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ABSTRACT 36 

Rice is the staple food of more than half of the world’s population; yet, it faces numerous challenges to 37 
meet the rising food demands and worsening climates. An urgent global imperative is to address 38 
imminent food shortages through intensive and sustainable agri-food systems and steady genetic gains. 39 
Intensification of rice production through direct-seeded rice (DSR) has been progressively practiced but 40 
is hindered by poor germination of existing high-yielding varieties in flooded soils. Identifying donors of 41 
anaerobic germination (AG) tolerance in rice will expedite the development of varieties suitable for DSR 42 
and will lead to enhanced and sustained agricultural productivity. This study aims to dissect the genetic 43 
architecture and physiological mechanisms of AG tolerance using systems biology and omics 44 
approaches. A Rice Diversity Panel (343 accessions) consisting of 5 subpopulations was screened for AG 45 
tolerance under greenhouse conditions, mapped through genome-wide association study (GWAS), and 46 
profiled for metabolites. Analyses revealed that most of the AG-tolerant varieties are japonicas with few 47 
indicas) and aus. Tolerant japonicas employed better root growth or rapid shoot extension, while 48 
tolerant indicas exhibited only the latter. A total of 51 significant GWAS peaks were detected across the 49 
genome, some of which were co-localized with known quantitative trait loci while others were novel, 50 
more so tolerance was found to involve different genetic controls across subpopulations. AG stress 51 
causes distinct biochemical signatures for tolerant genotypes and the profiles contrast among 52 
subpopulations implicating divergent metabolic adjustments, including shifts in sugars, intermediates, 53 
amino acids, antioxidants, and hormones. This study provides a systems-level approach for underpinning 54 
physiological mechanisms of AG tolerance; elucidating phenotypic heterogeneity, genetic architecture, 55 
transcriptomic networks, and metabolic landscapes from a genome-wide perspective.  56 

 57 
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 59 

INTRODUCTION 60 

Arable land for food production is globally declining and climate is unfavorably changing, with natural 61 

resources continually deteriorating, while the demand for food of dramatically bloating population is 62 
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rising. Furthermore, food production is being challenged by increasing urbanization and negative impact 63 

of climate change through loss of land and productivity, and decline in labor forces for agricultural 64 

purposes (Masters et al. 2013). Apparently, regions of the world that will be severely inflicted by climate 65 

change coincide with economically struggling countries, wherein hunger and undernourishment has 66 

been prevalent, and subsistence is primarily dependent on agriculture, thus posing more risks of food 67 

insecurity and aggravating socio-economic conditions (Wheeler and von Braun, 2013; Morton, 2007; 68 

Howden et al. 2007; Hirabayashi et al. 2013, Schmidhuber and Tubiello, 2007). These emerging 69 

problems substantiate the urgent need to enhance adaptation of agricultural crops to these adversities 70 

and through intensification of cultivation, sustainable food systems, and augmented genetic gains 71 

(Howden et al. 2007, Godfray et al. 2010; Foley et al. 2011).  72 

Rice, being the staple food of more than half of the world’s population, faces numerous challenges to 73 

meet the rising future demands. To intensify rice production, reduce the costs and drudgery on farming 74 

communities, direct seeded rice (DSR) is being increasingly adopted in irrigated and rainfed areas as 75 

opposed to traditional transplanting. DSR involves establishment of rice from seeds directly sown in the 76 

field (Farooq et al. 2010). The shift towards DSR has several benefits: less labor requirement, cost-77 

effective, simple, compatible for mechanization, leads to earlier maturity and less methane emissions, 78 

and reduce water requirements (Sasaki, 1974; Balasubramanian and Hill, 2002; Pandey and Velasco, 79 

1999). However, weed competition remains a major constraint in its wide implementation; hence 80 

farmers heavily rely on herbicides to manage weed infestation (Tuong et al, 2000). Though imposing 81 

early flooding could effectively control weeds in a sustainable manner, existing rice varieties can not 82 

germinate and establish in flooded soils, leading to failure of seedling establishment, especially if the 83 

field is poorly leveled or heavy rainfall occurs after seeding. As a result, farmers tend to use higher seed 84 

rates for DSR to compensate for early mortality and to ensure reasonable crop establishment, but at 85 

increasing costs (Farooq et al. 2010). Improved varieties with enhanced tolerance of flooding during 86 

germination (anaerobic germination [AG]) are required for direct-seeded rice systems in both rain-fed 87 

and irrigated areas, to ensure good crop establishment and for weed control in intensive irrigated 88 

systems (Ismail et al., 2012). 89 

Rice is the only cereal that can germinate under hypoxic conditions, but this is limited to coleoptile 90 

extension with concomitant impedance of radicle protrusion (Taylor, 1942; Ella and Setter, 1999; 91 

Lasanthi-Kudahettige et al. 2007). The adaptation of rice to a wide range of hydrological environments 92 

allows the exploitation of existing plasticity and diversity for crop improvement through genetic 93 
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manipulation (Ismail and Mackill, 2014). Genetic variation in rice responses to wet DSR has been 94 

previously reported (Yamauchi et al. 1993) and a number of donors for AG tolerance has been identified, 95 

which has recently been used in bi-parental mapping to identify quantitative trait loci (QTL) suitable for 96 

breeding programs.  These studies facilitated the dissection of possible physiological machinery and 97 

discovery of traits tightly linked to the tolerance mechanism (Ismail et al. 2009; Angaji et al. 2010; 98 

Septiningsih, et al. 2013; Baltazar et al. 2014; 2019). Among cereals, rice has the enzymes required for 99 

starch hydrolysis and utilization of sugars under anoxia. Most rice genotypes are capable of initiating 100 

germination but failed to elongate further, only tolerant varieties were able to emerge due to efficiency 101 

in utilizing reserves under oxygen limitation (Miro and Ismail, 2013; 2018). Under low oxygen stress, 102 

sugar starvation and oxygen deprivation coerces Ca2+ release from mitochondria. The signal ions activate 103 

calcineurin B-like (CBL) protein forming CBL/Ca2+ complex which interacts with CBL-interacting protein 104 

kinase 15A (CIPK15A) that subsequently up-regulates SNF1-related protein kinase 1A (SnRK1A). The 105 

stimulated SnRK1A induces the promoter of transcription factor MYBS1 and also phosphorylates it to its 106 

active form. Activated MYBS1 protein binds to sugar response element (SRE) promoter forming MYB-107 

DNA complex that substantially activates expression of α-amylases, particularly Amy3a subfamily (Lee et 108 

al. 2009; Lu et al. 2007; Hong et al. 2012; Park et al. 2010; Loreti et al. 2007).  Subsequently, anoxia-109 

induced amylases mobilize the starch reserves to supplicate energy and anabolic requirements of 110 

elongating embryonic axis (Lee et al. 2014). Metabolically, as repercussion of deficient oxygen supply, a 111 

dramatic shift from aerobic respiration to anaerobic fermentation commences. Despite its inefficiency, 112 

energy generation through substrate-level phosphorylation would suffice to address ATP crisis, thus 113 

increased rates of fermentative pathway remains integral for AG tolerance. Enzymes involved in 114 

alcoholic fermentation: pyruvate decarboxylase (PDC), alcohol dehydrogenase (ADH), and aldehyde 115 

dehydrogenase (ALDH), are substantially up-regulated under anaerobic germination (Ismail et al., 2009).  116 

Recently, the genetic determinant for the major QTL for AG tolerance (AG1) derived from the rice 117 

landrace Khao Hlan On (Angaji et al., 2010), was identified as trehalose phosphate phosphatase, OsTPP7, 118 

involved in trehalose-6-phosphate (T6P) metabolism. OsTPP7 activity significantly promotes sink 119 

formation through superficially declining sugar availability by elevated T6P turnover. As a metabolic 120 

consequence, starch mobilization is enhanced and sustained, thus providing energy for coleoptile 121 

elongation, ultimately conferring AG tolerance (Kretzschmar et al. 2015). Though significant progress has 122 

been made in elucidating the metabolic adjustments and signaling cascades of germination under low 123 

oxygen conditions, further work is still needed to underpin the regulatory, signaling and physiological 124 

apparatus for AG tolerance due to the complex nature of the trait. Moreover, previous studies are 125 
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limited only to a few genotypes not encompassing the breadth of natural variations and functional 126 

diversity that exist in rice gene pool.  127 

Genome-wide association study (GWAS) has been progressively used to dissect the genetic architecture 128 

of complex traits in rice such as agronomic attributes, root and leaf morphology, metabolite profile, 129 

flowering time, tolerance to ozone,  aluminum and salinity tolerance, and blast resistance (Huang et al. 130 

2010; Yang et al. 2010; Ueda et al. 2015; Kumar et al. 2015; Courtois et al. 2013; Matsuda et al. 2015; 131 

Famoso et al. 2011; Wang et al. 2014, Huang et al. 2011). GWAS provides a promising platform for 132 

linking phenotype and genotype to ascertain genomic regions explaining the trait of interest using 133 

diverse set of germplasm. Unlike QTL analysis, which is limited to recombination events from fixed 134 

generation following bi-parental crosses, GWAS utilizes variation existing in the diverse natural 135 

populations capturing wider allelic pools due to natural selection and domestication pressure that has 136 

occurred throughout the evolutionary course of the crop, thus leading also to high mapping resolution 137 

of genomic regions associated with the trait. Currently, the genomic resources for crops are dramatically 138 

increasing due to the plummeting costs for sequencing; hence genetic information will be more 139 

accessible, facilitating GWAS advancement and wide-spread use. The GWAS approach would enable 140 

identification of donors for a particular trait in a facile and manageable approach, hence expediting crop 141 

improvement and facilitating varietal development. This approach could also unearth the complex 142 

genetic architecture of the natural variations present in rice thus facilitates the elucidation of the 143 

physiological mechanisms associated with the phenotypic response. However, GWAS results are only 144 

limited to detecting genomic regions linked to the trait of interest but not directly pinpointing particular 145 

genes. Moreover, complex phenotypes or traits with low heritability as explained by many genetic 146 

elements of small effects with weak but genuine associations suffer from stringent significance 147 

thresholds for GWAS correction and were often neglected. These lapses are addressed through 148 

complementary approaches such as network analysis and pathway enrichments. Integrating GWAS 149 

results, transcriptomic network depictions, and pathway analysis could shed light on the systems-level 150 

functional mechanisms behind complex phenotypes and confidently identify genetic elements 151 

conferring the trait. 152 

This study attempts to: (i) dissect the genetic architecture of tolerance to flooding during germination in 153 

rice using a diverse panel largely representing entire rice subpopulations; (ii) determine genomic regions 154 

highly associated with the phenotypic response; (iii) integrate systems-biology approach to uncover 155 

biological processes and molecular functions involved in the response; (iv) identify highly plausible 156 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2021. ; https://doi.org/10.1101/2021.05.09.443312doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.09.443312
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 6

genetic elements underlying the response; and (v) discover metabolic adjustments employed by tolerant 157 

genotypes from different subpopulations.  158 

  159 
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RESULTS 160 

Phenotypic diversity reflects genetic heterogeneity  161 

The Rice Diversity Panel 1 consisted of 343 inbred accessions with representatives across different 162 

subpopulations of Oryza sativa and collected from 82 countries. This panel was phenotyped for AG 163 

tolerance under greenhouse conditions and evaluated for 47 directly measured or derived traits under 164 

