the VFM
B Index in tensorial expressions
B Domain of interest in a solid-like body
Bh Domain B tessellated into a finite number of non-overlapping

elements
Be Domain of an element e

B̂ Isochoric part of the left Cauchy–Green tensor
β Vector of material parameters
βn Material parameter
βo Initial estimation of the vector of unknown constitutive parameters

used to define an intermediate configuration
δβo Deviation between βo and the vector of actual material parameters

β̃ Identified vector of material properties from measured displacements
c1, c2 Material parameters (used in the Veronda-Westmann model)
χβ Mapping function of the deformation
Γh Part of the boundary of B where traction are applied
C Index in tensorial expressions
C o Fourth order material stiffness tensor
C Right Cauchy–Green tensor
Co Right Cauchy–Green tensor predicted by solving the forward problem

with the βo material parameters
δCo Deviation between the actual right Cauchy–Green tensor and Co

Ĉ Isochoric part of the right Cauchy–Green tensor
D Index in tensorial expressions
Do Fourth order tensor
Dev Deviatoric part in the reference configuration
dev Deviatoric part in the current configuration
E Green-Lagrange strain tensor
Eo Green-Lagrange strain tensor predicted by solving the forward

problem with the βo material parameters
δEo Deviation between the actual Green-Lagrange strain tensor and Eo

ε̃ Measurement of the actual infinitesimal strain tensor between the
intermediate configuration and the current configuration

e Element of the discretised domain of interest
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General finite-element framework of the Virtual Fields Method in Nonlinear Elasticity 3

E Material parameter, Young’s modulus equivalent in the Neo-Hookean
model

E Set of elements in discretised domain of interest
F Deformation gradient tensor
Fo Deformation gradient tensor predicted by solving the forward

problem with the βo material parameters
δFo Deviation between the actual deformation gradient tensor and Fo

F̂ Isochoric part of the deformation gradient tensor
Fo(n) Force vector obtained in the finite-element implementation used to

derive the virtual field δuo(n)

Φ Strain energy density function

H̃ Measurement of the actual deformation gradient between the
intermediate configuration and the current configuration

h Traction vector
i Index in tensorial expressions
I1 First invariant of C

Î1 Isochoric part of the first invariant of C
j Index in tensorial expressions
J Jacobian of the deformation
Jo Jacobian of the deformation predicted by solving the forward problem

with the βo material parameters
k Index in tensorial expressions
KKKo Fourth order stiffness tensor

Ko(n) Stiffness matrix obtained in the finite-element implementation used
to derive the virtual field δuo(n)

κ Material parameter (compressibility modulus)
κR Reference configuration
κβ Current configuration
LLLo 4th order tensor relating δTo and δFo

L Linear operator such as δuo(n) = L(To
,βn

) in the solution of Eq. 42
l Index in tensorial expressions
µ Material parameter (shear modulus)
N Number of material properties
n Index varying between 1 and N
n Normal vector
N Shape function used for the discretised field
ν Material parameter, Poisson’s ratio equivalent in the Neo-Hookean

model
∇κ Gradient operator on the κ configuration
∇κ. Divergence operator on the κ configuration
q Index varying between 1 and N
S Piola-Kirchhoff stress tensor
So Piola-Kirchhoff stress tensor predicted by solving the forward

problem with the βo material parameters
δSo Deviation between the actual Piola-Kirchhoff stress tensor and So

Sβn
Sensitivity of S to material parameter βn

Ŝ Deformation-dependent part of the Piola-Kirchhoff stress tensor

Ŝβn
Sensitivity of Ŝ to material parameter βn

Ŝ
o

βn
Sensitivity of Ŝ

o
to material parameter βn

T Cauchy stress tensor
To Cauchy stress tensor predicted by solving the forward problem with

the βo material parameters
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δTo Deviation between the actual Cauchy stress tensor and To

Tβn Sensitivity of T to material parameter βn
T̂ Deformation-dependent part of the Cauchy stress tensor

T̂βn
Sensitivity of T̂ to material parameter βn

t Time variable
u Displacement field vector
U Part of the strain energy density function describing the volumetric

response
Uo U estimated by solving the forward problem with the βo material

parameters
Uoβn

Sensitivity of Uo to material parameter βn
ũ Measurement of the actual displacement field vector
δuo(n) Virtual displacement field vector

Ŵ Part of the strain energy density function describing the deviatoric
response

Ŵ o Ŵ estimated by solving the forward problem with the βo material
parameters

Ŵ o
βn

Sensitivity of Ŵ o to material parameter βn
X Position vector in reference configuration
x Position vector in current configuration
xo Position vector in current configuration predicted by solving the

forward problem with the βo material parameters
δxo Deviation between the actual position vector and xo

1 Introduction

One of the objectives in computational biomechanics is to make predictions:
given for instance a complete and patient-specific reconstruction of the
aorta and surrounding tissues, we can predict the deformations induced
by a deployed stent graft during surgical repair of an aneurysm [1, 2,
3]. More generally, we could predict the deformations of the aorta under
the action of any radial forces applied in an experiment. This problem of
predicting the result of measurements is called the simulation problem, or
the forward problem. The inverse problem consists of using the experimental
measurements, such as the displacement field, to infer the values of the
parameters that characterize the system, such as unknown material parameters
[4, 5, 6, 7, 8, 9, 10, 11], unknown boundary conditions, or even sometimes the
unknown initial geometry of the solid before the application of mechanical
loading (load-free configuration in finite deformations [12, 13]).

A subcategory of inverse problems is made by identification problems
[6, 14], where a finite number of unknown material parameters have to be
recovered from experimental measurements. Such inverse problems can be
solved by defining a cost function that estimates the absolute error between the
model predictions and the measurements. The cost function is minimized in the
least-squares sense. In general situations, the model is solved numerically using
a finite-element model updating technique (FEMU) [6, 14, 15, 16, 17, 18, 19].

In the more and more common situations when full-field measurements are
available [20, 21, 22, 7, 23, 24, 25], an alternative to FEMU is possible: the
Virtual Fields Method (VFM), which has been shown to be more direct and
robust with respect to unknown boundary conditions in these situations [26].

The general principle for solving identification problems with the VFM is
first to derive parametric stress field across the volume of interest from the
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General finite-element framework of the Virtual Fields Method in Nonlinear Elasticity 5

measured deformation field, stress components at any position for a given
deformation depending on a number of unknown constitutive parameters.
Applying the principle of virtual work to the parametric stress field gives
scalar equations for the unknown parameters. The system of equations can be
solved for the values of unknown parameters.

There are currently multiple strategies possible for the selection of virtual
fields when the VFM is applied in nonlinear elasticity. A simple and efficient
approach, well suited for tensile tests, is to define virtual displacements varying
linearly from one boundary to the other. This approach was recently applied
successfully in biaxial tension by Kazerooni et al [27] to identify the parameters
of a Holzapfel model [28] for the skin. For other types of loading, for instance,
Zhang et al. [23] introduced analytical expressions of virtual fields which were
written in the cylindrical coordinate system using the arctan function. For
inflation experiments, Bersi et al [29] used virtual fields that permitted to
derive local equilibrium equations relating the intraluminal pressure and the
wall tensile stresses. These virtual fields were valid for the very specific problem
of inflation of thin-wall cylinder-like structures. The extension to thick-wall was
solved in further papers [30, 25] by weighting locally the virtual fields with a
Gaussian function, which was successfully centered at the middle of square
patches in order to identify the distribution of material properties across the
whole cylinder.

