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ABSTRACT 1 

Posidonia oceanica meadows are biodiversity reservoirs and provide many ecosystem services in 2 

coastal Mediterranean regions. Marine meiofauna, on the other hand, not only represents a major 3 

component of regional marine biodiversity, but also a useful tool to address both theoretical and 4 

applied questions in ecology, evolution, and conservation. We review the meiofaunal diversity in the P. 5 

oceanica ecosystem combining a literature review and a case study. First, we gathered records of 664 6 

species from 69 published studies as well as unpublished sources, including few species exclusive from 7 

this ecosystem. Eighteen of those studies quantified the spatial and temporal changes of species 8 

composition, highlighting habitat-specific assemblages that fluctuate following the annual changes 9 

experienced by P. oceanica. Hydrodynamics, habitat complexity, and food availability, all three 10 

inherently linked to the seagrass phenology, are recognised as the main factors at shaping the complex 11 

distribution patterns of meiofauna in the meadows. These drivers have been identified mainly from 12 

Copepoda and Nematoda, and depend ultimately on species-specific preferences. Second, we tested the 13 

generality of these observations using marine mites as a model group, showing that the same processes 14 

might be in place also for other less abundant meiofaunal groups. Overall, our study highlights an 15 

outstanding diversity of meiofauna in P. oceanica and shows its potential for future research, not only 16 

focused on exploring and describing new species of neglected meiofaunal organisms, but also 17 

providing a more complete understanding on the functioning of the iconic Mediterranean ecosystem 18 

created by P. oceanica. 19 

 20 

KEYWORDS: Acari; Biodiversity; Copepoda; Habitat sorting; Nematoda   21 
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1. INTRODUCTION 22 

Named after the Greek God Poseidon, the marine flowering plant Posidonia oceanica (L.) 23 

Delile, 1813 constitutes an iconic Mediterranean endemic organism that forms extensive lush 24 

meadows, imprinting shallow Mediterranean bays and beaches with a unique character. Beyond the 25 

ethnographic importance, meadows of P. oceanica also provide many ecosystem services. The leaves, 26 

which may extend around one meter beyond the seafloor, act as a major carbon sink filtering and 27 

oxygenating the seawater (Bay, 1984; Pirc, 1985; Mateo et al., 1997; Terrados & Duarte, 2000), and 28 

shelter the local hydrodynamics favouring sedimentation (e.g., Gacia & Duarte, 2001; Folkard, 2005; 29 

Manca et al., 2012). Underneath the leaves, a monumental formation of rhizomes, roots, and detritus, 30 

typically termed as “matte” (Boudouresque & Jeudy de Grissac, 1983), stabilises the sediment and 31 

entraps particles of organic matter (Mateo et al., 1997; Pergent et al. 2012). Leaves and matte together 32 

prevent erosion in the littoral zone, support food webs, and enrich the surrounding bare sand with 33 

organic matter and nutrients (Jørgensen et al., 1981; Simeone & De Falco, 2013; González-Ortiz et al., 34 

2014; Connolly & Waltham, 2015). The adjacent sandy areas form corridors and wide spaces among 35 

seagrass patches, constituting an ideal zone at the meadow’s edges, where certain species settle (Coppa 36 

et al., 2010), seek refuge (Pinna et al., 2013), and feed (Sánchez-Jerez et al., 1999a). Furthermore, 37 

exported materials from the meadows accumulate and constitute other habitats, mostly on nearby sandy 38 

areas (Dimech et al., 2006; Cresson et al., 2012), but also further down to deep-waters or into caves and 39 

pits (Picard, 1965), where they boost local food webs as an additional source of allochthonous nutrients 40 

(Romero et al., 1992; Mateo et al., 2003; Guala et al., 2006; Simeone et al., 2013). Even when washed-41 

up on the seashore, P. oceanica detritus cover vast extensions with complex dynamics throughout the 42 

year, called “banquettes” (Boudouresque & Meinesz, 1982). Banquettes are fundamental in protecting 43 

beaches from erosion, stabilising the sand dune, and enriching underlying sediments with nitrogen 44 

(Boudouresque et al., 2016). Due to such significant and multifaceted modification of the environment, 45 

