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Abstract

Background:: Thailand is a country with large diversity in rice varieties due to its rich and diverse ecology. In
this paper, 300 rice varieties from all across Thailand were sequenced to identify SNP variants allowing for the
population-structure to be explored.

Results:: The result of inferred population structure from admixture and clustering analysis illustrated strong
evidence of substructure in each geographical region. The results of phylogenetic tree, PCA analysis, and
machine learning on SNPs selected by QTL analysis also supported the inferred population structure.

Conclusion:: The population structure, which was inferred in this study, contains five populations s.t. each
population has a unique ecological system, genetic pattern, as well as agronomic traits. This study can serve as
a reference point of the nation-wide population structure for supporting breeders and researchers who are
interested in Thai rice.
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Background

Figure 1 The climate of Thailand in the aspect of average temperature, amount of rain, and
humidity in 2018 separated by regions [1].

Rice (Oryza sativa) has been the main carbohydrate source in Thailand for more

than 4,000 years [2], and Thailand has been a major rice exporter since 1851 [3].

Accelerated cultivar selection for specific environments is important for rice breeding

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2021. ; https://doi.org/10.1101/2021.05.09.443284doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.09.443284
http://creativecommons.org/licenses/by/4.0/


Vejchasarn et al. Page 2 of 11

programs. The long time period of rice domestication has yielded many rice cultivars

with wide variation in size, flowering time, grain quality, and yield to name a few.

Thailand has large diversity in ecological systems [4]. In the north, most of the

area is covered by mountains and tropical rain forests. In central Thailand, the

region consists of plains and fields that are prone to flood. In the north-eastern

part, plateaus are the main type of area. In the south are tropical coastal regions

and tropical islands. See Figure 1 for more details.

Due to the diverse ecology in Thailand, rice varieties need to be adapted to their

intended growth region and there is some degree of association between genetic

variation and geographical origin of Thai rice [5]. Moreover, there is a higher level of

diversity in Thai rice accessions compared to International Rice Research Institute

(IRRI) germplasm [4]. Upland Thai rice forms a cluster of tropical japonica [6, 4, 7],

while lowland rice forms Indica clusters.

Understanding population structure and genetic diversity is an important step be-

fore Genome-wide association studies (GWAS) [8], which paves the way for studies

of traits and functional gene investigation. Studies in population structure and ge-

netic diversity of Thai rice has been conducted using different sets of rice accessions

and molecular markers. Comparison of genetic diversity among 43 Thai rice and

57 IRRI rice accessions was investigated in [4], using single-stranded conformation

polymorphism (SSCP) indels markers. Additionally, [9] used 12 simple sequence

repeat (SSR) markers to examine ongoing gene flow among three types of rice sam-

ples in Thailand, including 42 wild rice populations, 12 weedy rice populations, and

37 cultivated rice varieties. Recently, with a greater number of rice germplasm ac-

cessibility, 144 Thai and 23 exotic rice accessions were included to evaluate genetic

diversity using SSR markers in [6]. Another study assessed the population gene pool

of 15 Thai elite rice cultivars using InDel markers ( [10]). It is worth to note that

there are some limitations in these previous works regarding the access to a high

number of varieties for each region of Thailand. Additionally, genome-wide SNP

markers were not used in these previous works.

To fill the gap in the literature, in this study, we mainly focused on the popu-

lation structure of 300 rice varieties from all over Thailand, which are grown in

rich and diverse ecological systems. We use both InDel and SNP markers to infer

subpopulations. These 300 varieties are a good representation of the nation-wide

rice population structure.

Results
Population Structure

After clustering the 300 samples, five populations were found in the dataset. These

five inferred populations generally group according to geological areas of rice sam-

ple cultivation. POP1 represents Indica samples from Central Thailand. POP3 rep-

resents Indica samples from Northeastern Thailand. POP2 represents rice sam-

ples from both Northeastern and Central Thailand. POP4 represents samples from

Southern Thailand. And lastly, POP5 represents Japonica samples from Northern

Thailand.