Although the approaches discussed above were all successful in solving
specific identification problems, a general and unified VFM approach is still
needed for the following reasons:

1. the expression of virtual fields used in most of previous studies [27, 30, 31]
was well adapted to the 2D geometries such as membranes or shells but
there is a range of samples or materials in which boundary conditions or
geometries or both cannot be straightforwardly designed or chosen to be
2D. With the acquisition of fully volumetric deformation fields which is
expanding for soft tissues [23, 24, 25, 32, 33, 34, 35], there is a need for a
method that can provide virtual fields for any 3D geometry and virtual
field.

2. In previous studies cited above, the VFM was used to identify the
parameters of incompressible hyperelastic materials. The compressibility
modulus was usually disregarded. To identify simultaneously the
compressibility and shear moduli of a hyperelastic material, two
independent virtual fields are needed in order to separate the hydrostatic
and deviatoric contributions of the stress. This problem was solved a decade
ago for linear elasticity [36, 37] but it remained an open question for
nonlinear elasticity.

In this paper, we introduce an original approach addressing these essential
questions. An application of this method to identifying material properties
of the lamina cribrosa (LC) in the optic nerve head (ONH), using optical
coherence tomography (OCT) imaging data, demonstrates the viability of the
technique. The paper is organized as follows: We first elaborate the theoretical
aspects of the proposed VFM approach in Section 2. Subsequently, several
numerical examples and an application are presented to test the feasibility
of the method in Section 3. We then discuss the results and the proposed
approach in Section 4 and end with a conclusion in Section 5.
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2 Materials and methods

2.1 Definition of the problem

A solid-like body, or part of it, denoted B, is considered in a reference
configuration κR(B). Under the application of loads, it is assumed that the
solid has a nonlinear elastic response which is governed by a finite number N
of material properties (defining local constitutive equations and their possible
spatial variations).

These are denoted as a vector β = (β1, β2, . . . , βq, . . . , βn, . . . , βN ).
At time t, after the application of traction h(t) on a part of the boundary

of B, denoted by Γh, B undergoes a motion described by a mapping χβ,
depending on material properties β, from a reference configuration κR(B) to
a current configuration κβ(B), such as

x = χβ(X, t) = X + u(β, X, t) , (1)

where X and x are position vectors relative to reference and current
configurations and u is the displacement vector field. In the following, we
introduce the deformation gradient

F =
∂χβ(X, t)

∂X
= I +

∂u(β,X, t)

∂X
, (2)

the right Cauchy–Green tensor

C = FTF, (3)

and the Jacobian
J = det(F). (4)

We also introduce the isochoric right Cauchy–Green tensor

Ĉ = F̂
T
F̂, (5)

where we denote the isochoric part of the deformation gradient as

F̂ = J−1/3F. (6)

We assume that an experimental measurement of the displacement field u(X, t)
is available across the solid at time t. The measured displacement field ũ(t)
may be different than the actual displacement u(X, t) because of measurement
noise.

The inverse / identification problem consists of finding the values of
the approximate parameters β̃ that minimizes the absolute error between
u(β̃,X, t) and ũ(X, t).

2.2 Constitutive and equilibrium equations

Equilibrium equations in κβ(B) must be satisfied by the Cauchy stress T,
which may be written, in absence of accelerations and body forces, as

∇κβ
.T = 0 on χβ(B, t),

T.n = h(t) on χβ(Γh, t).
(7)

In Eq. 7, the equilibrium on the boundaries is only written where known
tractions are applied as we will use these equilibrium equations to solve
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the identification problem and we do not want to introduce supplemental
unknowns such as the reaction tractions on the boundaries where Dirichlet
boundary conditions would be applied.

In this paper, we focus on compressible hyperelastic materials. It is assumed
that their strain energy density function Φ can be written in an uncoupled form
as

Φ = U(J,β) + Ŵ (Ĉ,β), (8)

where U(J,β) describes the volumetric response and Ŵ (Ĉ,β) describes the
deviatoric response.

The second Piola-Kirchhoff stress S can be written as

S = 2
dΦ

dC
=

dU

dJ
JC−1 + 2J−2/3 Dev

Ç
∂Ŵ

∂Ĉ

å
, (9)

where

Dev

Ç
∂Ŵ

∂Ĉ

å
=

Ç
∂Ŵ

∂Ĉ

å
− 1

3

ñÇ
∂Ŵ

∂Ĉ

å
: Ĉ

ô
Ĉ
−1
. (10)

In the following, we introduce Ŝ = 2
∂Ŵ

∂Ĉ
. The Cauchy stress T can be written

as

T = J−1FTSF =
dU

dJ
I + dev

Ä
T̂
ä
, (11)

where T̂ = J−1F̂ŜF̂
T

, and

dev
Ä
T̂
ä

= T̂− 1

3
Tr
Ä
T̂
ä

I . (12)

Moreover, we introduce

S,βq
=

∂S

∂βq
=

dU,βq

dJ
JC−1 + J−2/3Dev

Ä
Ŝ,βq

ä
, (13)

and

T,βq
=
∂T

∂βq
=

dU,βq

dJ
I + J−1dev

(
F̂ Ŝ,βq

F̂
T
)
, (14)

where

Ŝ,βq
=

∂Ŝ

∂βq
= 2

∂ ∂Ŵ
∂Ĉ

∂βq
= 2

∂ ∂Ŵ∂βq

∂Ĉ
= 2

∂Ŵ,βq

∂Ĉ
, (15)

Ŵ,βq
=
∂Ŵ

∂βq
and U,βq

=
∂U

∂βq
. (16)
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2.3 Definition of an intermediate configuration

2.3.1 Decomposition of the deformation gradient

Let us start with a set of parameters βo which corresponds to an initial
estimation of the unknown constitutive parameters based on existing literature
on the same tissue for instance.

Unstressed “intermediate configuration” were traditionally used in the
literature for the multiplicative split of the deformation gradient in finite strain
plasticity [38]. We define here a stressed intermediate configuration κβo(B) for
which the solid with the vector of material properties βo is at equilibrium
(Fig. 1). We emphasize that this is a different use of the “intermediate
configuration” terminology than in finite strain plasticity [38].

Then, let the position in the intermediate (stressed) configuration be
denoted by xo = χβo(X, t), corresponding to displacement uo(X, t) = xo−X.

We assume that a small displacement δxo superimposed upon the large
deformation uo, yields the current position x at time t for which the solid
with a vector of material properties β = βo + δβo is at equilibrium. We
assume that δβo is a small variation of βo such as

||δxo|| � ||uo||,
||δβo|| � ||βo||. (17)

The small displacement δxo corresponds to the deformation between the
intermediate configuration (at which the solid with βo material properties
is at equilibrium) and the current configuration (at which the solid with
β = βo + δβo material properties is at equilibrium).