P. oceanica is considered as an ecological engineer (Unsworth & Cullen-Unsworth, 2017), which 46 

forms a complex ecosystem composed of living seagrass and its exported detritus, as well as the rich 47 

community of organisms associated to its different habitats (Mazzella et al., 1989; Boström et al., 48 

2006). 49 
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Over the last decades, scientists have described the diversity and functioning of the P. oceanica 50 

ecosystem, along with the local dynamics of the mosaic of habitats associated with them. Initial 51 

research focused on the phenological annual changes of the P. oceanica plants themselves (e.g., Ott, 52 

1980; Bay, 1984), followed by detailed characterizations of the diversity and structure of their 53 

associated communities. Indeed, many studies have addressed the dynamics of P. oceanica meadows 54 

highlighting the economic and ecological importance of their inhabitants (e.g., Dimech et al., 2002; 55 

Duffy et al., 2003; Como et al., 2008; Honkoop et al., 2008; Kalogirou et al., 2010; Whippo et al., 56 

2018). For instance, the leaves foster nurseries of fish and cephalopods that often represent important 57 

resources for local fisheries (Cetinić et al., 1999, 2011), whereas the assemblages of gastropods and 58 

bivalves associated to the plant include several emblematic, often endemic, Mediterranean species 59 

(Urra et al., 2013). In the matte, many species of infaunal crustaceans, molluscs, and annelids thrive 60 

(Borg et al., 2006), contributing to the overall recycling of the entrapped organic matter (Vizzini et al., 61 

2005). Even beyond the plant, the phytal detritus drifting away from the meadows on the adjacent 62 

sandy areas host diverse macrofaunal communities (Sánchez-Jerez et al., 1999b; Guidetti, 2000; 63 

Gallmetzer et al., 2005). However, the epiphytic organisms growing throughout the plant structure 64 

constitute the communities that have received most attention, partially due to their high species 65 

diversity (ca. 660 species, after Piazzi et al., 2016), but also because they have been used as 66 

bioindicators of the health of the meadows (Martínez-Crego et al., 2010; Giovannetti et al., 2010; 67 

Mateu-Vicens et al., 2014). Interestingly, such research on epiphytic organisms has shown that the 68 

distribution of these species is not uniform within the seagrass, but rather the opposite: some epiphytes 69 

dominate the older but more exposed leaf tips, others prefer their sheltered middle or basal parts, and 70 

few even select the shaded rhizomes (Gambi et al., 1995; Piazzi et al., 2016).  71 

In contrast with macrofaunal communities, information is much more scattered for the 72 

meiofaunal animals inhabiting the P. oceanica ecosystem. Meiofauna includes a heterogeneous subset 73 

of organisms that are retained between a tandem of meshes with 500 µm and 63 µm size, largely 74 

dominated by microscopic animals, but also including larger forms with elongated morphologies or 75 

contractible bodies (Giere, 2009; Schmidt-Rhaesa, 2020). Meiofauna plays a fundamental role in many 76 

processes in the seafloor (Schratzberger & Ingels, 2018) and represent a numerically important, yet 77 

often neglected, component of the diversity of many regions (Curini-Galletti et al., 2012, 2020; 78 
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Martínez et al., 2019). Furthermore, meiofauna represents an invaluable tool to address both theoretical 79 

and applied eco-evolutionary questions (e.g., Fontaneto et al. 2007; Fontaneto 2011; Gansfort, ; 80 

Laumer et al. 2015; Martínez et al., 2020; Fontaneto & Zhai, 2020; Martin-Duran et al., 2021), as these 81 

organisms belong to virtually every animal phylum, thus alleviating the confounding effect of potential 82 

phylogenetic bias during inductive hypothesis tests (Giere, 2009; Rundell & Leander, 2011). Moreover, 83 

meiofauna critically supports marine food webs by transferring the energy from decomposer and 84 

primary producer microorganisms to higher trophic levels (Danovaro, 1996; Danovaro et al. 2007). 85 