AG stress using two screening protocols. The traits include survival, plant morphology, and biochemical 165 

attributes (see Supplementary Table S2). Seed trays were used in the first method and root trainers in 166 

the second to allow large volume of soil for root growth. 167 

Significant differences in tolerance (in comparison with tolerant Mazhan Red and sensitive IR42) among 168 

subpopulations were observed under AG conditions (p = < 0.001, Figure 1A). Most of the tolerant 169 

genotypes belong to the temperate and tropical japonica subgroups (means of 42.5% and 24.6%, 170 

respectively at 14 DAS), with fewer representatives from indica and aus, and with most of the aromatic 171 

subgroup being sensitive to AG stress (7.6% emergence at 14 DAS). Hierarchical clustering revealed 172 

tolerant clades, mostly dominated by temperate and tropical japonicas, with the tolerant indica and aus 173 

interspersed (Figure 1D). Geographical distribution of AG tolerance reveals variations across climatic 174 

zones (Figure 1E). Most of the tolerant accessions are located in temperate regions, coinciding with the 175 

origin of the temperate japonicas, which were mostly tolerant; roughly suggesting linkages of AG 176 

tolerance with tolerance of cold stress. Conversely, sensitive accessions are distributed more widely. 177 

Though phenotypic geographical distribution appeared to indirectly connect geo-climatic dependence of 178 

the responses, ecotypes from permanently and/or recurrently flooded conditions are still novel sources 179 

of tolerance.  180 

Based on phenotypic principal component (PC) analysis, PC 1 to PC 4 could explain 84.8% of the 181 

phenotypic variations (Figure 1B). The pPC1 (51.9% of phenotypic variances explained) represents most 182 

of the traits linked to tolerance while pPC3 (6.7% of the phenotypic variances explained) scored higher 183 

eigenvector values for shoot related traits, but lower scores for root phenotypes (Figure 1C). Plot of PC1 184 

and PC3 (Figure 1B) showed ambiguous clustering among subpopulations suggesting overlapping 185 

responses under AG stress; notably tolerant genotypes veer away from the overlap. Tolerant japonicas 186 

have either rapid shoot elongation or better root growth (high or low PC3); while tolerance of indicas is 187 

associated only with high shoot elongation (high PC3). These findings suggest possibilities for different 188 

tolerance strategies among subpopulations or evolution disparity due to selection sweep in relation to 189 
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the source allocation and differential tissue growth for survival under AG conditions. Pearson correlation 190 

coefficients among measured and derived phenotypes were positive with the exception for seed starch 191 

(Suppl. Figure S1); likely due to mobilization of starch to soluble sugars to meet the metabolic demands 192 

of the growing embryo. 193 

Genome-wide association mapping links AG traits to numerous loci 194 

Since ecological adaptation and subpopulation structure tends to concur with AG tolerance, as 195 

suggested by geo-climatic distribution (Figure 1E), subpopulation-specific responses, and the complexity 196 

of the trait, GWA mapping was accomplished for individual subpopulations besides the whole panel. 197 

Due to small population sizes for stratified association study, closely related subgroups were merged to 198 

form reasonable sample sizes: indica and aus to form ind_aus panel (n=128); temperate japonicas, 199 

tropical japonica and aromatics to form jap_aro panel (n=158); and lastly the whole panel with all 200 

accessions. 201 

GWAS was implemented in ECMLM algorithm and the first two PCs and kinship estimates were included 202 

as covariates to correct for population structure for both whole set and stratified analysis. Most of the 203 

SNP peaks from the analyses did not reach the stringent Bonferroni threshold (Holm, 1979), though 204 

distinct associations were observed. To improve the statistical power of association mapping, the SUPER 205 

algorithm was implemented in the analysis.  This method dramatically reduces the number of SNPs to be 206 

tested in determining genetic relationships, thus considerably increases statistical power. A total of 39, 207 

11, and 1 SNPs surpassed the stringent Bonferroni threshold (-log10 p-value > 5.81) and were 208 

considered significant associations from the all, ind_aus, and jap_aro panels, respectively (Suppl. Table 209 

S3). The significant SNPs were associated with leaf sheath length, shoot length, and shoot dry weight for 210 

the all panel; root diameter, seed starch, total length, root volume, and leaf blade length for ind_aus 211 

panel; and root dry weight for jap_aro panel. Some of the significant SNPs co-localized or are in close 212 

proximity with published QTLs linked with AG tolerance (Figure 2, Suppl. Figures S2-S7) particularly in 213 

chromosomes 1, 7, 8 and 9. Notably, some of the significant SNPs detected novel associated regions in 214 

the rice genome, not reported before. Interestingly, when considering the SNPs with –log 10(p-values) > 215 

4 from all of the traits, population-specific alleles become virtually undetected when the whole panel is 216 

analyzed; few associated SNPs were shared between panels (around 3-8 SNPs) and remarkably only one 217 

SNP in chromosome 4 (id4000981) has been detected to be commonly shared among the all, ind_aus, 218 

and jap_aro panels (Figure 2B). As summarized in Figure 2A (see also Suppl. Figures S2-S7 for details), 219 

the genetic architecture of AG traits differs significantly among the subpopulations and different GWAS 220 
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peaks were detected when the analysis is conducted individually on merged subpopulations or when the 221 

whole diversity panel is analyzed. This strongly indicates that allelic variations linked with AG tolerance 222 

across subpopulations occur in varying genomic addresses. Distribution of MAF indicates that significant 223 

allelic variations are quite less frequently found in the diversity panel (Suppl. Figure S8) , with average 224 

MAF of 0.23 - 0.28 and median MAF of 0.22- 0.30 for the panels. A number of significant SNPs were also 225 

found to be linked with more than one trait, implying pleiotropic effects of the allelic variants. However, 226 

these alleles tend to appear in lower frequencies in the rice population being studied. Notably, 227 

heritability values were also low (0–19.8%, 0.4–29.5% and, 0–19.4% for all, ind_aus and, jap_aro panels, 228 

respectively). Association hot spots are conspicuous in chromosome 1 for most of the panels, likely 229 

because most of the abiotic tolerance genes are situated in this portion of the rice genome. Moreover, 230 

associated subpopulation specific variations were concentrated in certain regions as well; chromosome 231 

3, 9, and 11 for ind_aus panel, and chromosomes 8 and 11 for jap_aro panel (Figure 2A).   232 

Conventional pathway enrichment uncovers biological processes involved in AG response 233 

To generate a list of initial candidate genes from the association mapping, the top 20 SNPs of each trait 234 

were further inspected. SNPs were merged within 200kb span (± 100kb from the SNP position) to form 235 

LD blocks. This genomic window was selected since linkage disequilibrium tends to decay beyond this 236 

distance.  This modest window is also close to the average LD decay of different rice subpopulations: 237 

≈100kb indica, 200kb in aus and temperate japonica, and 300 kb in tropical japonica (Zhao et al. 2009). 238 

Combining the LD blocks and singletons, there were a total of 252, 213, and 238 regions for the all, 239 

ind_aus, and jap_aro panels, respectively with which one SNP is common among panels (Figure 2B). 240 

Upon close inspection of these regions, a total of 9691, 8373, and 9203 gene models were considered 241 

putative determinants of the trait from the all, ind_aus and jap_aro panels, respectively (Figure 2C). 242 

When the entire regions of 200kb span is considered, 547 gene models interspersed in entire rice 243 

genome except chromosome 12, were found to be common among the panels, suggesting that these 244 

genetic elements may play central role in global response to AG stress across subpopulations.  245 

These gene lists were examined for enrichment or discrimination for certain functional themes: 246 

biological processes, molecular function, cellular component, and protein class, through canonical 247 

pathway enrichment analysis using the PANTHER database (Mi et al. 2013). For the all panel, a total of 248 

14 and 5 GO terms for biological processes category were significantly enriched and discriminated, 249 

respectively. The most significant was protein phosphorylation (GO: 0006468) with 2.70** fold 250 

enrichment. Other significant terms included cell surface receptor signaling (GO: 0007166), response to 251 
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stress (GO: 0006950), and organelle organization (GO: 0006996) with corresponding fold scores of 252 

2.47**, 1.53*, and -0.21** respectively. For the ind_aus panel, a total of 6 terms were significantly 253 

overrepresented and 4 GO terms were significantly underrepresented. These include protein 254 

phosphorylation (GO: 000646), mitosis (GO: 0007067) and carbohydrate metabolic process (GO: 255 

0005975) with corresponding fold scores of 2.21*, 1.97** and, -0.58*. For the jap_aro panel, 14 GO 256 

terms were significantly enriched and 21 GO terms significantly discriminated. These comprised of signal 257 

transduction (GO: 0007165), primary metabolic process (GO: 0044238), and protein transport (GO: 258 

0015031) with overrepresentation scores of 2.06***, -0.77** and, -0.43*** respectively. The 547 genes 259 

shared among panels were significantly involved with biological processes particularly metabolic process 260 

(GO: 0008152), and some with unclassified functions with fold enrichments of- 0.24** and, 1.16*, 261 

respectively. Though conventional pathway-based analysis revealed biological and molecular functions 262 

associated with the gene sets, the identified terms are general in nature and do not particularly identify 263 

definite mechanisms underlying variations in AG tolerance (Suppl. Dataset S2).  264 

Weighted gene co-expression network showed distinct modules highly pertinent to AG response. 265 

To generate gene co-expression network, we used microarray data of germinating seeds grown in 266 

normoxic and anoxic conditions of 16 replicated samples (Lasanthi-Kudahettige et al. 2007; Narsai et al. 267 

2009) with corresponding coleoptile measurements imputed. Expression profiles for the candidate 268 

genes were extracted from the dataset: 3234, 2572, and 2534 candidate genes generated for the all, 269 

ind_aus, and jap_aro panels (Figure 3A, Suppl. Figures S9A and S10A). The weighted gene co-expression 270 

network analysis (WGCNA) approach was implemented to discover modules of highly correlated genes 271 

and relate these expression profiles to its corresponding phenotypic responses. The resulting modules 272 

usually comprised of genes involved in the same biological pathways, and more likely to share 273 

regulatory factors. 274 

Analysis of the all panel resulted in 6 distinct gene modules (Figure 3B, Suppl. Figure S18) with sizes 275 

ranging from 59 genes for the all red module to 1865 genes for the all turquoise module. These modules 276 

are large networks with highly connected genes (edge number extends 1658 to 1677028). Modules had 277 

considerable MS values ranging from 0.10 (all green module) to 0.68 (all turquoise module). A complete 278 

list of module assignments and network parameters for genes are included in Suppl. Dataset S1. 279 