The current position can thus be written as

x = xo + δxo. (18)

The deformation gradient associated with mappings from the reference to the
intermediate is thus given by

Fo =
∂χβo(X, t)

∂X
. (19)

The deformation gradient representing a mapping from the intermediate
configuration to the current configuration (corresponding to the variations of
the configuration for a variation of material properties δβo) may be expressed
as I + δFo where

δFo =
∂δxo

∂xo
. (20)

Then, gradients of the successive motions are obtained with the chain rule,
such as

F =
∂x

∂xo
∂xo

∂X
=

∂x

∂xo
Fo =

ï
∂(xo + δxo)

∂xo

ò
Fo =

∂xo

∂xo
Fo+

∂δxo

∂xo
Fo = Fo+δFo Fo .

(21)

Then, the identification problem can be formulated as, find the values of
δβo that minimizes the error between δxo and ũ− uo.
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Fig. 1 The relationship of the reference, intermediate and current configurations.

2.3.2 Cauchy stress tensor

Using Eq. 9 and Eq. 11 specifically with Fo deformation gradient, the
second Piola-Kirchhoff stress So and Cauchy stress To in the intermediate
configuration may be written respectively

So =
dUo

dJ
Jo (Co)

−1
+ 2 (Jo)

−2/3
Dev

Ç
∂Ŵ o

∂Ĉ

å
,

To =
dUo

dJ
I + 2 (Jo)

−1
dev

Ç
F̂o
∂Ŵ o

∂Ĉ
F̂o

T
å

,

(22)

where Uo = U(Jo,βo) and Ŵ o = Ŵ (F̂o,βo).
Note that the Cauchy stress To must satisfy the equilibrium equations on

the κβo configuration (further denoted κo) which may be rewritten

∇.To = 0 on χβo(B, t) ,
To.n = h(t) on χβo(Γh, t) .

(23)

The second Piola-Kirchhoff stress S can be related to So using a Taylor
expansion of first order. For that we substitute into Eq. 9, β = βo + δβo and
C = Co + δCo, which yields

S ' So + δSo ' So +
∂S

∂C
: δCo +

N∑
q=1

δβoq So,βq
, (24)

where

So,βq
=

dUo,βq

dJ
Jo (Co)

−1
+ 2 (Jo)

−2/3
Dev

(
∂Ŵ o

,βq

∂Ĉ

)
. (25)

Neglecting the second order terms in the deformations from the intermediate
to the current configuration, it may be written

δCo = ((δFo + I) Fo)
T

((δFo + I) Fo)− FoTFo ,

= FoT
Ä
(δFo + I)

T
(δFo + I)− I

ä
Fo ,

= FoT
Ä
δFo + (δFo)

T
+ (δFo)

T
δFo
ä

Fo ,

' 2FoT δEo Fo ,

(26)
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where δEo = 1
2

Ä
δFo + (δFo)

T
+ (δFo)

T
δFo
ä

signifies the infinitesimal strain

induced by a slight variation of material properties when δFo is small.
Finally,

δSo = KKKo :
Ä
FoT δEo Fo

ä
+

N∑
q=1

δβoq So,βq
, (27)

where,

KKKo = 2
∂So

∂C
. (28)

Next, we can derive the Cauchy stress T for the current configuration from
To as

T = det(Fo + δFo)−1 (Jo)
−1

(I + δFo) Fo (So + δSo) (Fo)
T

(I + δFo)
T

' To + δTo ,
(29)

where

δTo = −Tr(δEo)To + δFoTo + To (δFo)
T

+

N∑
n=1

δβn To
,βn

+ (Jo)
−1

Fo
î
KKKo :

Ä
FoT δFo Fo

äó
(Fo)

T
,

(30)

and

To
,βq

=
dUo,βq

dJ
I + 2 (Jo)

−1
dev

(
F̂o
∂Ŵ o

,βq

∂Ĉ
F̂o

T

)
. (31)

Equation 30 may be rewritten by introducing a 4th order tensor LLLo such as

δTo = LLLo : δFo +

N∑
q=1

δβq To
,βq

. (32)

The components of the LLLo tensor may be written such as

Loijkl =
1

2
(C o
ijkl + Do

ijkl + C o
ijlk −Do

ijlk) , (33)

where, the summation convention being adopted for the repeated indices,

C o
ijkl = −δklT oij + δikT

o
lj + T oikδjl + (Jo)

−1
F oiAF

o
jBF

o
kCF

o
lDKoABCD ,

Do
ijkl = δikT

o
lj + T oikδjl .

(34)

Equilibrium must be satisfied in the current configuration. Given that Eq. 23
is satisfied by To on the intermediate configuration, and assuming that the
intermediate configuration is infinitesimally close to the current configuration
(owing to δβo/βo � 1), we can assume that the following equations are
satisfied by δTo,

∇κo
.δTo = 0 on χβo(B, t) ,

δTo.n = 0 on χβo(Γh, t) .
(35)

The equilibrium equations may be rewritten such as

N∑
q=1

δβq ∇.To
,βq

= −∇κo . (LLLo : δFo) on χβo(B, t) ,

N∑
q=1

δβq To
,βn
.n = − (LLLo : δFo) .n on χβo(Γh, t) .

(36)
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General finite-element framework of the Virtual Fields Method in Nonlinear Elasticity 11

In the following, for the sake of simplification, the following abuse of notation
will be used for the gradient and divergence in the κo configuration:∇ ≡∇κo .

2.4 The virtual fields method

δTo should satisfy the equilibrium equations (Eq. 36) written just above.
These equations can be written in their weak form such as

∫
χβo (B,t)

δTo :∇δuo(n)dV o = 0 , (37)

where δuo(n) is a virtual displacement field which equals zero on χβo(∂B\Γh)
(boundary where traction are not applied). In δuo(n), the index (n) indicates
that at least N virtual fields are necessary to establish a system of N equations
of the N unknown material properties βn.

As full-field measurements are available, δFo and δEo from Eq. 30 can be
replaced by their measures denoted respectively H̃ and ε̃, such as

H̃ =∇(ũ− uo) , ε̃ =
1

2
(H̃ + H̃

T
) , (38)

yielding

N∑
q=1

δβoq

∫
χβo (B)

To
,βq

:∇δuo(n)dV o

= −
∫
χβo (B)

(
−Tr(ε̃)To + H̃To + ToH̃

T
)

:∇δuo(n)dV o

−
∫
χβo (B)

Ä
(Jo)

−1
Fo
î
KKKo :

Ä
FoT ε̃Fo

äó
(Fo)

T
ä

:∇δuo(n)dV o .

(39)

Equation 39 may be rewritten by introducing the LLLo tensor such as

N∑
q=1

δβoq

∫
χβo (B)

To
,βq

:∇δuo(n)dV o

= −
∫
χβo (B)

Ä
LLLo : H̃

ä
:∇δuo(n)dV o

= −
∫
χβo (B)

H̃ :
Ä
LLLoT : ∇δuo(n)

ä
dV o .

(40)

The previous equation can be written N times with N virtual fields δuo(n).
The obtained system of equations may be written such as
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∫
χβo (B)

To
,β1

:∇δuo(1)dV o . . .