A principal component analysis showed that PC1 separated the Japonica pop-

ulation varieties (POP5) from the rest of the varieties, while PC2 separated the
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Figure 2 Population structure of 300 Thai rice varieties inferred from 69,777 SNPs and 47,277
Indels. a Admixture plot of Thai rice varieties. The vertical axis represents an ancestry ratio of
each variety. The horizontal axis represents individual varieties grouped by clustering analysis.
Groups were assigned by clustering analysis on individual-admixture ratios. There are four
ancestors with five populations inferred by clustering analysis. b The first and second principal
components (PCs) from a principal component analysis. c The second and third PCs. Cluster
colors were assigned according to ADMIXTURE clustering analysis results. The PC1 separates the
japonica varieties (POP5) from the indica varieties. PC2 separates southern indica varieties
(POP4) from central and northern varieties (POP1, POP2, and POP3). Lastly, PC3 separates
central indica (POP1), from northern indica (POP3) with their admixture varieties appearing in
between the two (POP2). d Phylogenetic tree of the 300 varieties, created by NJ tree, color coded
according to the ADMIXTURE result.

southern population varieties (POP4) from the other three populations central and

northern varieties of Indica samples (Figure 2). Lastly, PC3 separated the central

Indica varieties (POP1) from the northern Indica varieties (POP3) with the vari-

eties identified as admixed (POP2) joining the two, showing that the geographical

separation is reflected in the genotypes of each variety. A phylogenetic tree was

constructed and showed that the Japonica population (POP5) was separated from

the Indica populations (Figure 2 (d)). Admixed varieties (POP2) were distributed

among central (POP1) and northern (POP3) branches, suggesting that POP2 is an

admixed group of POP1 and POP3, while POP1, POP3, and POP4 were clearly

separated from each other. Admixture analysis showed that POP1, POP3, POP4,

and POP5 were grouped into different ancestors (different colors). POP2, however,

had mixed ratios of ancestor A and B, which were the ancestors of POP1 and POP3.

This indicates that POP2 is an admixed population of POP1 and POP3. POP1,

POP3, POP4, and POP5 have high bootstrap support around 0.9, while POP2 has

average support at 0.69 (Table 1). This is consistent with POP2 representing an

admixed population of POP1 and POP3.

In the aspect of population genetic distance, the FST between admixture ances-

tor populations, which is a widely-used measure of genetic variation among pop-

ulations [11], were reported in Table 2. The table shows that Ancestor D, which

was the ancestor of the Japonica population (POP5) has a higher distance than

was observed among other populations. Ancestors A and B were closer compared

to C. While it is unclear whether POP4 was Indica or Japonica population, the
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Table 1 Number of samples and support of clustering assignment from bootstrapping for each
population. The support number represents the likelihood that each cluster has the same set of
members. Higher support implies a higher chance that cluster members are in the same population.

Number of samples Average support
POP1 54 0.98
POP2 45 0.69
POP3 67 0.92
POP4 92 0.89
POP5 42 0.99

Table 2 FST divergences between ancestry populations inferred by ADMIXTURE. A is an ancestor
of Indica (elite line), B is an ancestor of Indica (modern variety), and D is the ancestor of Japonica.
By using a threshold of FST ≤ 0.3 to consider populations to have a similar type: either Japonica or
Indica, C was assigned to be an ancestor of Indica (landrace in southern part of Thailand).

FST Ancestor A Ancestor B Ancestor C
Ancestor B 0.178 - -
Ancestor C 0.208 0.209 -
Ancestor D 0.480 0.497 0.507

FST values suggest that the ancestor of POP4 (C) was closer to ancestors A and

B (Indica) than the ancestor D (Japonica). This implies that ancestor C should be

an Indica ancestor and that POP4 is an Indica population.

Agronomic traits of subpopulations

Figure 3 Subpopulation distributions of three phenotypes: days to flowering (a), grain length (b),
and plant height (c). Domination graphs represent relationships between pairs of populations for
days to flowering (d), grain length (e), and plant height (f). Arrow directions point from the
population with a significantly higher phenotype value to the population with a lower phenotype
value (with Mann Whitney test at α = 0.001).