Eigengene network showed that coleoptile length is highly related to the all yellow module. All of the 280 

modules had significant correlations for GS and MM (correlation values of -1.00*** to 0.90***) 281 

indicating that these modules harbor genes highly relevant to coleoptile length (Figure 3C). Analyses and 282 
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significant modules for jap_aro and ind_aus sets are represented in Suppl. Figures S9, S10, S19, S20, and 283 

the complete list of gene module assignments is summarized in Suppl. Dataset 1.  284 

To gain insight on the interaction of the genes across the genome in a global scale, the genes from the 285 

modules with strong correlation with coleoptile length (absolute GS values ≥ 0.80) were selected and 286 

the 97.5 percentile of the interactions were visualized (Suppl. Figure S11). Generally, only the large 287 

modules, turquoise and blue were preserved despite stringent thresholds, though few genes from 288 

brown and red modules for the all and jap_aro panels were included. Genes from significantly 289 

associated genomic regions are strongly co-expressed; likewise interact as well with genes in blocks of 290 

modest association which were below the stringent GWAS significance cut-off. This imply that highly 291 

plausible genes from genomic spans of true association but with small effects will be more likely to 292 

suffer when analyses rely solely on statistical evidences, which is the case for complex traits. Therefore, 293 

inclusion of regions of marginal significance is still substantial in elucidating trait physiology in the 294 

context of gene regulation and protein-protein interaction.  295 

Pathway-based analysis of module content revealed key specific roles for regulation of AG stress 296 

Network analysis can extract more biological insights from GWAS by exposing specific biological 297 

mechanisms that are not observed when candidate gene list is analyzed entirely. Module content 298 

pathway analysis could uncover specific and even novel processes and functions condensed within 299 

modules (Farber, 2013). Remarkable enrichments were revealed upon module content characterizations 300 

of the all panel. The all blue module was found to be significantly involved in protein lipidation (GO: 301 

0006497), carbohydrate transport (GO: 0008643), and protein metabolic processes (GO: 0019538) with 302 

fold enrichments of 21.4*, 9.8*, and 2.4* respectively. The all brown module seemed to play vital roles 303 

in response to endogenous stimulus (GO: 0009719), and tRNA aminoacylation for protein translation 304 

(GO: 0006418) with fold overrepresentation of 37.8*, and 37.1*, respectively. Genes from the all green 305 

module were engaged in DNA-dependent transcription (GO: 0006351), metabolism of nucleobase-306 

containing compounds (GO: 0006139), and primary metabolism (GO: 0044238) with corresponding fold 307 

enrichments of 28.8**, 13.9***, and 5.5 **.  The all red module had vital roles for apoptopic process 308 

(GO: 0006915), cell surface receptor signaling (GO: 0007166) and sulfur compound metabolism (GO: 309 

0006790), fold overrepresentation of 66.9*, 40.1*, and 37.3*, respectively. The all turquoise module 310 

had extensive participation in cellular glucose homeostasis (GO: 0001678), response to abiotic stimulus 311 

(GO: 0009628), and protein phosphorylation (GO: 0006468), respectively with the following fold 312 

enrichments: 39.7*, 9.1*, and 8.8**. 313 
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Module content characterization of the ind_aus panel revealed various specific and novel pathways that 314 

canonical pathway-based analysis failed to pinpoint, particularly functions for metabolism, biological 315 

regulation and signaling apparatus. The ind_aus blue module had pathway categories significantly 316 

enriched for I-kappaB kinase/NF-kappaB cascade (GO: 0007249) and G-protein coupled receptor 317 

signaling pathway (GO: 0007186) with fold enrichment of 59.7*, and 23.6*, respectively. The ind_aus 318 

brown module is mostly involved in phospholipid metabolic process (GO: 0006644), carbohydrate 319 

transport (GO: 0008643), and tRNA metabolic process (GO: 0006399) with corresponding fold 320 

enrichments of 27.1*, 21.0*, and 20.7*. The ind_aus green module had condensed functions for 321 

receptor-mediated endocytosis (GO: 0006898), with fold overrepresentation of >100**. The ind_aus 322 

turquoise module genes participate in MAPK cascade (GO: 0000165), mRNA processing (GO: 0006397), 323 

and RNA metabolic process (GO: 0016070), with fold scores of 10.2**, 4.9**, and 3.7***, respectively. 324 

The ind_aus yellow module had functional overrepresentations for regulation of transcription from RNA 325 

polymerase II promoter (GO: 0006357) and signal transduction (GO: 0007165), with fold scores of 36.3* 326 

and 21.0* correspondingly.  327 

Pathway-based analysis of the jap_aro panel uncovers specific functions tightly linked with central 328 

metabolism, regulation of biological processes, and signaling. Upon module characterization, the 329 

jap_aro blue module had overrepresented occupations for nitrogen utilization (GO: 0019740), and G-330 

protein coupled receptor signaling pathway (GO: 0007186), with corresponding fold enrichments of 331 

>100**, and 30.5*. The jap_aro brown module had genes with overrepresented categories for mRNA 332 

polyadenylation (GO: 0006378), mRNA 3'-end processing (GO: 0031124), and mRNA splicing, via 333 

spliceosome (GO: 0000398), with fold increase of 46.0*, 41.6*, and 18.5**, respectively. The jap_aro 334 

turquoise module had term overrepresentation for cellular glucose homeostasis (GO: 0001678), amino 335 

acid transport (GO: 0006865), and polysaccharide metabolic process (GO: 0005976) with fold scores of 336 

42.4*, 12.1**, and 5.0**, respectively. The jap_aro green module had extensive participation in 337 

signaling cascades: JNK cascade (GO: 0007254), transmembrane receptor protein serine/threonine 338 

kinase signaling (GO: 0007178), I-kappaB kinase/NF-kappaB cascade (GO: 0007249) and, MAPK cascade 339 

(GO: 0000165), with corresponding fold scores of > 100** for all terms. The complete list of enriched GO 340 

categories for the entire panel modules are summarized in Suppl. Dataset 2 and module network 341 

depictions in Suppl. Figures S18-S20.  342 
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Allele mining revealed different putative gene candidates for AG tolerance among stratified analyses 343 

From the genomic regions of significant associations, genes with absolute GS values ≥ 0.80 were 344 

selected as putative determinant of traits. Haplotype analysis was performed for the associated regions 345 

of the selected genes to determine haplotype blocks of strong linkage disequilibrium and identify allelic 346 

variants associated with AG tolerance; the highly connected neighboring genes were also assessed for 347 

functional condensation. In-silico analyses was extended on the selected genes by using the SNPs form 348 

the SNP-seek database extracted from 3000 rice genomes. Flanking sequences (2kb upstream and 349 

downstream of the gene) was also considered to capture variations in the regulatory elements. For the 350 

purpose of brevity, one gene from each stratified analysis with annotated functional roles of interest 351 

was chosen.  352 

On the all turquoise module, LOC_Os08g34580 (GS=-0.82) is a putative trehalose-6-phosphate synthase 353 

with functional involvement in carbohydrate pathway; expression analysis revealed upregulation under 354 

anoxia (-logfc= 0.23***). The gene falls in the all LDb08009 (comprising of 3 significant SNPs: id8006298, 355 

id8006299 and, id8006308, Figure 4), which is tightly linked with leaf sheath length and shoot biomass. 356 

Inspection of the LD region revealed 2 blocks, with 2 haplotypes for the first block and 9 haplotypes for 357 

the second block. Distribution analysis showed that GCT allele strongly correlates with tolerance. 358 

Subnetwork examination revealed tight connections with 301 genes having roles in transcription 359 

regulation and carbohydrate metabolism (fold enrichments of 47.65*** and 7.31*, respectively), mostly 360 

glucosidases, kinase modulators and, G-protein coupled receptors. Inspection with SNPs from 3000 361 

genomes revealed that variations coincide with subpopulation structure, with considerably low MAF 362 

(Suppl. Figure S14). Hierarchical clustering distinguishes tolerant phenotypes for temperate and tropical 363 

japonicas.  364 

The gene LOC_Os09g26310 from the ind_aus turquoise module is a putative hypro1 glycosyl transferase 365 

functioning in carbohydrate metabolism and protein modification. This correlates strongly with 366 

coleoptile length and is repressed dramatically under anoxia (GS = 0.98, -logfc= -0.40***). The gene 367 

coincides with the ind_aus LDb09010 consisting of 2 significant SNPS: id9004677 and id9004707, 368 

strongly linked with shoot length, root length and leaf number (Suppl. Figure S12). The associated region 369 

consisted of 4 LD blocks with haplotypes ranging from 3 to 7 variants. Haplotype examination revealed 370 

that CCC allele is concomitant with AG tolerance but exist in small frequency in the ind_aus panel.  It is 371 

highly co-expressed with 242 genes associated with mRNA transcription and protein methylation (fold 372 

enrichments of >100** and 31.2*, respectively). The variations in genomic region containing the gene 373 
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correspond with subpopulation structure, however MAF are considerably high, in particular the coding 374 

and the 5’ UTR.  The percent mismatch with the Nipponbare genome distinguishes tolerance in indicas 375 

(Suppl. Figure S15).  376 

From the jap_aro blue module, LOC_Os03g50220, a putative protein kinase is highly associated with 377 

coleoptile growth and considerably down regulated under anoxic conditions (GS = 0.84, -logfc = -378 

0.14***). The gene falls within the LD block of the significant SNP id3013397 associated with vigor, root 379 

biomass and shoot traits (Suppl. Figure S13). Haplotype analysis revealed that the GCT allele concurred 380 

with tolerance, however exists in small frequency in the jap_aro panel. Dissection of the subnetwork 381 

with 341 genes uncovered pathway condensation for G-protein coupled receptor signaling (fold 382 

enrichment of 48.76*) and mainly interacts with other kinases and cysteine proteases. Clustering of the 383 

3000 genome SNPs poorly separates the tolerant phenotypes. It can be assumed that the tolerance can 384 

be attributed to transcriptional and/or translational regulation of the gene, since it contains several 385 

exons that may form different splice variants (Suppl. Figure S16). 386 

Subpopulations employed distinct metabolic landscapes under AG stress 387 

To understand early metabolic adjustments under AG perturbation, genotypes from different 388 

subpopulations with varying AG responses were selected for non-targeted metabolite profiling at 4 DAS, 389 

where tolerance phenotype is distinguishable. A mixture of different solvents was used as extractant to 390 

expand the diversity of compounds to assay, from polar to semi-polar for global purpose. Upon peak 391 

identification, 1355 metabolic features were detected with 166 identified metabolites. Analysis was 392 

done separately for ind_aus and jap_aro panels to determine subpopulation specific and core metabolic 393 

confluences under oxygen deprivation.  394 

PCA analyses revealed that mPC1-mPC3 could explain 38.3% and 36.8% of the metabolic variations 395 

existing in jap_aro and ind_aus metabolomes, respectively (Figures 5B and F). Though no apparent 396 

separation for tolerant and sensitive genotypes was observed, mPC3 distinguishes tolerance under AG 397 

stress. To further reveal metabolic alterations, Bayesian statistics was conducted for all metabolic 398 

features. A total of 550 metabolic features were substantially up-regulated and 355 down-regulated as 399 

treatment effect in the ind_aus panel, while 579 metabolic features were significantly up-regulated and 400 