∫
χβo (B)

To
,βN

:∇δuo(1)dV o

...
. . .

...∫
χβo (B)

To
,β1

:∇δuo(N)dV o . . .

∫
χβo (B)

To
,βN

:∇δuo(N)dV o



×

â
δβo1

...

δβoN

ì
= −



∫
χβo (B)

H̃ :
Ä
LLLoT : ∇δuo(1)

ä
dV o

...∫
χβo (B)

H̃ :
Ä
LLLoT : ∇δuo(N)

ä
dV o


. (41)

In the next section we provide a methodology to choose the set of N virtual
fields.

2.5 Derivation of the virtual fields for parameter identification

In the previous subsection, we showed that the unknown constitutive
parameters can be identified by solving a linear system of equations. To
establish this system of equations, one needs to define N virtual fields denoted
δuo(n), such that [Ao] is invertible. The invertibility is ensured by relating each
virtual field δuo(n) to the sensitivity of the Cauchy stress to each unknown
parameter, denoted as To

,βn
in Eq. 31 and introduced in Eq. 30, since it is

assumed that the different To
,βn

constitute a set of N linearly independent
tensorial functions.

Therefore, a possible choice of N linearly independent virtual fields could
simply be: δuo(n) = ∇.To

,βn
. However, the virtual field must equal zero on

χβo(∂B\Γh) and remain continuous. To meet these requirements and benefit
from the linear independence between the To

,βn
fields, we defined δuo(n) as the

vectorial fields satisfying

∇.
Ä
LLLoT :∇δuo(n)

ä
= ∇.

(
To
,βn

)
on χβo(B, t),Ä

LLLoT :∇δuo(n)
ä
.n =

(
To
,βn

)
.n on χβo(Γh),

δuo(n) = 0 on χβo(∂B\Γh).

(42)

The virtual fields δuo(n) are eventually obtained by solving the linear elastic
problems defined in Eq. 42 using the finite-element method (subsection 2.6).
Let us introduce the L linear operator such as δuo(n) = L(To

,βn
) is the solution

of Eq. 42.
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Moreover using the integration by parts, we can write∫
χβo (B)

H̃ :
Ä
LLLoT :∇δun

ä
dV o =

∮
χβo (Γh)

(ũ− uo).
Ä
LLLoT :∇δun

ä
.n dSo

−
∫
χβo (B)

(ũ− uo).∇.
Ä
LLLoT :∇δun

ä
dV o ,

∫
χβo (B)

H̃ :
Ä
LLLoT :∇δun

ä
dV o =

∮
χβo (Γh)

(ũ− uo).
(
To
,βn

)
.n dSo

−
∫
χβo (B)

(ũ− uo).∇.
(
To
,βn

)
dV o ,

∫
χβo (B)

H̃ :
Ä
LLLoT :∇δun

ä
dV o =

∫
χβo (B)

H̃ : To
,βn
dV o.

(43)
Then we can build the system of equations of Eq. 41 by replacing each δuo(n)

by their expression coming from Eq. 42, and use also the simplifications derived
in Eq. 43, yielding



∫
χβo (B)

To
,β1

:∇L(To
,β1

)dV o . . .

∫
χβo (B)

To
,βN

:∇L(To
,β1

)dV o

...
. . .

...∫
χβo (B)

To
,β1

:∇L(To
,βN

)dV o . . .

∫
χβo (B)

To
,βN

:∇L(To
,βN

)dV o



×



δβo1

δβo2

...

δβoN


= −



∫
χβo (B)

H̃ : To
,β1
dV o

...∫
χβo (B)

H̃ : To
,βN

dV o


. (44)

This system of equations can be rewritten

[Ao]{δβo} = {bo} . (45)

Then, the unknown constitutive parameters can be obtained as

β = βo + [Ao]−1{bo} . (46)

2.6 Finite-element implementation

The numerical implementation of the proposed method requires the use of
finite-element analyses at two different levels:

1. find the intermediate configuration and the deformation gradient Fo by
solving the partial differential equations (PDEs) of the forward problem
(Eq. 23) with a set of parameters βo,
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2. compute integrals in Eq. 41 or Eq. 44 to identify the unknown constitutive
parameters.

In this section, we propose a possible numerical implementation. As
standard in finite-elements [39, 40, 41, 42]), the computational domain B
is discretised into a finite number of non-overlapping elements e ∈ E such that

B ≈ Bh =
⋃
e∈E

Be ,

χβo(B) ≈ χβo(Bh) =
⋃
e∈E

χβo(Be) .
(47)

The fields are discretised using the following standard vectorial shape functions
NNN (X) as

uo(X) =

Nw∑
a=1

uoaNNN
a(X) ,

ũ(X) =

Nw∑
a=1

ũaNNN
a(X) ,

δuo(n)(X) =

Nw∑
a=1

δuo(n)a NNN a(X) ,

(48)

where uoa are nodal variables for the uo field, ũa are nodal variables for the uo

field and δu
o(n)
a are nodal variables for the δuo(n) field.

A standard finite-element discretisation enables the following discrete form
for the components of Eq. 44,

{bo}n =

∫
χβo (B)

H̃ : To
,βn
dV o,

=

Nw∑
a=1

(ũa − uoa) F o(n)
a ,

=
(
FFF o(n)

)T
(ũ− uo) ,

(49)

where FFF o(n) is obtained such as

F o(n)
a =

∫
χβo (B)

∇NNN (xo) : To
,βn
dV o , (50)

and

[Ao]qn =

∫
χβo (B)

To
,βq

:∇L(To
,βn

)dV o ,

=

Nw∑
a=1

Nw∑
b=1

F o(n)
a [K o]−1ab F

o(q)
b ,

=
(
FFF o(n)

)T
[KKK o]−1FFF o(q) ,

(51)

where KKK o, which is the stiffness matrix needed to solve the elastic problem of
Eq. 42 to derive the virtual fields, and which satisfies KKK oδuo(n) = FFF o(n), is
obtained such as

K o
ab =

∫
χβo (B)

(∇NNN (xo)) :
Ä
LLLoT (xo)

ä
: (∇NNN (xo)) dV o . (52)
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Finally, the expression of [Ao] and {bo} with this finite-element discretisation
are

{bo}n = −
Ä
FFF o(n)

äT
(ũ− uo) , (53)

and

[Ao]qn =
Ä
FFF o(n)

äT
[KKK o]

−1 FFF o(q) . (54)

2.7 Convergence of parameter identification

Based on the details discussed in the previous subsection, it is possible to
derive δβo from the choice of an initial guess of βo by solving Eq. 45. The
question that remains to be solved is how to choose βo. In practice, an initial
estimation of the unknown constitutive parameters based on existing literature
on the same tissue can be used to initiate the resolution. However, this does not
guarantee the criterion in Eq. 17 is satisfied. Then, a non infinitesimal deviation
between the intermediate configuration and the reference configuration would
cause Eq. 36 to not be satisfied on χβo(B, t). Therefore, the concept of
“intermediate configuration” has to be iterative. From the choice of a first
set of parameters βo, an intermediate configuration can be found by solving
the forward problem in Eq. 23. Evaluating [Ao] and {bo} (from equations 53
and 54) using the obtained LoLoLo and To

,βn
expressions (from equations 33 and

31) provides an update for βo. The process is repeated until the deviation
between uo and ũ becomes small enough (Fig. 2).