There are three agronomic traits that have been compared among subpopulations:

days to flowering, grain length, and plant height. Figure 3 shows the details of these

agronomic traits for each subpopulation. The distributions for traits are in the

above figures (a-c), while the significance tests results are in the below figures (d-

f). A significance test shows that whether one population has a trait significantly

different from another.

For the days to flowering trait, central Indica varieties (POP1) flower earlier than

north-eastern Indica varieties (POP3). The admixed population (POP2) has a flow-

ering time roughly between that of POP1 and POP3, as expected. Southern Indica
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Table 3 The result of 10-fold cross validation based on 268 SNPs for population classification using
Random Forest algorithm

Precision Recall F1
POP1 0.83 0.93 0.88
POP2 0.76 0.62 0.68
POP3 0.90 0.91 0.90
POP4 0.97 0.98 0.97
POP5 1.00 1.00 1.00

varieties (POP4) have the latest flowering time out of the 300 varieties investi-

gated. Lastly, the Japonica varieties (POP5) had a similar flowering time as POP1

(Figure 3 a,d).

For the grain-length trait, POP1, POP2, and POP3 have similar grain length,

while POP4 has a significantly shorter grain length compared to POP1, POP2,

and POP3. POP5 has high variation of grain length. This indicates that Japonica

(POP5) cannot be distinguished from Indica (POP1 - POP4) by using the grain-

length trait (Figure 3 b,e).

For the plant-height trait, ordering by the ascending heights, the order is POP5,

POP1, POP2, and POP3. POP3 and POP4 have no significantly different in the

height trait (Figure 3 c,f).

Unique SNPs of subpopulations

A QTL analysis was used to identify SNPs with large variation in allele frequency

between populations and 50-100 of the SNPs with the greatest allele frequency

difference between populations were selected to train a random forest model to

identify which population any given sample is from based on genotype. A total of

268 SNPs were selected (Supplementary Table 1).

Only POP5 had population specific SNPs that allowed for accurate population

identification, this was not surprising as this population is Japonica and the other

populations are all Indica (Table 3). The Indica populations had too much allele

sharing to allow for each variety to be accurately assigned to their population. The

admixed population had the lowest rate of correct population assignment, while the

other populations were all in the 80-90% range (Table 3.)

While a QTL analysis to identify population specific SNPs might be unconven-

tional, it is well known that population stratification can result in false positives.

In this particular case the populations in question are not discrete populations, but

rather groupings of varieties that tend to correlate with location and have genetic

mixing between varieties.

The majority of SNPs most predictive for POP1 occurred on chromosome 1 in

an interval between 21.6 and 22.5 Mb and an interval on chromosome 3 between

8.4 and 8.8 Mb. The majority of SNPs most predictive for POP2 occurred on

chromosome 3 between 31 and 31.5 Mb with some small intervals on chromosomes

5, 6 and 7. There were 5 intervals of predictive SNPs for POP3 and several small

intervals. Chromosome 3 had a interval from 27.59 to 27.65 Mb, chromosome 5

had an interval from 18.71 to 18.78 Mb, chromosome 6 had two intervals from 7.61

to 7.68 Mb and 11.02 to 11.06 Mb, chromosome 10 had an interval from 14.74 to

14.8 Mb. POP4 had the most distinctive allele frequencies with SNP intervals on

chromosome 1 at 21.07 to 21.11 Mb, chromosome 2 at 5.32 to 5.35 Mb and 16.41
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to 16.45 Mb, chromosome 5 at 23.71 to 23.84 Mb, and chromosome 11 at 2.7 to 2.8

Mb and 23.36 to 23.42. Of the 268 SNPs, there were 110 within 75 genes, although

the majority of these are predicted genes with no known function (Supplementary

Table 2). There were 259 genes within the intervals of these predictive SNPs and

most were predicted genes of unknown function (Supplementary Table 3).