295 significantly down-regulated as treatment effect for jap_aro panel. Most of the differentially fluxed 401 

metabolic features (714) were shared between panels implicating core metabolic shifts under AG stress. 402 

Significant increases in sugar and its derivatives were observed for both panels particularly glucose, 403 

glucose-6-phosphate, fructose and sucrose. Critical decline in fructose-6-phosphate (-logfc of -0.31* and 404 
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-0.44** for ind_aus and jap_aro panels, correspondingly) but stable levels of downstream intermediate 405 

glycerate-3-phosphate may indicate increased glycolytic activity under AG stress. Variations in levels of 406 

TCA intermediates were observed between subpopulations (Figures 5K-L).  For ind_aus panel, reduction 407 

in fumarate and maleate were remarkable (-logfc of -0.51** and -0.98***, respectively). However in 408 

jap_aro panel, only maleate decreased (-1.00***) while isocitrate and 2-oxoglutarate increased (-logfc 409 

of 0.82*** and 0.45**, respectively). This variation indicates that TCA cycle and probably glyoxylate 410 

shunt are considerably driven in jap_aro genotypes despite oxygen deficits for the purpose of recycling 411 

carbon sources. Likewise, the ind_aus genotypes might utilize the glyoxylate shunt to generate energy 412 

and provide substrates for protein biosynthesis. Accordingly, jap_aro panel had more diverse amino 413 

acids derived from TCA intermediates, particularly aspartate, asparagine and hydroxyproline, which 414 

were not elevated in ind_aus group. However aromatic amino acids tryptophan and tyrosine were 415 

copious for both panels. Accumulation of pyruvate occurred in both subpopulations as a repercussion of 416 

dampened TCA cycle. Consequently, oxygen deficit resulted in significant elevation of pyruvate 417 

products, lactate from fermentation pathways for energy production, and alanine for reconfiguration of 418 

N metabolism as resource economy. A number of alkaloids, particularly calystegine compounds were 419 

abundant under AG signifying ROS sequestration by these antioxidants. Some nucleotides were found to 420 

increase in both panels under AG stress, particularly guanosine, adenosine, thymidine, GMP and, UMP. 421 

The complete list of metabolic module assignments and enriched GO categories for the metabolic 422 

modules are summarized in Suppl. Datasets S3 and S4.  423 

With treatment*tolerance effect, the ind_aus panel had more metabolic features differentially 424 

expressed, with 211 up-regulated and 319 down-regulated (Figure 5B). Moreover, the jap_aro panel had 425 

16 up-regulated and 50 down-regulated metabolic features (Figure 5A). Glycerate-3-phosphate 426 

substantially decreased (-logfc -1.60**), reflecting its conversion to serine (-logfc 1.10***). TCA is 427 

considerably enhanced in tolerant ind_aus genotypes due to more abundant 2-oxoglutarate and 428 

fumarate (-logfc of 1.29* and 1.70***, respectively). This is reflected in purported increase in the amino 429 

acids glutamate, glutamine, and proline. The plant hormones zeatin, jasmonate and indole-3-acetate 430 

significantly declined in tolerant ind_aus genotypes (-logfc of -1.44**, -2.44** and -1.61*, respectively). 431 

Lactate substantially increased (-logfc =1.27**) in tolerant ind_aus genotypes implying augmented 432 

fermentative metabolism for energy production. Conversely, tolerant jap_aro genotypes up regulate 433 

alpha-tocopherol, probably to alleviate ROS injury. Interestingly, cholesterol synthesis decreased in 434 

tolerant jap_aro genotypes (-logfc = -1.33**) indicative of intact membrane as a consequence of 435 

efficient ROS sequestration. Furthermore, declined lipid synthesis might suggest reduced demand for 436 
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ATP and O2. Bio-unavailable plant hormone forms, particularly glycosylated cytokinins 437 

(benzylaminopurine-glucoside, -logfc = 1.60*) declined in tolerant jap_aro genotypes, indicative of 438 

dynamic conversion of storage pools to bioactive cytokinin forms.  439 

Metabolic confluence networks exposes conserved and subpopulation-specific modules  440 

To generate metabolic confluence network, the WGCNA approach was implemented to discover 441 

modules of highly correlated metabolic features and relate these expression profiles to its 442 

corresponding phenotypic responses, particularly tolerance. Differences in metabolic networks between 443 

jap_aro and ind_aus were explored while simultaneously determining biochemical modules and 444 

biomarkers contributing to AG tolerance. To assess the global similarities of jap_aro and ind_aus 445 

metabolome networks, kME values (Eigengene-based network connectivity) for all the metabolic 446 

features and their corresponding fluxes were compared. Both network connectivity and fluxes were 447 

highly preserved between panels due to strong correlations (0.90*** for kME and 0.98*** for 448 

confluences; Suppl. Figure S17). To explore co-expression module changes between metabolomes of the 449 

jap_aro and ind_aus genotypes, module preservation was assessed between networks. Results showed 450 

high degree of between – subpopulation module preservation, and in fact the blue and turquoise 451 

modules of both jap_aro and ind_aus panels significantly overlap (Figure 5C, 5I for jap_aro, 5G, 5J for 452 

ind_aus). The blue metabolic module includes compounds involved in carbon and nitrogen pathways 453 

while the turquoise metabolic module comprises metabolites from carbon, nitrogen and nucleotide 454 

metabolism (Suppl. Dataset S4).  The strong module conservation depicts that AG stress dramatically 455 

alters the metabolic landscape across subpopulations. The highly correlated metabolites within these 456 

modules play a central role in the biochemical repertoire and represent the core metabolic fluxes during 457 

germination under low oxygen stress. However, the brown module was found to be jap_aro specific due 458 

to very weak module preservation in the ind_aus metabolome (Figure 5D for jap_aro, 5H for ind_aus). 459 

The brown module includes identified metabolites: UMP, GMP, alpha-tocopherol, squalene, and vitamin 460 

K (Please see Suppl. Datasets S3 and S4 for the module assignment and pathway enrichments for the 461 

metabolites).  462 

 463 

  464 
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DISCUSSION 465 

Different subpopulations displayed varying AG adaptive responses 466 

Our study had dissected the genetic architecture of AG tolerance in rice and integrated network theory 467 

to tease out possible biological processes and molecular functions associated with the response. The 468 

phenotypic assessment of the diversity panel revealed the range and distribution of tolerance to AG 469 

stress and uncovered insights regarding the evolution of the ability to germinate under flooding 470 

conditions among rice subpopulations. Our results indicated prevalence of AG tolerance in japonica 471 

subpopulations, though a number of aus and indica representatives showed remarkable tolerance 472 

(Figure 1A). Moreover, varying phenotypic responses were deployed by different subpopulations: 473 

tolerance is attributed to fast shoot elongation and unhampered root growth for japonicas, but shoot 474 

elongation alone for indicas (Figure 1B-C).  475 

Plants had evolved strategies to surpass varying flooding regimes. The escape strategy stimulates rapid 476 

elongation of the shoot to gain access to the aerial atmosphere.  Though this approach can facilitate gas 477 

exchange and photosynthesis, it requires high metabolic demands to sustain growth. The SNORKEL1 and 478 

SNORKEL2 genes from C2985 rice cultivar confers tolerance to deep-water flooding through fast 479 

elongation as an escape strategy. These genes encode ethylene response factors involved in ethylene 480 

signaling, and its expression results in gibberellin-induced internode elongation (Hattori et al. 2009). 481 

Nevertheless, if flooding is ephemeral, this mechanism would be disadvantageous. In such case, 482 

quiescent strategy is favored wherein the plant has to restrict growth underwater and conserve 483 

resources. As the flooding recedes, the unused reserves can then be utilized for growth and recovery. 484 

The SUB1-A allele of FR13A rice landrace was found to confer tolerance to complete submergence for 485 

10-14 days through quiescence (Xu et al. 2006). This allele variant encodes an ethylene-response-factor-486 

like transcription factors and its expression results in over accumulation of GA repressors Slender Rice-1 487 

(SLR1) and SLR1 Like-1 concomitant to the brassionosteroid-mediated activation of GA catabolism, 488 

consequently abolishing ethylene-promoted- or brassinosteroid-modulated- GA-induced elongation 489 

underwater (Fukao and Bailey-Serres, 2008, Schmitz et al., 2013). For AG stress, the escape strategy is 490 
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advantageous and the rapid seed carbohydrate mobilization, shoot growth and unhampered root 491 

development are required for adaptation despite inefficiency of fermentation under oxygen deprivation. 492 

Since the embryo primarily relies on the starchy endosperm, the ability to mobilize the complex 493 

carbohydrate to sugar under low-oxygen is critical for germination seedling survival (Ismail et al. 2009). 494 

The negative correlation of starch with growth parameters and survival strongly indicates that tolerant 495 

varieties were able to convert starch reserves to simple sugars to address energy crisis and metabolic 496 

requirements of the growing embryo (Suppl. Figure S1). Our study attempted to investigate variation in 497 

early root growth under AG stress by utilizing root trainers, which permit considerable root growth for 498 

the seedling in light of understanding delayed radicle emergence and its eventual protrusion upon 499 

coleoptile contact with the water surface. Since the root tissues are most inflicted during oxygen 500 

limitations partly due to its proximity to air and also due to associated soil toxicoses from microbial 501 

action (Colmer and Voesenek, 2009; Kirk et al., 2014), as root development is equally important with 502 

shoot growth under AG stress. Aside from its physiological function, proper soil anchorage could prevent 503 

seedling drift and lodging later in the season. 504 

AG tolerance is associated with numerous genetic loci 505 

To map genomic regions associated with the traits, we have implemented ECMLM algorithm with 506 

correction for population stratification to reduce false positive signals (Li et al. 2014). Since results 507 

indicate that geographical adaptation and the pattern of natural variation tends to coincide with 508 

population structure, analyses were sub-divided within the diversity panel to capture allelic variations 509 

segregating within or among subpopulations (Figure 1E).  Additionally, AG tolerance being a complex 510 

trait, ECMLM resulted in modest associations but with deflated quantile-quantile plots indicative of 511 

weak statistical power (Suppl. Figure S2-S5), inappropriateness, or over-correction of the model. 512 