The convergence criterion of the inverse algorithm is that the relative
difference between the current estimation of material properties βo and its
update [Ao]−1{bo} is less than the tolerance delta∥∥[Ao]−1{bo}

∥∥
‖βo‖

< 10−6 . (55)

Although deriving analytically the convergence rate is not possible, we verified
numerically in the following results that a quadratic convergence was obtained
for cases where existence and uniqueness of the solution are guaranteed.

2.8 Examples of hyperelastic constitutive models

In the following sections, we applied the VFM method and algorithm in
Fig. 2 to determine the parameters of 3 hyperelastic strain energy potentials
commonly used to describe collagenous tissues.

2.8.1 Neo-Hookean model

For the Neo-Hookean constitutive model, the strain energy density function
is

Φ =
1

2

î
µ(Î1 − 3) + κ(lnJ)2

ó
, (56)

where Î1 = Tr
Ä
Ĉ
ä

= J−2/3Tr (C).
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Fig. 2 Flowchart of the proposed inverse method.

The strain energy density function depends linearly on two unknown
constitutive parameters denoted µ and κ. Then in an identification problem,
the vector of unknown parameters would be: β = (µ, κ).

The second Piola-Kirchhoff stress is written

S = κ(lnJ)C−1 + µ

Å
J−2/3I− 1

3
Î1C

−1
ã
. (57)

The associated Cauchy stress is written as

T = J−1
ï
κ(lnJ)I + µ(B̂− 1

3
Î1I)

ò
. (58)

The sensitivity of the second Piola-Kirchhoff stress to each parameter is
written

S,β1
= ∂S

∂β1
= J−2/3I− 1

3 Î1C
−1,

S,β2
= ∂S

∂β2
= (lnJ)C−1.

(59)

The sensitivity of the Cauchy stress to each parameter is written

T,β1
= ∂T

∂β1
= J−1(B̂− 1

3 Î1I),

T,β2
= ∂T

∂β2
= J−1(lnJ)I.

(60)
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Therefore,
To = µoTo

,β1
+ κoTo

,β2
, (61)

with
To
,β1

= (Jo)−1(B̂o − 1
3 Î
o
1I),

To
,β2

= (Jo)−1[ln(Jo)]I.
(62)

Moreover, we have

KKKKKKKKKo = µoKKKo,β1
+ κoKKKo,β2

, (63)

with

KKKo,β1
= − 2

3J
−2/3 (I⊗ (Co)−1 + (Co)−1 ⊗ I

)
+ 2

9 Î1(Co)−1 ⊗ (Co)−1

+ 2
3 Î1(Co)−1 � (Co)−1,

KKKo,β2
= (Jo)−1(Co)−1 ⊗ (Co)−1 − (lnJo)(Co)−1 � (Co)−1,

(64)

where C−1�C−1 = −∂C
−1

∂C and⊗ represents the dyadic multiplication symbol.

2.8.2 Mooney-Rivlin model

For the Mooney-Rivlin constitutive model, the strain energy density
function is

Φ =
1

2

ï
µ(Î1 − 3) + α(Î2 − 3) +

1

2
κ(lnJ)2

ò
, (65)

where Î2 = J−4/3I2 = J−4/3Tr
Ä
Ĉ
ä

= J−2/3Tr (C).

The strain energy density function depends linearly on three unknown
constitutive parameters denoted µ, α and κ. Then in an identification problem,
the vector of unknown parameters would be: β = (µ, α, κ).

The second Piola-Kirchhoff stress is written

S = κ(lnJ)C−1+µ

Å
J−2/3I− 1

3
Î1C

−1
ã

+α

Å
J−2/3Î1I−

2

3
Î2C

−1 − J−4/3C
ã
.

(66)
The associated Cauchy stress is written

T = J−1
ï
κ(lnJ)I + µ(B̂− 1

3
Î1I) + α(Î1B̂−

2

3
Î2I− B̂2)

ò
. (67)

The sensitivity of the second Piola-Kirchhoff stress to each parameter is
written

S,β1 = ∂S
∂β1

= J−2/3I− 1
3 Î1C

−1,

S,β2 = ∂S
∂β2

= J−2/3Î1I− 2
3 Î2C

−1 − J−4/3C,
S,β3

= ∂S
∂β3

= (lnJ)C−1.

(68)

The sensitivity of the Cauchy stress to each parameter is written

T,β1
= ∂T

∂β1
= J−1(B̂− 1

3 Î1I),

T,β2
= ∂T

∂β2
= J−1(Î1B̂− 2

3 Î2I− B̂2),

T,β3
= ∂T

∂β3
= J−1(lnJ)I.

(69)

Therefore,
To = µoTo

,β1
+ αoTo

,β2
+ κoTo

,β3
, (70)
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with
To
,β1

= (Jo)−1
î
B̂o − 1

3 Î
o
1I
ó
,

To
,β2

= (Jo)−1
î
Îo1 B̂o − 2

3 Î
o
2I− (B̂o)2

ó
,

To
,β3

= (Jo)−1[ln(Jo)]I.

(71)

Moreover, we have

KKKo = µoKKKo,β1
+ αoKKKo,β2

+ κoKKKo,β3
, (72)

with

KKKo,β1
= − 2

3J
−2/3 (I⊗ (Co)−1 + (Co)−1 ⊗ I

)
+ 2

9 Î1(Co)−1 ⊗ (Co)−1

+ 2
3 Î1(Co)−1 � (Co)−1,

KKKo,β2
= 2J−4/3 (I⊗ I− I)− 4

3 Î1J
−2/3 (I⊗ (Co)−1 + (Co)−1 ⊗ I

)
+ 8

9 Î2(Co)−1 ⊗ (Co)−1 + 4
3 Î2(Co)−1 � (Co)−1

+ 4
3J
−4/3 [Co ⊗ (Co)−1 + (Co)−1 ⊗Co

]
,

KKKo,β3
= (Jo)−1(Co)−1 ⊗ (Co)−1 − (lnJo)(Co)−1 � (Co)−1,

(73)

where I is the fourth order identity tensor.

2.8.3 Veronda-Westmann model

In the two previous constitutive models, the strain energy density function
depends linearly on the material properties. In this subsection, the Veronda-
Westmann model [43] which involves an exponential function of a material
property introduced. The strain energy density function is written such as

Φ =
c1
2

Ä
ec2(Î1−3) − 1

ä
− c1c2

2
(Î2 − 3) +

1

2
κ(lnJ)2, (74)

where c1, c2 and κ are material properties. Note that c2 is a parameter
controlling the nonlinear behavior of the Veronda-Westmann solid, and µ =
c1c2 is the shear modulus controlling the linear behavior of the Veronda-
Westmann solid. In the following, we rewrite the model such as

Φ =
µ

2c2

Ä
ec2(Î1−3) − 1

ä
− µ

2
(Î2 − 3) +

1

2
κ(lnJ)2. (75)

The strain energy density function depends linearly on two unknown
consti-tutive parameters denoted µ and κ, and non linearly on the unknown
parameter c2. In the identification problem, the vector of unknown parameters
would be written: β = (µ, c2, κ).