Discussion
According to the work in [4], upland Thai rice were grouped in Japonica cluster:

other were clustered in Indica cluster, which are consistent with the population

structure found in this work. In the aspect of agronomic traits, all inferred sub-

populations posses unique traits that might suit to their growing environment since

they were grown in the different ecological conditions; northern areas are upland,

central areas are flat plain, north-eastern areas are plateaus, and south areas are

coastal regions and tropical islands.

The inferred subpopulation in the north is a Japonica cluster (POP5). Other four

inferred subpopulations are Indica clusters in the central area (POP1), north-east

(POP3), south (POP4), and the admixture of POP1 and POP3 (POP2). All inferred

subpopulations were different and separated well using 268 selected SNPs from QTL

analysis on Random forest classifier except the admixture cluster (POP2). This

implies that inferred subpopulations were unique.

An interesting finding was that the most predictive SNPs for each population

occurred within a few small intervals, rather than randomly spread throughout the

genome, which suggests a selection pressure, perhaps selecting for a trait that makes

the variety better in the area it is grown. However, the population groupings are

broad, each covering a quite diverse range of environments, and the allele frequencies

between populations have a large amount of overlap, so many of these regions could

be due to chance rather than function. Some interesting genes around 268 SNPs,

for example, were Os03g0262000, Os06g0677800, and Os05g0203800. Os03g0262000,

which is a homolog of AtPIP5K1 that is induced by water stress and abscisic acid

in A. thaliana [12]. Os06g0677800 (OsARF17) is a target for viral infection [13].

Os05g0203800 (OSMADS58) plays a crucial role for flower development [14].

Conclusion
Thailand is a country with large diversity in rice varieties due to its rich and diverse

ecology. In this paper, 300 rice varieties from all across Thailand were sequenced to

identify SNP variants allowing for the population-structure to be explored.

The result of inferred population structure from admixture and clustering analysis

illustrated strong evidence of substructure in each geographical region. The results

of phylogenetic tree, PCA analysis, and machine learning on SNPs selected by QTL

analysis also supported the inferred population structure. Moreover, by using only

268 SNPs, Random forest classifier was able to classify four out of five subpopu-

lations except the admixture well. This indicates these subpopulations are unique

enough to be distinguished by a small number of SNPs. A unique ecological system

where rice is grown might play a key role in this uniqueness. The 268 SNPs can be

served as a markers of these subpopulations for future study.

This study can serve as a reference point of the nation-wide population structure

for supporting breeders and researchers who are interested in Thai rice.
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Methods
Plant material

The list of 300 representative Thai rice varieties is at Supplementary Table 4. The

Thai rice accessions were collected from all regions of Thailand: northern, north-

eastern, southern, and central region. All plants were grown in the wet season of 2018

at Ubon Ratchathani Rice Research Center (URRC) of Ubonratchatani province,

Thailand (15°19’55.2”N, 104°41’27.9”E).

Genotyping by sequencing and variance calling

The genotypic sequences were generated from Ion S5™ XL Sequencer (Thermo

Fisher Scientific). The data were obtained as BAM files. The ApeKI enzyme was

used for genomic DNA digestion to prepare the DNA library. In the sequencing step,

E-Gel™ SizeSelect™ agarose gels (Invitrogen) were used to select DNA fragments

for 250–300 bp. The Nipponbare reference genome by Ion Torrent™ Suite Software

Alignment Plugin v5.2.2. was used for analyzing all sequencing data. The fastq files

were created from BAM files using Samtools v1.9 [15]. Then, fastq files were re-

aligned with the Japonica reference genome using Burrow–wheeler aligner (BWA)

v0.7.17 [16] and SAMtools. Variants were called using using GATK v4.1.4.1 [17].

Population structure analysis

Numerical genotype function

Genotype was converted into a numerical value, such that homozygous reference

allele was 1.0, homozygous alternate allele was 0.0, and heterozygous was 0.5 using

TASSEL [18]. The SNPs were filtered to have a minimum allele frequency of 0.05

and a minimum call rate of 70% per SNP. The SNP number was reduced from

3,366,491 to 117,054 sites after filtering.