Accordingly, new approach was employed and the statistical parameters were substantially improved 513 

for most of the traits upon application of the SUPER method. With this, different algorithms should be 514 

exploited to evaluate suitability of the model since it is assumed that the genetic landscape underlying 515 

natural variation behaves differently across traits (Zhao et al. 2011). Our results were able to detect, to 516 

some extent, some of the published QTLs for AG tolerance, at least using this diversity panel; 517 
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additionally, some of the SNP peaks have not been identified before implying that these regions harbor 518 

novel genes or allelic variants as plausible determinants of the phenotypic response. Interestingly, the 519 

phenotypic responses were controlled differently among subpopulations, due to varying genetic 520 

associations considerably linked with the traits and conspicuous chromosomal hotspots that appear to 521 

be segregated among subgroups from the stratified analyses (Figure 2A). These evidences reflect the 522 

rich history of rice domestication and suggest disparity in the selection and ecological pressures in the 523 

divergence of rice subpopulations. It is also possible that the susceptibility of modern high-yielding 524 

varieties to AG stress was due to the dominance of transplanting for crop establishment, wherein 525 

farmers had unintentionally selected against plastic germination by providing suitable environment for 526 

seedling growth. Similarly, a mutation in the Waxy gene responsible for amylose deficiency 527 

characterized with non-glutinous phenotype in most temperate japonicas has been found to be 528 

subjected to artificial selection. This mutation was absent in other rice subpopulations, and such 529 

selective sweep was owed to anthropological influence, particularly cultural practices, and food 530 

preferences (Olsen et al. 2006). In rice, the Sdr4 gene was cloned and found to be involved in the 531 

regulation of seed dormancy (Sugimoto et al. 2010). Domesticated crops like rice, has been artificially 532 

selected to obtain rapid and synchronous germination for successful cultivation. Conversely, seed 533 

dormancy is typical for wild species as it confers protection to harsh environments, prevents 534 

competition within species, and avoids out-of-season germination (Finkelstein et al. 2008). The japonica 535 

cultivar Nipponbare had the Sdr4-n allele which causes them to lose dormancy immediately resulting on 536 

pre-harvest sprouting but, the indica cultivar Kasalath had Sdr4-k allele conferring considerable 537 

dormancy (Sugimoto et al. 2010). These subpopulation differences reflect the divergent domestication 538 

routes for indica and japonicas, which may implicate their disparity in dormancy, germination in 539 

anaerobic soils and its plasticity. Furthermore, these evidences seemingly suggest that certain 540 

domestication traits are preferentially sorted among subpopulation.  541 

It is also noteworthy that wild relatives of rice could be utilized as novel sources of tolerance genes, 542 

which have probably undergone domestication sweep through the evolutionary course, to facilitate 543 

breeding efforts (Tanksley and McCouch, 1997). Traits with significant associations include shoot- and 544 

root-related traits, and starch, which concurred with many other traits implicating pleiotropic effects of 545 

the associated genomic region (Figure 2A). Apparently, it is more perceptive to dissect complex traits to 546 

component traits to increase detection power of association mapping (Crowell et al, 2016). This 547 

approach could facilitate teasing-out genetic control of complex traits into numerous loci of 548 

considerable signals. Due to crossability issues between indica and japonicas, alleles for AG tolerance 549 
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within subpopulation pools can offer breeding convenience. However, pyramiding different genetic 550 

variants across subpopulations controlling the trait proposes possibilities of conferring robust AG 551 

tolerance for varietal improvement, especially that subpopulations offer varying adaptive responses. Yet 552 

some of these genetic regions exhibited very low heritability estimates and occur at low frequencies, 553 

which are expected for traits that are inherently complex, overlap with population structure and highly 554 

influenced by environment (Brachi et al. 2011). It is possible that the low heritability is attributed to 555 

epistasis or the inherent allelic architecture of the trait: common variants with very small effects, rare 556 

variants with large effects, and structural or copy number variants that could not be captured by SNP 557 

arrays (Manolio et al. 2009; Ingvarsson and Street. 2011). This study has demonstrated the expanse of 558 

natural variations for AG tolerance, the complexity of its genetic control, and evolutionary glimpses of 559 

the trait existing in the rice diversity panel. The tolerant genotypes identified here will be crossed to 560 

develop populations for QTL studies, further genetic validation, and breeding platforms to facilitate crop 561 

improvement for direct seeded systems.  562 

Integration of network analysis and functional enrichment complements and strengthens GWA 563 

mapping 564 

Though GWAS has been successful and increasingly discovering genomic regions significantly associated 565 

with traits of interest, genetic variants of small effects but with true association suffer from stringent 566 

statistical thresholds (Figure 2, Suppl. Figure S11). Likewise, abstraction of biological annotations from 567 

these genomic scans has recently gained greater attention (Wang et al. 2010; Peng et al. 2010). To 568 

address these limitations, complementary approaches, specifically gene network analyses coupled with 569 

pathway-based enrichment have been utilized. Our study made use of publicly available microarray data 570 

of similar experiments to construct gene networks and group the candidate genes in highly correlated 571 

modules that are condensed for specific mechanisms and functions. With this, we have identified 572 

modules of high biological pertinence to the AG response on the bases of network metrics (Figure 3 and 573 

Suppl. Figures S9-S10). Module characterization had revealed specific biological processes and molecular 574 

functions that have not been uncovered by conventional pathway-based analysis of the entire gene list 575 

(Suppl. Dataset S2).  576 

Module enrichments have shown the fundamental involvement of carbohydrate metabolism in AG 577 

tolerance due to significant involvement of many modules with primary metabolism, carbohydrate 578 

transport and sugar homeostasis. It has been established that, under oxygen limitation, the conversion 579 

of starchy endosperm to simple sugar is critical to address ATP crisis and precursor demands for the 580 
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growing embryonic axis (Guglielminetti et al. 1995; Perata et al. 1997; Hwang et al. 1999). Studies had 581 

also shown that sugars serve as a signaling molecules under oxygen deprivation. The CIPK15 protein 582 

integrates sugar- and O2-deficiency signaling by mediating the SNRK1-MYBS1-mediated-sugar sensing 583 

cascade to modulate carbohydrate catabolism and fermentation, thus leading to seed germination and 584 

seedling survival when flooding occurs following direct seeding (Lee et al. 2009). Recently, the genetic 585 

determinant OsTPP7 derived from KHO was identified, which modulates sugar signaling through 586 

reduction of T6P pools, consequently increasing sucrose for growth of the embryo in rice germinating 587 

under flooded conditions (Kretzschmar et al. 2015). Artificial application of T6P analogues enhances 588 

grain yield and augments performance under stress conditions (Griffiths et al, 2016).  589 

Some of the modules had functional enrichments for biological regulation at levels of transcription and 590 

translation revealing extensive effect of oxygen deprivation in to the global gene expression (Suppl. 591 

Dataset S2). In Arabidopsis, hypoxia stress extensively altered translatomes in which selective 592 

translation purports less energy consumption. Hypoxia-induced translatome modification reflected 593 

substantial changes in transcription, mRNA turnover and translation. Under anoxia, most of the ATP 594 

synthesized was spent for translation in rice coleoptiles (Edwards et al, 2012). On the other hand, 595 

transcriptome landscape under hypoxia showed remarkable decline in ribosome loading with mRNAs as 596 

a repercussion of translational prioritization to conserve energy (Mustroph et al. 2009; Branco-Price et 597 

al. 2005). Moreover, recent evidences implicate importance of translational control via protein 598 

degradation under O2 deprivation and were found to be integral in metabolic economy and signaling 599 

cascades under hypoxia. The transcription factor family VII ETHYLENE RESPONSE FACTORS (ERF-VII), 600 

which includes SUB1 and SNK1 were established to be the modulator of hypoxia-responsive genes. Its 601 

protein stability is controlled in an O2-dependent fashion through the N-end rule pathway of targeted 602 

proteasomal degradation (Gibbs et al 2011; Licausi et al, 2011).  603 

Many of the modules interestingly uncover participation in signaling cascades including MAPK cascade, 604 

G-protein receptor signaling and, serine/threonine kinase signaling pathway, which are implicated in 605 

many biological processes and environmental responses (Suppl. Dataset S2). Recently, MAPK cascades 606 

that modulate tolerance to complete submergence were reported in rice. The MPK3 protein selectively 607 

phosphorylates the tolerant SUB1-A1 allele; conversely SUB1A-1 interacts with the promoter of MPK3, 608 

ensuing a positive feedback regulation (Singh and Sinha, 2016). In Arabidopsis, the MAPK phosphatase 609 

PP2C5, and attenuates MAPK activation, adversely affecting several responses under stress conditions, 610 

including stomatal opening, seed germination, and ABA-regulated gene expression (Brock et al. 2010). 611 
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Similarly, the serine/threonine protein kinase TaSnRK2.4 in wheat enhances tolerance to drought, salt, 612 

and cold stress (Mao et al. 2009). Similarly, G proteins were found to promote lysigenous aerenchyma 613 

formation via programmed cell death under submergence, ethylene, and H2O2 treatment in rice 614 

(Steffens and Sauter, 2009).   Our study had liberated specific biological processes and molecular 615 

functions involved in AG tolerance by integrating GWA mapping with gene network co-expression 616 

analysis and pathway-based enrichment characterization.   617 

Incorporation of network metrics facilitates pragmatic candidate gene nomination  618 

Network topology, aside from GWAS p-values, can be used as an impartial parameter for selecting 619 

candidate genes.  Using this metric offers advantage of reproducibility, though further validation is still 620 

needed (Farber, 2013). Here, we have demonstrated the use of the network index GS to objectively 621 

select plausible genetic determinants of the trait among stratified analyses (Figure 3, and Suppl. Figures 622 

S9-S10). This network index reflects the correlation of the phenotypic response with the expression 623 

profile of a particular gene (Langfelder and Horvath, 2008). Our results uncovered functional 624 

connections of the candidate genes with highly connected neighboring genes within the module, further 625 

teasing out biological mechanisms at the subnetwork level (Suppl. Figure S11). This pipeline can be 626 

exploited in cases of proteins of unknown functions that seemed to be putative genetic determinants, in 627 

which inspection of the submodule functions could lead to inferred roles of the unclassified protein. 628 

These inferences could also provide information regarding regulation of the candidate genes by 629 

identifying proteins that interact or were co-regulated with it. Network analysis could also identify hub 630 

genes, which had extensive influence in the entire expression network thus had a key role in the biology 631 

of the response. With this approach we were able to empirically select candidate genes using systems-632 

level approach, add value through network biological deduction and identify allelic variants conferring 633 

AG tolerance (Suppl. Figures S12-S14). The identified discriminative SNP markers can further be used for 634 