The second Piola-Kirchhoff stress is written

S = κ(lnJ)C−1 + µ

ïÅ
J−2/3I− 1

3
Î1C

−1
ã
ec2(Î1−3)

+

Å
J−2/3Î1I−

2

3
Î2C

−1 − J−4/3C
ãò

. (76)

The associated Cauchy stress is written

T = J−1
ï
κ(lnJ)I + µ

Å
(B̂− 1

3
Î1I)ec2(Î1−3) + (Î1B̂−

2

3
Î2I− B̂2)

ãò
. (77)
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The sensitivity of the second Piola-Kirchhoff stress to each parameter is
written

S,β1
= ∂S

∂β1
=
Ä
J−2/3I− 1

3 Î1C
−1
ä
ec2(Î1−3)

+
Ä
J−2/3Î1I− 2

3 Î2C
−1 − J−4/3C

ä
,

S,β2
= ∂S

∂β2
= µ(Î1 − 3)

Ä
J−2/3I− 1

3 Î1C
−1
ä
ec2(Î1−3),

S,β3 = ∂S
∂β3

= (lnJ)C−1.

(78)

The sensitivity of the Cauchy stress to each parameter is written

T,β1
= ∂T

∂β1
= J−1

î
(B̂− 1

3 Î1I)ec2(Î1−3) + (Î1B̂− 2
3 Î2I− B̂2)

ó
,

T,β2
= ∂T

∂β2
= J−1µ(Î1 − 3)(B̂− 1

3 Î1I)ec2(Î1−3),

T,β3
= ∂T

∂β3
= J−1(lnJ)I.

(79)

Then we approximate To such as

To = µoTo
,β1

+ co2T
o
,β2

+ κoTo
,β3
, (80)

with

To
,β1

= (Jo)−1
î
(B̂o − 1

3 Î
o
1I)ec

o
2(Î

o
1−3) + (Îo1 B̂o − 2

3 Î
o
2I− (B̂o)2)

ó
,

To
,β2

= (Jo)−1µo(Îo1 − 3)(B̂o − 1
3 Î
o
1I)ec

o
2(Î

o
1−3),

To
,β3

= (Jo)−1[ln(Jo)]I.

(81)

Moreover, we also approximate

KKKo = µoKKKo,β1
+ co2KKKo,β2

+ κoKKKo,β3
, (82)

with

KKKo,β1
=
î
− 2

3J
−2/3 (I⊗ (Co)−1 + (Co)−1 ⊗ I

)
+ 2

9 Î1(Co)−1 ⊗ (Co)−1

+ 2
3 Î1(Co)−1 � (Co)−1

ó
ec

o
2(Î

o
1−3) + 2J−4/3 (I⊗ I− I)

− 4
3 Î1J

−2/3 (I⊗ (Co)−1 + (Co)−1 ⊗ I
)

+ 8
9 Î2(Co)−1 ⊗ (Co)−1

+ 4
3 Î2(Co)−1 � (Co)−1 + 4

3J
−4/3 [Co ⊗ (Co)−1 + (Co)−1 ⊗Co

]
+2co2

î
J−4/3I⊗ I− 1

3J
−2/3Îo1

(
(Co)−1 ⊗ I + I⊗ (Co)−1

)
+ 1

9 (Îo1 )2(Co)−1 ⊗ (Co)−1
ó
ec

o
2(Î

o
1−3),

KKKo,β2
= µo(Îo1 − 3)ec

o
2(Î

o
1−3)

[
− 2

3J
−2/3 (I⊗ (Co)−1 + (Co)−1 ⊗ I

)
+ 2

9 Î1(Co)−1 ⊗ (Co)−1 + 2
3 Î1(Co)−1 � (Co)−1

ó
+2µo

Ä
1 + co2(Îo1 − 3)

ä
ec

o
2(Î

o
1−3)

[
J−4/3I⊗ I

− 1
3J
−2/3Îo1

(
(Co)−1 ⊗ I + I⊗ (Co)−1

)
+ 1

9 (Îo1 )2(Co)−1 ⊗ (Co)−1
ó
,

KKKo,β3
= (Jo)−1(Co)−1 ⊗ (Co)−1 − (lnJo)(Co)−1 � (Co)−1.

(83)
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Fig. 3 The geometry and finite-element meshes used to verify the implementation of the
novel VFM approach.

2.9 Case study for verification

Using the previous formulas derived for the Neo-Hookean, the Mooney-
Rivlin and the Veronda-Westmann models, it is straightforward to implement
the novel VFM method and apply it to solve identification problems based
on full-field data. Note also that the approach also extends naturally to more
complex strain energy density functions involving exponential functions with
invariants I4 and I6 [28] for instance. In the next section we show results
for the 3 constitutive models, which were previously introduced, and discuss
the convergence and the feasibility of the proposed approach in the case of
compression and tension tests onto 2 simple geometries (Fig. 3):

1. Compression is applied on a cube of 1 cm edge which is fully fully fixed on
its bottom face (Fig. 3a). For the sake of verification of the approach, the
cube is simply discretized uniformly by 4× 4× 4 elements.

2. We also consider another geometric model as presented in (Fig. 3b) where
we apply tension on the top face and fix the bottom face.

In both cases, full-field displacement measurements were simulated by solving
finite-element models using the open source software FEBio [44]. For each case,
the full-field displacement measurements were simulated with a set of target
material properties, named the target, and the proposed VFM approach was
employed to recover the target for the Neo-Hookean, the Mooney-Rivlin and
the Veronda-Westmann model, using different initialization values to assess
the convergence of the method.

2.10 Case study for validation

The proposed VFM method will be used in this case study to determine the
material properties of the LC, a connective tissue structure in the ONH of great
interest to researchers studying development and progression of glaucoma [45].
The LC in humans is approximately 1.5 mm - 2.0 mm in diameter and 450
microns thick and is located in the back of the eye. The mechanics of the
LC is thought [46] to play an important role in mediating the progressive
vision loss associated with glaucoma, a degenerative disease that is a leading
cause of blindness worldwide [47]. As shown in Figure 4, the LC is situated
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Fig. 4 (a) Schematic showing the solid model of the optical nerve head (ONH). The anterior
(top) face is subjected to the intra-ocular pressure. The posterior (bottom) face is in direct
contact with the optic nerve. (b) Cross sectional view of the ONH solid model showing
the 3 regions with different material properties: the prelaminar neural tissue (PLNT), the
anterior lamina cribosa (ALC) and the posterior lamina cribosa (PLC). (c) Displacement
field caused by reducing the intraocular pressure of 10 mmHg (colorbar in mm).

beneath the prelaminar neural tissue (PLNT). We further split the LC into
an anterior region (ALC), 250 µm posterior to the anterior posterior surface,
and a posterior region (PLC), which includes the remainder of the imageable
volume of the LC.