Although scattered in the literature, numerous records indicate that many meiofaunal species inhabit 86 

the P. oceanica ecosystem, whether crawling on the leaves or across the matte labyrinths, gliding in the 87 

interstices of the adjacent sediments, or even drifting within the detritus over the sea bottom. Several 88 

studies addressed the composition and community dynamics of some meiofaunal groups in P. 89 

oceanica, revealing that the biotic and abiotic conditions of the meadow shape the distribution of 90 

meiofaunal species (e.g., Novak, 1982, 1989; Mascart et al., 2013; Mascart, Lepoint, et al., 2015; 91 

Pusceddu et al., 2016). However, besides these few comprehensive ecological studies, mainly focusing 92 

on copepods and nematodes, most of this research involves occasional taxonomic descriptions from 93 

punctual samples. Unfortunately, the lack of a comprehensive updated review of all this literature 94 

obscures our understanding of the overall diversity and role of meiofauna in this iconic Mediterranean 95 

ecosystem.  96 

The aim of this study is two-folded. First, we reviewed the diversity (i.e., species richness) and 97 

ecology of meiofauna in P. oceanica through a literature survey, completed with unpublished data 98 

provided by our colleagues. Despite our aim is mainly exploratory (Yanai & Lercher, 2020), we depart 99 

from the assumption that the patterns in meiofaunal diversity in P. oceanica resembles those described 100 

for larger organisms. We expect that meiofaunal species do not occur homogeneously in the P. 101 

oceanica ecosystem, but they segregate spatially and temporally across its different habitats following 102 

the annual phenological cycle of the meadows. Second, we selected a case study to test explicitly the 103 

latter assumption. We used halacarid marine mites as model organisms because they are common in 104 

seagrasses such as P. oceanica (Mari & Morselli, 1990; Zupo, 1993; Durucan, 2018; Durucan & 105 

Boyacı, 2018; Durucan & Levent, 2019), yet the habitat preferences of the species associated with this 106 
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plant have never been explicitly investigated. This case study, therefore, provides a point of 107 

comparison with the better studied copepods and nematodes (Novak, 1989; Mascart et al., 2013)  108 

 109 

2. MATERIALS AND METHODS  110 

2.1 Literature review 111 

2.1.1 Selection of references 112 

We systematically screened Google Scholar for all published literature containing records of 113 

vagile meiofaunal species within Posidonia oceanica habitats. The search, performed in December 114 

2020, consisted of the word ‘Meiofauna’ or the name of a target animal group (i.e., ‘Acari’, ‘Annelida’, 115 

‘Cephalocarida’, ‘Copepoda’, ‘Gastrotricha’, ‘Gnathostomulida’, ‘Kinorhyncha’, ‘Loricifera’, 116 

‘Mystacocarida’, ‘Nematoda’, ‘Platyhelminthes’, ‘Rotifera’, ‘Tardigrada’) followed by the term 117 

‘Posidonia’ (e.g., ‘Copepoda’ AND ‘Posidonia’). After screening the abstract of all the compiled 118 

references, all papers including relevant information were downloaded. To maximize the completeness 119 

of our database, the references cited in all downloaded papers were checked for additional sources. 120 

2.1.2 Compilation of the species inventory 121 

First, to evaluate the known diversity of meiofaunal species in the P. oceanica ecosystem, we 122 

carefully screened each selected paper to compile all available records. Each entry included the taxon 123 

name, locality, WGS84 geographic coordinates (extracted directly or calculated after the description of 124 

each locality), depth, collection method, and the habitat within the Posidonia oceanica ecosystem, 125 

when these data were available (see Supplementary Information Table S1). We considered four types 126 

of habitats: (1) seagrass, consisting of the structure created by the plant; (2) adjacent sediments, 127 

including the bare sediments and interstitial habitats next to seagrass patches; (3) macrophyte detritus, 128 

the wandering vegetal debris from P. oceanica seagrass accumulated on sediments (termed as 129 

‘macrophytodetritus accumulations’ in Mascart, Lepoint, et al., 2015); and (4) banquette, the detritus 130 

deposited on the shore after the falling of the P. oceanica leaves (Boudouresque & Meinesz, 1982). 131 