QTL analysis and marker-assisted breeding. The identified genes still warrants further validation through 635 

population study, reverse genetics or genome editing. 636 

Metabolic signatures and module preservation across subpopulations define core and subpopulation-637 

specific shifts under AG 638 

To assess the metabolic landscape under AG perturbation with the aim of understanding metabolic 639 

shifts as an adaptive response to oxygen limitation, systems-biology approach was implemented.  AG 640 

causes intensive and extensive alteration in the metabolome across subpopulations, particularly the 641 

central carbon and nitrogen metabolism (Figure 5, Suppl. Datasets S3 and S4). This suggests that 642 
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processes involved in seed germination are highly conserved and tightly controlled. Similarly, 643 

metabolomes of seeds and its development showed highly synchronized pattern indicative of tightly 644 

regulated and highly conserved regulation among indica and japonica rice cultivars (Hu et al, 2014; Hu et 645 

al, 2016). Metabolic adjustments under anoxia include increased glycolytic activity and induced 646 

fermentative pathways (Bailey-Serres and Voesenek, 2008) to compromise energy demands and 647 

conserve and recycle precursors. Under anoxic conditions, carbohydrate metabolism is extremely 648 

dampened primarily through inhibited starch degradation and secondly by impeded pyruvate entry into 649 

the TCA cycle (Miro and Ismail, 2013). Our results further validate these adjustments, in particular the 650 

increased abundance of sugars feeding the glycolysis; the accumulation of pyruvate and its fermentative 651 

products lactate and alanine due to inhibited TCA; and the subsequent fluctuations in amino acid levels 652 

(Figure 5K-L). However there are certain degrees of differences among subpopulations, reflecting 653 

specific adaptations that correspond with divergent domestication routes and these metabolic 654 

variations may partly explain dissimilarities in AG tolerance strategies (Figure 5C-D, 5G-H). A small but 655 

distinct biochemical network was found to be specific for jap_aro panel with definite involvement in 656 

ROS alleviation, signaling and lipid metabolism (Figure 5D, Suppl. Datasets S3 and S4).  The inherent 657 

metabolic variations occurring in seeds among subpopulation may have eventual effects on stress 658 

responses, particularly in breaking dormancy and during the germination phase (Hu et al, 2013). Though 659 

jap_aro generally had shown better TCA metabolism, the tolerant ind_aus genotypes had fairly 660 

promoted TCA cycle to efficiently recycle and better reconfigure resources; consequently, providing 661 

more and diverse amino acids. Conversely, tolerant jap_aro genotypes had improved ROS sequestration 662 

via antioxidants and efficient lipid synthesis, which should result in improved membrane fluidity (Figure 663 

5D, Suppl. Datasets S3 and S4). Lipid metabolism is important for maintaining membrane integrity and 664 

may have substantial repercussion in sensing and signaling pathways in plants (Edwards et al, 2012; 665 

Penfield, 2008). Metabolic profiles of subpopulations are accompanied by changes in plant hormones 666 

that fluctuate between ind_aus and jap_aro panels. These changes suggest that subpopulations might 667 

deploy varying signaling machineries in regulating germination under unfavorable conditions.  668 

CONCLUSIONS 669 

This study dissected the underlying genetics of tolerance to flooding during germination in rice, 670 

unveiling varying genetic controls in concordance with geographical adaptation and subpopulation 671 

structure, typical of traits that are complex in nature. Different subpopulations confer varying AG escape 672 

strategy, particularly involving preferential tissue growth with corresponding metabolic adjustments. AG 673 
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stress resulted in dramatic shifts in the metabolomes across subpopulations comprising core 674 

biochemical fluxes involved in central metabolism. However a small community of metabolic repertoire 675 

differentiates the subpopulations, which play integral role in ROS sequestration, signaling, and lipid 676 

synthesis. Integration of transcriptome information through network theory strengthens GWA mapping 677 

by providing insightful information on the functional processes involving gene modules of high relevance 678 

to the trait and offers empirical bases of nominating genes for further validation. Allelic variants of 679 

selected candidate genes were identified and strongly correlate with the phenotype. The discriminative 680 

SNPs identified can be utilized as a diagnostic tool to facilitate MABC and breeding efforts. Populations 681 

will be developed from selected tolerant genotypes for QTL analysis to expedite breeding for different 682 

rice ecologies. This study provided a comprehensive systems-level approach for deciphering the genetics 683 

and physiology of AG tolerance by consolidating genetic architecture, transcriptomic meta-analysis and, 684 

metabolite profiling in a global and genome-wide perspective.  685 

 686 

MATERIALS AND METHODS 687 

Plant materials and growth conditions 688 

The experiments were conducted in greenhouses at the International Rice Research Institute using a rice 689 

diversity panel consisted of 343 accessions: 53 admixed (adm), 12 aromatics (aro), 56 aus, 72 indica 690 

(ind), 74 temperate japonica (tej), and 76 tropical japonica (trj) (Table S1). The panel was screened for 691 

AG tolerance, with Mazhan Red (tolerant) and IR42 (sensitive) used as checks. Prior to sowing, seeds 692 

were heat treated at 50 °C for 5 days to break dormancy. The first experiment used seed trays in 693 

randomized complete block design with three replications. Twenty seeds per genotype were sown in 694 

seed trays half-filled with soil, then covered with approximately 1 cm soil. One set was maintained in 695 

water-saturated soil as control; the second set was submerged under 10-cm water depth immediately 696 

after dry seeding and maintained for 21 days. Seedling emergence was assessed at 14 and 21 days after 697 

sowing. To investigate root traits, the second experiment utilized Deep RootrainersTM (Tildenet), 698 

comprising of 32 compartments per tray, with dimensions of 36 cm x 21 cm x 12 cm, holding 175 cm3 699 

soil to permit largely undisturbed root growth; was done in randomized complete block design with 700 

three replications. Three seeds were sown in each of four compartments per genotype,  then covered 701 

with 1 cm soil. One set was saturated with water as control while the other was subjected to AG stress. 702 

Survival was assessed 14 days after sowing. 703 
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For metabolite profiling, surface-sterilized seeds of genotypes selected based on their contrasting 704 

responses to AG stress across subpopulations were placed in 0.75% agar with 0.5 strength Yoshida 705 

solution in a test tube and poured with approximately 1 cm of same medium with 0.10% activated 706 

carbon to prevent light penetration mimicking the soil. The agar portion was covered with aluminum foil 707 

to avoid light exposure. The AG stress was imposed by aseptically pouring in autoclaved water to a 708 

depth of 10 cm from the agar surface. The setup was placed in growth chambers (CONVIRON) set with 709 

12:12 photoperiod at temperatures of 28C/25C (day/night) and 350 µE m-2 s-1 light intensity. 710 

Phenotyping of rice accessions 711 

Number of seedlings that emerged over water was scored as percent (%) emergence at 14 and 21 DAS. 712 

Likewise, the number of seeds that were able to emerge but stayed under water was also noted as % 713 

germination. The emergence and germination index was computed by dividing the % emergence and % 714 

germination with the number of seedlings germinated under control conditions. The lengths of the 715 

shoot, leaf sheath, and leaf blade were also measured. Shoot area at 21 DAS was estimated from 716 

pictures through ImageJ software (Schneideer et al. 2012). The dry weights of the shoots and roots were 717 

gathered by drying the dissected shoots and roots at 21 DAS for 5 d at 70 °C. Root morphological traits 718 

at 14 DAS were assessed using scanning coupled with analysis through WinRhizo root imaging analysis 719 

software (Arsenault et al. 1995).  720 

Chlorophyll and carotenoids were determined spectrophotometrically following Lichtenthaler and 721 

Buschmann (2001), with modifications. Leaf samples were lyophilized and extracted with 95% ethanol 722 

for 24 hours at 25°C. Absorbance was recorded at 470, 645, and 664nm and pigment concentrations 723 

were calculated on a dry weight (DW) basis. Ethanol-soluble sugar in seeds was assayed according to 724 

Fales (1951) with modifications. Freeze-dried samples were finely ground and extracted with 80% 725 

ethanol. The extract was reacted with 7.5 mM anthrone reagent and absorbance read at 620 nm. Sugar 726 

concentrations were then determined using dextrose standard curve. The final sugar content was 727 

expressed on DW basis. The resulting residue was subjected to starch assay based on Kunst et al. (1988), 728 

with slight adjustments. The residue was digested with 25 mM Na acetate buffer (pH 4.6), and 15 units 729 

amyloglucosidase enzyme (Sigma Aldrich). The hydrolysate was reacted with PGO-enzyme: 1 unit 730 

peroxidase and 5 unit glucose oxidase (Sigma Aldrich), and 0.12 mM o-dianosidine dihydrochloride 731 

(Sigma Aldrich) for 30 min in the dark and absorbance was read at 450 nm. Starch concentration was 732 

determined through soluble starch standard curve and final content was expressed on DW basis (Suppl. 733 

Table S2) for the list of measured and derived traits).  734 
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Statistical Analysis 735 

Phenotypic data was inspected through histogram, quantile-quantile plot, and residual plot; and Box-736 

Cox transformed when necessary to follow the linear model assumptions: independence, normality, and 737 

homoscedasticity, prior to analysis. Analysis of variance with Tukey’s HSD for post-hoc test, Pearson 738 

correlation, and multivariate analysis were accomplished using R and STAR software (R Core Team, 739 

2013; IRRI, 2013). Transcriptomic and metabolomics data had undergone Empirical Bayesian inference, 740 

correlation, and multivariate analysis for statistical evaluation. 741 

Genome-wide association mapping 742 

The mean value of three biological replicates was used as the phenotype data for association mapping. 743 

Phenotypic data structure was examined through residual analysis and assumed to fit Gaussian 744 

distribution. If necessary, the data has undergone Box-Cox transformation (Box and Cox, 1964), to follow 745 

the assumptions of the linear model prior to analysis. Genome wide association mapping was conducted 746 

with the transformed phenotypic data and the 44K SNP dataset (Zhao et al. 2011) using GAPIT in R (Tang 747 

et al. 2016). The SNP array sufficiently provides genomic resolution of one SNP every 10 kb for the entire 748 

12 rice chromosomes. SNPs with minor allele frequency (MAF) of < 10% were filtered out, leaving 32,175 749 

SNPs used for association. An Enriched Compressed Mixed Linear Model (ECMLM) and Settlement of 750 

Mixed Linear Model Under Progressively Exclusive Relationship (SUPER) method were implemented, 751 

accounting also for population stratification by including the first three principal components and 752 

kinship matrix to the model (Li et al. 2014; Wang et al. 2014). Association mapping was conducted for 753 

the entire panel and between subpopulations. 754 

Generation of candidate gene lists  755 

The top 20 SNP peaks for every trait were further inspected to generate candidate gene lists. Significant 756 

SNPs within 200kb region (the mean LD decay across rice subpopulations) from each side with the SNP 757 

as the center, were merged to constitute LD blocks, these resulting regions (flanked with 100kb, either 758 

as LD blocks or singleton) were examined in the Gramene genome browser for genes and considered as 759 

putative determinants for the trait (Tello-Ruiz et al. 2016).  760 

Gene Ontology and pathway –enrichment analysis 761 

The candidate gene lists and network modules were analyzed for statistically over- and under-762 

represented functions using the Protein ANalysis THrough Evolutionary Relationships database (Mi et al. 763 