Spectral domain OCT imaging (Heildelberg Engineering) was applied to
acquire 24 radial scans centered about the ONH of the left eye of a glaucoma
patient. The OCT imaging was performed at Johns Hopkins University’s
Wilmer Eye Institute in the Glaucoma Center of Excellence, and was approved
by the appropriate Institutional Review Board. The following structural
features were marked in the 24 radial scans to segment the tissue structures of
the ONH as described in Midgett et al. [48]: Bruch’s membrane opening, the
anterior boundary of the PLNT, the anterior LC surface, and the boundary
of the imageable volume below the anterior LC surface. The manual marking
were imported into Cubit (Coreform, Orem, UT, USA) to construct surface
geometries using closed splines. The PLNT, ALC, and PLC volumes were
defined by extruding a cylinder from Bruch’s membrane posteriorly to intersect
the anterior PLNT surface and the anterior LC surface (for the PLNT), the
anterior ALC surface and a surface positioned 250 microns posterior to the
anterior ALC surface (for the ALC), and that posterior surface and a surface
marking the end of the imageable volume of the LC (see Figure 4a). The
final solid volume was meshed in Cubit linear 4-node tetrahedral elements
and exported into FEBio, where the linear elements were converted to 10-
node quadratic tetrahedral elements [49] to avoid mesh locking and improve
accuracy. The compressible Neo-Hookean constitutive model (Eq. 56) was
chosen for all three materials.

To validate the present VFM method, we simulated a displacement field by
solving the forward problem with target parameter values, which are reported
in Tab. 2. In the forward problem, zero displacement boundary conditions were
applied to the posterior and lateral surfaces. To account for the 10 mmHg
pressure decrease, a pressure boundary condition was applied to the ONH
surface, with a magnitude of -10 mmHg. The induced displacement is shown
in Figure 4c.

Eventually the proposed VFM approach was employed to process the
simulated displacement fields and recover the target compressibility modulus
values for each separate material.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 10, 2021. ; https://doi.org/10.1101/2021.05.10.443225doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.10.443225


22 Yue Mei et al.

Fig. 5 Evolution of the objective function relative value ||uo − ũ||/||ũ|| (log-log
representation) for the identification of each unknown parameter of the neo-Hookean model
with the novel VFM approach, using initial guesses Eo = 40MPa, νo = 0.45 in (a),
Eo = 5MPa, νo = 0.45, in (b) and Eo = 40MPa, νo = 0.15 in (c).

3 Results

3.1 Neo-Hookean model

In this section, we tested the feasibility of the proposed VFM approach for
the compressible neo-Hookean model using the 10-mm-edge cubic specimen
under compression shown in Fig. 3a. The cube was discretized uniformly by
4× 4× 4 elements. We applied a deformation of 2 mm to the cubic specimen.
The target values of material properties were: Young’s modulus Ē = 10MPa
and Poisson’s ratio ν̄ = 0.3, which corresponds to µ = E

2(1+ν) = 3.85MPa

and κ = E
3(1−2ν) = 8.33MPa. We choose three different initial guess pairs

(Eo = 40MPa, νo = 0.45), (Eo = 5MPa, νo = 0.45) and (Eo = 40MPa, νo =
0.15). The convergence plots for each case are shown in Fig. 5 for the objective
function value and in Fig. 6 for the evolution of the obtained parameter values.
The material parameters were recovered regardless of the initial guesses.
Convergence was reached after 4 to 6 iterations indicating the quadratic
convergence of the new VFM approach.
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Fig. 6 Convergence plots for the identification of each unknown parameter of the Neo-
Hookean model with the novel VFM approach, using initial guesses Eo = 40MPa, νo = 0.45
in (a) and (b), Eo = 5MPa, νo = 0.45 in (c) and (d) and Eo = 40MPa, νo = 0.15 in (e)
and (f).

3.2 Mooney-Rivlin model

Then, we tested the feasibility of the proposed VFM approach for the
Mooney-Rivlin model, which includes three unknown material parameters.
In this case, the material property vector was denoted β = [µ, α, κ].
Note that when α = 0, the Mooney-Rivlin model simplifies into the neo-
Hookean model. For the verification of the VFM, we used again the cubic
model under compression. The target material properties were set to β̄ =
[5MPa, 10MPa, 10MPa]. We chose two different sets of initial guess to evaluate
the material identification problem. Convergence plots for each material
parameters are shown in Fig. 7. The material parameters were recovered
regardless of the initial guesses. Convergence was reached after 4 to 6 iterations
indicating indicating the quadratic convergence of the new VFM approach with
the Mooney-Rivlin model.
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Fig. 7 Convergence plots of the novel VFM approach for each parameter of the Mooney-
Rivlin model using two sets of initial guesses: (a, b and c): βo = [4MPa, 6MPa, 30MPa] and
(d, e and f) βo = [20MPa, 20MPa, 50MPa].

3.3 Veronda-Westmann model

Usually, to estimate the material parameters of the Veronda-Westmann
model, displacement data with multiple loading stages are required due to the
exponential term. In this work, we attempted to use only one loading stage
to estimate the material parameters in the Veronda-Westmann model using
the novel VFM approach. For that, we used the geometric model on the right
hand side of Fig. 3. We applied tension on the top face and fix the bottom
face. A deformation of 2 mm was applied. The target material parameters
were c̄1 = 0.1MPa, c̄2 = 10, κ̄ = 10MPa. We used two different initial guesses.
The initial guesses of the material parameters were c01 = 0.2MPa, c2 = 30,
κ = 20MPa. Another initial guess is set to c01 = 0.5MPa, c2 = 5, κ = 5MPa

The convergence performance of each material parameters is shown in
Fig. 8. We observed that 12 iterations were needed this time to reach
convergence. Although the proposed VFM approach was capable of estimating
material properties of the Veronda-Westmann solid using only one loading
stage with a quadratic convergence, the convergence rate was slower due to
the nonlinearity of the constitutive equations.
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Fig. 8 Convergence plots of the novel VFM approach for each parameter of the Veronda-
Westmann model with initial guesses c01 = 0.2MPa, c2 = 30, κ = 20MPa in (a), (b) and (c),
and initial guesses c01 = 0.5MPa, c2 = 5, κ = 5MPa in (d), (e) and (d).

3.4 Sensitivity to the compressibility parameters

Most biological tissues are nearly or truly incompressible. Thus, the
sensitivity of the proposed method to the compressibility should be
investigated. For incompressible materials, fewer material properties have to
be identified compared to the associated compressible constitutive model.
Thus, we considered the Neo-Hookean model as an example and focused
on compressible cases with Poisson’s ratio ν = 0.45 and Young’s modulus
Ē = 10MPa, which corresponds to µ = E

2(1+ν) = 3.45MPa and κ = E
3(1−2ν) =

33.33MPa.

We chose two different initial guess pairs (Eo = 5MPa, νo = 0.499), (Eo =
20MPa and νo = 0.499). The convergence plots for each case are shown in
Fig. 9. We observed that it took 8 iterations for convergence, slightly more
than the more compressible cases where ν was taken equal to 0.3.