Admixture analysis

Numerical genotypes were used to create .ped, .map and .bed files for ADMIX-

TURE [19] analysis to estimate ancestry ratios of all individual samples. The opti-

mal number of ancestors was found to be four by the Elbow method.

Clustering analysis

Their ancestry-ratio vectors of each SNP were used for data clustering. The in-

dividual assignments of clustering were inferred by applying a k-means clustering

approach [20] in the R software package [21]. The Elbow method was applied to infer

the optimal number of clusters based on Between-cluster and Total Sum-of-Square

(BCTSS) Ratio. The BCTSS ratio represents a ratio of difference of distance from

individuals to their cluster centroid between having current clustering assignment

compared to having only one cluster. The optimal number k∗ of clustering assign-

ment should reduce BCTSS ratio significantly compared against k∗ − 1 and k∗ + 1

cases.

A 10,000 iteration bootstrap approach [22] was deployed to estimate the support

of clustering assignment of each population. The clustering assignment that maxi-

mized BCTSS ratio with the optimal k along with the support of assignment from

bootstrap were used to represent the subgroups of the population.
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Principal components analysis

PCs were generated from numeric genotype data using TASSEL [18].

Phylogenetic tree construction

A phylogenetic tree was generated by Neighbor-Joining method [23] using the nu-

merical genotype data in TASSEL [18].

Domination graphs inference

Domination graphs represents relationships between pairs of populations for three

phenotypes were inferred using EDOIF package [24]. For each phenotype, nodes

of domination graph are subpopulations while there is an edge from a population

with a significantly higher phenotype value to a population with a lower phenotype

value. The Mann Whitney test was deployed to infer edges of a domination graph

with α = 0.001.

Population specific SNPs

We investigated the potential of identifying SNPs that were specific to each pop-

ulation identified by the admixture analysis. These groupings can include a large

number of varieties and the varieties have varying levels of relatedness, which means

varying levels of SNP sharing occur within and between populations, so a large

number of SNPs would be required to discriminate between populations. The vari-

ants were filtered to select for bi-allelic SNPs where all samples were homozygous

and a series of Quantitative trait locus (QTL) analyses were performed to identify

the most discriminatory SNPs. The phenotype for each QTL analysis was set as a

binary trait of ‘same population’ or ‘other populations’ using the population group-

ings identified by the admixture analysis. A separate QTL analysis was performed

for each population and the SNPs with the highest LOD score and largest allele

frequency difference were taken as being the most predictive for that population.

These SNPs were then used to train a random forest model [25] using the R random-

Forest package [26] and the R caret package [27]. Gene information from the GFF

was overlaid on the SNP data to identify any population discriminatory SNP that

was within a gene. In addition, genes within intervals of closely spaced predictive

SNPs were also investigated.

Population classification

We deployed machine learning data classification to investigate whether the set of

population specific SNPs we selected can be used to discriminate between the five

populations. We used 10-fold cross validation [28], which is a technique in machine

learning to measure the performance of prediction from a set of classifiers. We used

random forest model [25] as a main classifier in the analysis training on the 268

selected SNPs to classify the five populations of 300 rice varieties. A true positive

(TP) is when the predicted class was the same as the ADMIXTURE derived class.

A false positive (FP) is the case when the classifier predicts that a sample belongs

to some specific class but it is not the member of that class. A false negative (FN)

is when a sample that belongs to a specific class is not predicted to be a member

of that class. The precision is the ratio of the number of TP cases to the number of
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TP and FP cases. The recall is the ratio of the number of TP cases to the number

of TP and FN cases. The F1 score is calculated from precision and recall as follows.

F1 = 2 ∗ (precision ∗ recall)
(precision+ recall)

(1)
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Supplementary

Figure 4 The Elbow method result that was used to find the optimal number of ancestors from
ADMIXTURE. The optimal number is 4 ancestors.
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Figure 5 The Elbow method result that was used to find the optimal number of clusters for
k-means clustering. The optimal number is 5 clusters.
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