2013; Gene Ontology Consortium, 2013). The gene list is compared with the reference gene list (the set 764 
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of all genes of Oryza sativa) through binomial distribution testing for each of the Gene Ontology, 765 

Panther protein class, or pathway terms.  766 

Gene expression data processing 767 

To generate gene co-expression networks, published microarray data from relevant experiments were 768 

used (Lasanthi-Kudahettige et al. 2007; Howell et al. 2007; Narsai et al. 2009). These studies involved 769 

transcript profiling of germinating rice seeds under normoxic (8 samples) and anoxic (8 samples) 770 

conditions, with corresponding coleoptile lengths imputed. The Affymetrix CEL files were downloaded 771 

from the Gene Expression Omnibus of National Center for Biotechnology Information (Dataset GSE6908, 772 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6908) and from ArrayExpress of European 773 

Molecular Biology Laboratory – European Bioinformatics Institute (Dataset E-MEXP-2267, 774 

http://www.ebi.ac.uk/arrayexpress/experiments/E-MEXP-2267/). The raw data were processed using 775 

the affy package (Gautier et al. 2004) for the R Language and Environment for Statistical Computing (R 776 

Core Team, 2013). Robust multiarray algorithm was implemented to extract normalized probe level 777 

expression data from the samples (Irizzary et al. 2003). The expression profiles were corrected for batch 778 

effects using the sva package (Leek et al. 2012).  779 

Transcriptomic network analysis 780 

Network analysis was performed using WGCNA (weighted gene co-expression network analysis) R 781 

package (Langfelder and Horvath, 2008). An extensive guideline for WGCNA, including tutorials are 782 

found at http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/. A WGCNA network for the 783 

selected probes was constructed with manual module. The package initially implements a soft threshold 784 

as fitting index to assess scale-free network constructed upon gene-gene correlation from microarray 785 

samples. Genes were clustered based on topological overlap of their connectivity through average 786 

linkage hierarchical clustering followed by dynamic tree cutting to define network modules. Gene 787 

Significance (GS) for each gene network was defined as the Pearson correlation with trait while Module 788 

Significance (MS) is the mean of absolute GS values of the genes in the module. Module Membership 789 

(MM) was computed as the Pearson correlation between each gene’s expression and its module 790 

eigengene. Topological parameters from the network were calculated using NetworkAnalyzer 791 

(Doncheva et al. 2012) and the network depictions were visualized using Cytoscape (Shannon et al. 792 

2003). 793 
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Haplotype analysis  794 

Candidate genes from the selected modules of strong biological relevance were selected on the basis of 795 

high absolute GS values (≥ 0.80) and its associated regions (SNP singleton or LD blocks with –log10 p- 796 

values > 5.81) were analyzed for haplotypes using Haploview (Barrett et al. 2005).  The haplotype blocks 797 

of strong linkage disequilibrium (LD) were further inspected for connection with AG tolerance. 798 

Subnetworks of the selected candidate genes were also depicted using qgraph in R (Epskamp et al. 799 

2012) to reveal highly correlated neighboring genes and possible pathways enriched (Mi et al. 2013). In-800 

silico analysis was also extended by utilizing SNPs from the database of SNP- seek providing SNP calls for 801 

3000 genomes (http://snp-seek.irri.org/, Mansueto et al, 2017).  802 

Non-targeted metabolite profiling of polar to semi-polar fractions 803 

Germinating seeds were sampled at 4 DAS and temporarily stored at -80C. Samples were extracted with 804 

0.3:0.79:0.01:2.5 methanol: isopropanol: glacial acetic acid: water spiked with internal standards (ribitol, 805 

norleucine 10 μg mL-1 each) and chloroform spiked with internal standard (5-α-cholestane, 10 μg mL-1). 806 

Polar fractions were lyophilized and derivitised with methoxamine in pyridine (20 mg mL-1) and MSTFA 807 

spiked with retention index markers C7-C36 alkanes (1000 µg mL-1). Samples were injected in Shimadzu 808 

GCMS-QP2010 Plus with SLB 5MS column, 1µL split-less with initial temperature of 60°C ramped at 5°C 809 

min-1 till 330°C. Full scan mass spectra were recorded through a range of 40-600 m/z with scan rate of 810 

1250AMU s-1 (Lisec et al, 2006).  811 

Chromatogram pre-processing  812 

The TargetSearch pipeline for preprocessing of GC-MS data was implemented in R (Cuadros-Inostroza et 813 

al, 2009). The CDF files were baseline corrected and normalized based on day measurements and peaks 814 

were identified, adjusted for retention time, and evaluated for outliers. The peaks were matched against 815 

the reference library from Golm Metabolome Database (Hummel et al, 2013) and the metabolite profile 816 

was generated. The intensities of metabolites were normalized with their corresponding internal 817 

standards then with fresh weight sample-wise. The missing values of a given metabolite were imputed 818 

with the detected minimum for statistical analysis, with the assumption that it is below detection limits. 819 

Metabolic Network construction and module preservation calculation 820 

WGCNA pipeline was utilized to construct co-expression network, identify modules, and determine 821 

module preservation from the metabolite profile of the ind_aus and jap_aro consisting of 40 and 48 822 

samples, respectively, with 1355 detected metabolic features (Langfelder and Horvath, 2008; Langfelder 823 

et al, 2011). The absolute Pearson correlation coefficients were computed for pair-wise comparison of 824 
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metabolites across samples. Outliers were removed and the resulting matrix was tested for scale free 825 

topology approximation. The dataset lacked scale free topology and the heterogeneity is attributable to 826 

strong treatment effect resulting in high correlations among metabolites, however the mean 827 

connectivity remained considerably high. Adjacency matrix was derived from the dataset using a soft 828 

power of 16 (for 30-40 samples) and computed dissimilarity based on topological overlap to construct 829 

networks. The metabolic data were also associated with the AG tolerance to identify highly pertinent 830 

metabolites and modules. The module preservation statistics were computed accordingly with the 831 

jap_aro metabolic network as the reference network and the ind_aus metabolic network as the test. 832 

Median rank was used to detect module preservation and Zsummary to evaluate significance of module 833 

preservation with 200 permutations.  Modules with Zsummary score > 10 indicates strong preservation, 834 

below 10 to 2 indicate weak to moderate preservation and < 2 indicate no preservation. Topological 835 

parameters from the networks were calculated using NetworkAnalyzer (Doncheva et al. 2012) and the 836 

network depictions were visualized using Cytoscape (Shannon et al. 2003). 837 

Metabolic pathway-enrichment analysis 838 

The resulting metabolic modules were analyzed for over- representation of pathways using web-based 839 

IMPaLA database (http://impala.molgen.mpg.de/, Kamburov et al, 2011). The database contained 3073 840 

annotated pathways from 11 public databases including KEGG (http://www.genome.jp/kegg/), 841 

Reactome (http://www.reactome.org) and, Wikipathways (http://www.wikipathways.org). Based on 842 

the list of the identified metabolites from each module, hypergeometric distribution is utilized to 843 

generate significance values for each pathway in terms of the overlap with those associated with the list. 844 
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FIGURE LEGENDS 854 

Figure 1. Phenotypic heterogeneity for AG tolerance reflects genetic diversity and tends to concur with 855 
subpopulation structure and geographical origin. Distribution of % emergence 14 DAS for each 856 
subgroup: adm=admixed; aro=aromatics; aus; ind=indica; tej=temperate japonica; trj=tropical japonica; 857 
blue line indicates performance of the tolerant check MaZhan Red and red line for the sensitive check 858 
IR42 (A). Phenotypic principal component (PC) analysis showed overlapping responses but tolerant 859 
japonicas and indicas deploy varying growth behaviors under AG stress (B-C). Heatmap and hierarchical 860 
clustering of the accessions using the phenotypes, color of row-side bars indicate subpopulations  (D). 861 
Geographical  distribution of tolerance revealed sporadic spread of sensitive genotypes while tolerant 862 
genotypes appear to coincide with the temperate zones (E). 863 

Figure 2. Genomic regions associated with AG traits: first track includes published QTLs linked with AG 864 
tolerance derived from different donors, dark red (KHO), dark green (Nanhi), black (Mazhan Red); 865 
second to fourth track indicate position of top 20 SNPs from each trait, with the bar representing –log10 866 
p-values, filled circles identify significant associations, for the all (green), ind_aus (red), and jap_aro 867 
(blue) panels. Fifth to seventh track include line graphs for minor allele frequency from ECMLM 868 
approach; eighth to eleventh track shows number of traits associated with the SNPs (A). Venn diagram 869 
of overlapping SNPs associated with traits for the stratified analyses, including the all, ind_aus and, 870 
jap_aro panels (B). Venn diagram of overlapping candidate genes inspected from ± 100kb of the SNPs 871 
(C). 872 

Figure 3.  Venn diagram of differentially expressed genes for all panel (A). Co-expression network from 873 
the all panel, each line is an individual gene and the branches correspond to modules of highly 874 
interconnected genes, below the dendogram, each gene is color coded to indicate module assignment 875 
and the GS values for coleoptile length (B). Correlation between MM and GS for each of the identified 876 
GWAS modules, all of the modules had significant correlations (p-values < 0.01) for GS and MM (C). 877 

Figure 4.  Ideogram depiction of genes present in all_LDb08009 region in chromosome 8 with 878 
corresponding GWAS significance values and MAF (A). Linkage disequilibrium heatmap of the region 879 
showing 2 haplotype blocks (B). Haplotype variants existing in the associated region with corresponding 880 
linkage disequilibrium value between blocks and the frequencies of the variants (C). Frequency 881 
distribution of the identified allelic variants and corresponding tolerance (D). 882 

Figure 5.  Metabolomic profiles of jap_aro (A-D, I, K) and ind_aus (E-H, J, L) panels of contrasting AG 883 
responses: volcano plots indicating differentially fluxed metabolic features for treatment*tolerance 884 
effects (A, E); metabolic Principal Component (mPC) analysis revealed distinct metabolic compositions 885 
under AG stress for representative tolerant (filled circles) and sensitive (unfilled circles) genotypes (B, F); 886 
Metabolic network structure and (D, H) multidimensional scaling of metabolite features showed highly 887 
conserved and distinct metabolic responses (C, G); heatmap representation of fluxed metabolic features 888 
(column color bars from outer to inner indicate treatment, tolerance, and subpopulation (I, J); and 889 
MAPMAN pathway representation of identified differentially expressed metabolites for 890 
treatment*tolerance effects (K, L). 891 
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 892 

SUPPLEMENTARY MATERIALS 893 

Supplementary Table S1. The accessions included in the Rice Diversity Panel 1 with their corresponding 894 
subpopulations and geographical origin. 895 

Supplementary Table S2. The list of measured and derived traits from seedling tray and root trainer 896 
screening methods. 897 

Supplementary Table S3. Significant genetic loci (-log10 p-values > 5.81, Bonferroni cut-off) associated 898 
with AG traits from stratified GWA mapping. 899 