3.5 Case study for validation

The patient-specific geometry of the ONH, which was reconstructed using
OCT data (Figure 4), was split into 3 parts with different compressibility
moduli. It was assumed that each part had the same shear modulus µ =
0.2 MPa. Identifying the 3 unknown compressibility moduli with the VFM
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Fig. 9 Convergence plots for the identification of each unknown parameter of the neo-
Hookean model with Poisson’s ratio ν = 0.45, using initial guesses Eo = 5MPa, νo = 0.499
in (a) and (b), and Eo = 20MPa, νo = 0.499 in (c) and (d).

requires to define 3 independent virtual fields across the volume of interest.
As any kinematically admissible virtual displacement field is a possible option,
there are an infinite number of choices for these virtual fields. However, only
very specific virtual fields ensure that the final system of equations is well
conditioned and it may be cumbersome to determine these virtual fields by
trial and errors. Here we applied the new VFM approach, where systems of
equations are automatically built, without trial and error verifications, on the
patient-specific geometry of the lamina cribrosa. As our VFM approach is
iterative, values need to be chosen for initializing the compressibility moduli
at the first iteration. We drew randomly these initial values within the range
[1–5] MPa. The VFM always converged towards the target moduli. The largest
error was obtained when the initial values were 5 MPa for the 3 compressibility
moduli. Results obtained in that case are reported in Tab. 2. Errors below 1%
can be reached after only 4 iterations of the new VFM approach.

4 Discussion

In this paper, we proposed a novel general framework to solve identification
problems in hyperelasticity with the VFM. For that, we employed the finite-
element method and generated the virtual fields by solving novel equations
derived in this paper. The main advantage of the new approach for generating
the virtual fields is that it can be applied to any kind of geometric shapes.
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Table 2 Results obtained with the novel VFM for identifying compressibility modulus
values of the 3 separate regions in the ONH using simulated data.

Reference κ Identified κ relative Identified κ relative
after 4 iterations error after 5 iterations error

PLNT 2.29 MPa 2.31 MPa 0.82% 2.284 MPa 0.35%
ALC 2.5 MPa 2.51 MPa 0.55% 2.495 MPa 0.22%
PLC 2.71 MPa 2.72 MPa 0.37% 2.706 MPa 0.08%

The VFM was previously applied to identify multiaxial hyperelastic
properties of murine dissecting aneurysm samples [29, 30, 25] or hyperelastic
properties in human ocular tissues [23]. This permitted significant progress
especially in the characterization of heterogeneous material properties of
lesions exhibiting complex morphologies, with different regions characterized
by localized changes in tissue composition, microstructure, and properties.
This was rendered possible by combining extension-distension data with full-
field multimodality measurements of wall strain and thickness to inform the
inverse material characterization using the virtual fields method.

Latest key advances were the use of a digital volume correlation data [23,
25] that allowed for characterization of properties in the bulk of soft tissues.
However, despite these progresses, generic rules had never been defined for
the choice of virtual fields. For instance, in [23], analytical expressions of
virtual fields were written in the cylindrical coordinate system using the arctan
function. In [29], virtual fields were also defined analytically, permitting to
yield expressions generalizing the Laplace’s law for pressurized membranes.

The main difficulty of these previous studies was to ensure that the
choice of virtual fields can provide enough equations to identify all the
unknown constitutive parameters. A subsequent difficulty is to build systems
of equations which are well conditioned. Moreover, in these previous studies
focused on nearly incompressible solids, the identification of compressibility
parameters was avoided by selecting virtual fields which would filter out the
effects of the hydrostatic pressure in the principle of virtual power. This was
generally required as the volume changes could not be measured with enough
accuracy by optical techniques, causing too much uncertainty on the local
values of the hydrostatic pressure anyhow. Generating virtual fields that can
filter out the hydrostatic pressure was never easy with analytic functions. The
use of a finite-element implementation of the VFM simplified this task [50]
but the novel approach presented in the current paper further generalizes this
for any situation. There is a price to pay though as the approach proposed
in the current paper is iterative, requiring to choose a first guess of the
unknown material parameters and repeating the identification a number of
time. Fortunately, we found that the convergence of this iterative approach
was always quadratic.

It is important to emphasize that any kinematically admissible virtual
displacement with a non-zero volume change is always an option to identify
material properties of compressible materials with the VFM. However, only
very specific virtual fields can ensure that the final system of equations is well
conditioned and it can be cumbersome to determine these virtual fields by trial
and errors. For complex geometries and when there are several parameters to
identify, as in the ONH problem shown in this paper, it is convenient to use
our novel VFM approach, which automatically generates the virtual fields as
solutions of Eq. 42. Although these specific virtual fields satisfy the equilibrium
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conditions written in Eq. 42, virtual fields in general do not have to satisfy
such equations.

To test the feasibility of the novel VFM approach, we first utilized the
simplest hyperelastic model: the Neo-Hookean model. This model remains very
popular for many biological tissues as for instance ocular tissues [23]. The novel
VFM approach, which is iterative, showed a fast and quadratic convergence for
neo-Hookean identification. Additionally, we employed the proposed approach
for more sophisticated model, such as the Mooney-Rivlin model and the
Veronda-Westmann model. The estimation results demonstrated that the
proposed method is able to identify the hyperelastic parameters of such models,
and even that constitutive equations involving an exponential could still be
identified with high accuracy even using a single loading stage.

We then applied the proposed VFM method to the clinically-relevant
challenge of extracting material properties of ONH tissues from full-field
OCT data. Modeling the LC in living subjects is difficult, as this tissue
is strongly inhomogeneous and exhibits very large variations in strain. In
addition, OCT imaging does not allow the user to definitively probe the tissue
itself and often cannot fully resolve tissue boundaries, complicating inverse
finite element methods which rely upon strictly defined geometry to delineate
tissues and material models. Results obtained on simulated data are very
promising, showing that our VFM approach can remove these difficulties by
providing material properties in different regions of the ONH. Future use on
experimental measurements will allow to examine regional stiffness variations,
which otherwise may have been neglected.

Despite these significant improvements of the VFM, the content of the
current paper remains mostly theoretical, introducing the concepts, verifying
them for simple cases and validating the approach on a first case study.
The main limitation of the current approach is that it was developed in
Matlab. It needs to be fully incorporated into a finite-element package to
optimize computational costs and constitute a systematic alternative to FEMU
techniques [10, 11] for all identification problems in hyperelasticity based on
full-field displacement measurements.

Another limitation of the VFM is that it requires full-field data to
achieve parameter identification. Although it performs very well when these
full-field data are available, other methods based on the FEMU approach
[10] do not have this limitation. For many years, full-field data were
mostly available in two-dimensional bodies (membranes, shells) on which
displacement fields could be measured using the DIC technique [22, 27, 31].
However, bulk measurements of displacements fields using digital volume
correlation and imaging techniques such as Optical Coherence Tomography
or Magnetic Resonance Imaging are becoming commonplace in soft tissues
[23, 24, 25, 32, 33, 34, 35], offering more and more applications for the VFM
in the biomedical field.

5 Conclusions

In this paper we presented a novel framework of the virtual fields method
based on finite-element implementation and automatic generation of virtual
fields. The proposed approach makes a great improvement in the theoretical
aspects of the VFM as the choice of virtual fields is usually critical in the VFM.
Future work will be focused on applying this finite-element based VFM into
more complex cases with potential mechanobiological and clinical applications.
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