Supplementary Figure S1.  Correlation of measured and derived phenotypic traits. The side color scale 900 
bar indicates Pearson coefficients. 901 
 902 
Supplementary Figure S2. GWAS results for measured and derived traits of the all panel as depicted by 903 
Manhattan plots, MAF graphs, quantile-quantile plots and, heritability estimates using ECMLM 904 
algorithm. 905 

Supplementary Figure S3. GWAS results for measured and derived traits of the ind_aus panel as 906 
depicted by Manhattan plots, MAF graphs, quantile-quantile plots and, heritability estimates using 907 
ECMLM algorithm. 908 

Supplementary Figure S4. GWAS results for measured and derived traits of the jap_aro panel as 909 
depicted by Manhattan plots, MAF graphs, quantile-quantile plots and, heritability estimates using 910 
ECMLM algorithm. 911 

Supplementary Figure S5. GWAS results for measured and derived traits of the all panel as depicted by 912 
Manhattan plots and, quantile-quantile plots using SUPER algorithm.  913 

Supplementary Figure S6. GWAS results for measured and derived traits of the ind_aus panel as 914 
depicted by Manhattan plots and, quantile-quantile plots using SUPER algorithm 915 

Supplementary Figure S7. GWAS results for measured and derived traits of the jap_aro panel as 916 
depicted by Manhattan plots and, quantile-quantile plots using SUPER algorithm.  917 

Supplementary Figure S8.  MAF distribution and plots of MAF against significance values and number of 918 
associated traits for all (A), ind_aus (B) and, jap_aro (C) panels. 919 

Supplementary Figure S9.  Venn diagram of differentially expressed genes for ind_aus panel (A). Co-920 
expression network from the ind_aus panel, each line is an individual gene and the branches correspond 921 
to modules of highly interconnected genes, below the dendogram, each gene is color coded to indicate 922 
module assignment and the GS values for coleoptile length (B). Correlation between MM and GS for 923 
each of the identified GWAS modules (C). 924 
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Supplementary Figure S10.  Venn diagram of differentially expressed genes for jap_aro panel (A). Co-925 
expression network from the jap_aro panel, each line is an individual gene and the branches correspond 926 
to modules of highly interconnected genes, below the dendogram, each gene is color coded to indicate 927 
module assignment and the GS values for coleoptile length (B). Correlation between MM and GS for 928 
each of the identified GWAS modules (C). 929 

Supplementary Figure S11.  GWAS and gene co-expression plots for all (A), ind_aus(B) and, jap_aro (C) 930 
panels; first track includes published QTLs linked with AG tolerance derived from different donors, dark 931 
red  (KHO), dark green (Nanhi), black (Mazhan Red); second track indicates position of top 20 SNPs from 932 
each trait, with the bar representing  –log10 p-values, filled circles identify significant associations; third 933 
track reflects minor allele frequency from ECMLM approach; fourth track shows number of traits 934 
associated with the SNPs; the center depicts the interaction of the tightly correlated genes (GS ≥ 0.80 935 
with the 97.5 percentile of the interactions plotted), color indicate the module assignment upon 936 
WGCNA implementation. 937 

Supplementary Figure S12.  Ideogram depiction of genes present in ind_aus LDb09010 region in 938 
chromosome 9 with corresponding GWAS significance values and MAF (A). Linkage disequilibrium 939 
heatmap of the region showing 4 haplotype blocks (B). Haplotype variants existing in the associated 940 
region with corresponding linkage disequilibrium values between blocks and the frequencies of the 941 
variants (C). Frequency distribution of the identified allelic variants and corresponding tolerance (D). 942 

Supplementary Figure S13.  Ideogram depiction of genes present in jap_aro id3013397 SNP in 943 
chromosome 3 with corresponding GWAS significance values and MAF (A). Linkage disequilibrium 944 
heatmap of the region showing no define haplotype blocks (B). Frequency distribution of the identified 945 
allelic variants and corresponding tolerance (C). 946 

Supplementary Figure S14.  Ideogram depiction of the nominated gene LOC_Os08g34580 and the MAF 947 
of SNP variants extracted from the 3000 genomes (A). Hierarchical clustering of the genomic region with 948 
cutree =12, bar indicates time scale of evolution (B). The overlap of 3000 genomes and the Rice Diversity 949 
Panel resulted to 15 genotypes and  clades and percent mismatch for Nipponbare genome were plotted 950 
with tolerance (C). 951 

Supplementary Figure S15.  Ideogram depiction of the nominated gene LOC_Os09g26310 and the MAF 952 
of SNP variants extracted from the 3000 genomes (A). Hierarchical clustering of the genomic region with 953 
cutree =12, bar indicates time scale of evolution (B). The overlap of 3000 genomes and the Rice Diversity 954 
Panel resulted in 15 genotypes and clades and percent mismatch for Nipponbare genome were plotted 955 
with tolerance (C). 956 

Supplementary Figure S16.  Ideogram depiction of the nominated gene LOC_Os03g50220 and the MAF 957 
of SNP variants extracted from the 3000 genomes (A). Hierarchical clustering of the genomic region with 958 
cutree =12, bar indicates time scale of evolution (B). The overlap of 3000 genomes and the Rice Diversity 959 
Panel resulted to 15 genotypes and clades and percent mismatch for Nipponbare genome were plotted 960 
with tolerance (C). 961 
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Supplementary Figure S17.  Correlation plots of jap_aro metabolic flux with ind_aus metabolic flux (A) 962 
and the computed Eigengene-based network connectivity of jap_aro metabolites and ind_aus 963 
metabolites (B). 964 

Supplementary Figure S18.  Gene coexpression network   depictions  with module size and GS 965 
distribution in boxplot, dotted horizontal line indicate module significance , MS ; and histogram of 966 
connection strengths, vertical dotted line indicate mean, solid vertical line indicate median, for the 967 
modules of the all  panel: blue (A), brown (B), green (C), red (D), turquoise (E) and, yellow (F).  968 

Supplementary Figure S19.  Gene coexpression network   depictions  with module size and GS 969 
distribution in boxplot, dotted horizontal line indicate module significance , MS ; and histogram of 970 
connection strengths, vertical dotted line indicate mean, solid vertical line indicate median, for the 971 
modules of the ind_aus panel: blue (A), brown (B), turquoise (C), yellow (D), and green (E). 972 

Supplementary Figure S20.  Gene coexpression network   depictions  with module size and GS 973 
distribution in boxplot, dotted horizontal line indicates module significance , MS ; and histogram of 974 
connection strengths, vertical dotted line indicates mean, solid vertical line indicates median, for the 975 
modules of the jap_aro panel: blue (A), brown (B),green (C), red (D), turquoise (E) and, yellow (F). 976 

Supplementary Figure S21. Correlation between MM and GS for each of the identified metabolic 977 
modules in the jap_aro metabolome, all of the modules had significant correlations (p-values < 0.01) for 978 
GS and MM. 979 

Supplementary Figure S22. Correlation between MM and GS for each of the identified metabolic 980 
modules in the ind_aus metabolome, all of the modules had significant correlations (p-values < 0.01) for 981 
GS and MM. 982 

Supplementary Dataset S1. Complete list of GWAS-WGCNA gene module assignments for all, jap_aro, 983 
and ind_aus panels.  984 

Supplementary Dataset S2. Complete list of the pathway enrichments of the GWAS-WGCNA gene 985 
modules for all, jap_aro, and ind_aus panels. 986 

Supplementary Dataset S3. Complete list of the metabolite module assignments for jap_aro and 987 
ind_aus metabolomes. 988 

Supplementary Dataset S4. Complete list of the pathway enrichments for metabolite module 989 
assignments for jap_aro and ind_aus metabolomes. 990 

 991 

 992 

 993 
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Figure 1. Phenotypic heterogeneity for AG tolerance reflects genetic diversity and tends to concur with subpopulation 
structure and geographical origin. Distribution of % emergence 14 DAS for each subgroup: adm=admixed; aro=aromatics; 
aus; ind=indica; tej=temperate japonica; trj=tropical japonica; blue line indicates performance of the tolerant check 
MaZhan Red and red line for the sensitive check IR42  (A). Phenotypic principal component (PC) analysis showed 
overlapping responses but tolerant japonicas and indicas deploy varying growth behaviors under AG stress (B-C). Heatmap 
and hierarchical clustering of the accessions using the phenotypes, color of row-side bars indicate subpopulations  (D). 
Geographical  distribution of tolerance revealed sporadic spread of sensitive genotypes while tolerant genotypes appear to 
coincide with the temperate zones (E).  
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Figure 2. Genomic regions associated with AG traits: first track includes published QTLs linked with AG tolerance 
derived from different donors, dark red  (KHO), dark green (Nanhi), black (Mazhan Red); second to fourth track 
indicate position of top 20 SNPs from each trait, with the bar representing  –log10 p-values, filled circles identify 
significant associations, for the all (green), ind_aus (red), and jap_aro (blue) panels. Fifth to seventh track reflect 
minor allele frequency from ECMLM approach; eighth to eleventh track shows number of traits associated with 
the SNPs (A). Venn diagram of overlapping SNPs associated with traits for the stratified analyses, including the all, 
ind_aus and, jap_aro panels (B). Venn diagram of overlapping candidate genes inspected from ± 100kb of the SNPs 
(C). 
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Figure 3.  Venn diagram of differentially expressed genes for all panel (A). Co-expression network from 
the all panel,  each line is an individual gene and the branches correspond to modules of highly 
interconnected genes, below the dendogram, each gene is color coded to indicate module assignment 
and the GS values for coleoptile length (B). Correlation between MM and GS for each of the identified 
GWAs modules, all of the modules had significant correlations (p-values < 0.01) for GS and MM (C). 
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Figure 4.  Ideogram depiction of genes present in all_LDb08009 region in chromosome 8 with 
corresponding GWAS significance values and MAF(A). Linkage disequilibrium heatmap of the region 
showing 2 haplotype blocks (B). Haplotype variants existing in the associated region with corresponding 
linkage disequilrium value between blocks and the frequencies of the variants (C). Frequency distribution 
of the identified allelic variants and corresponding tolerance (D). 
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Figure 5.  Metabolomic profiles of jap_aro (A-D, I, K) and ind_aus (E-H, J, L) panels of contrasting AG responses: volcano 
plots indicating differentially fluxed metabolic features for treatment*tolerance effects (A, E); metabolic Principal 
Component (mPC) analysis revealed distinct metabolic compositions under AG stress for representative tolerant (filled 
circles) and sensitive (unfilled circles) genotypes (B, F); Metabolic network structure and (D, H) multidimensional scaling of 
metabolite features showed highly conserved and distinct metabolic responses (C, G); heatmap representation of fluxed 
metabolic features (column color bars from outer to inner indicate treatment, tolerance, and subpopulation (I, J); and 
MAPMAN pathway representation of identified differentially expressed metabolites for treatment*tolerance effects (K, L). 
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