When this information was provided, we further divided the seagrass habitat in its two discrete 132 

compartments: the leaves and the matte, i.e., the underlying ensemble of living rhizomes, plant debris, 133 

and roots (see Figure 2). This information was subsequently used to evaluate the habitat preferences of 134 
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the meiofaunal species living in the P. oceanica ecosystem (see below). Furthermore, to maximize the 135 

number of provided records, we consulted different specialists, who kindly shared their unpublished 136 

records to this study.  137 

2.1.3 Review of ecological questions 138 

Complementary to the inventory of species, all papers with an ecological scope in our database 139 

were further screened for relevant hypotheses and findings regarding the preferences of meiofaunal 140 

species within the habitats of P. oceanica. The information contained in these papers was organised in 141 

a table (Table S2), comprising the aim of the study, the targeted meiofaunal groups, and the diversity 142 

metrics implemented. For each study we further provided a concise summary of the findings, on 143 

whether they found differences in the biodiversity metrics or abundance between (i) habitats, (ii) 144 

between samples within the same habitat from a given locality (i.e., local scale), (iii) between localities 145 

(i.e., regional scale), and (iv) over time. Last, the table included the future research questions proposed 146 

by each study. 147 

2.2 Case study: halacarids in P. oceanica 148 

2.2.1 Study site and sampling design 149 

In addition to our literature survey, we investigated the habitat specificity in the community of 150 

halacarids inhabiting a Posidonia oceanica meadow in Cala del Cuartel (Alicante, SE Spain; WGS84 151 

coordinates 38° 12' 34.04'' N, 0° 30' 19.12'' W), located in a region where animal communities 152 

associated to these meadows have been well documented (Villora-Moreno et al., 1991, 1997; Sánchez-153 

Jerez et al., 1999a, 1999b; Martínez, García-Gómez, in press). Sampling was carried out during four 154 

campaigns in December 2015, and March, April and August 2016, each coinciding with a different 155 

season. During each campaign, SCUBA divers sampled six randomly selected patches of P. oceanica, 156 

totalling 24 patches for the whole study. Samples of (1) leaves, (2) matte, and (3) adjacent sediments 157 

were collected at each patch and standardised through 400 cm2-quadrats (20 x 20 cm) (e.g., Novak, 158 

1989; Sánchez-Jerez et al., 1999a; Pusceddu et al., 2016; but see Bell et al., 1984). The leaves were 159 

first cut at the ligula level and collected carefully with a hermetic bag; then, the underlying matte was 160 

shovelled into another hermetic bag (following Novak, 1982, 1989; Cvitković et al., 2017). Identical 161 

samples of the adjacent sediments to each sampled seagrass patch were collected using jars. 162 
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Halacarid mites were extracted combining magnesium chloride and “bubble and blot'' 163 

techniques (Higgins & Thiel 1988, Sørensen & Pardos 2008), filtered through a 63 μm mesh, and fixed 164 

in 7% formaldehyde. Fixed halacarids were then sorted using a MOTIC® SMZ-168 stereoscope and 165 

whole-mounted on slides in a modified Hoyer’s medium (Mitchell & Cook 1952). Whole-mounted 166 

specimens were examined using an Olympus DP70 camera mounted on a light microscope equipped 167 

with differential interference contrast microscopy (DIC). We followed André (1946), Green & 168 

MacQuitty (1987), and specific taxonomic literature (Morselli, 1980; Bartsch, 1986, 2001, 2006) for 169 

species identification. Adult and juvenile specimens were distinguished following Bartsch (2015). 170 

Nomenclature followed the World Register of Marine Species (WoRMS Editorial Board 2021).  171 

2.2.2 Data analysis 172 

All statistical analyses were performed using the R software version 3.6.1 (R Core Team 2019). 173 

We investigated the variation in species richness (i.e., number of species), abundance (i.e., number of 174 

individuals) and evenness (i.e., Pielou’s J) within the leaves and the matte, because no mites were 175 

found in the sediments adjacent to the seagrass. First, we investigated differences in species richness, 176 

abundance (as log10 to cope with stark differences between samples), and evenness between leaves and 177 

matte samples collected from the same sampling point, using a paired-samples t-test (paired t-test) 178 

through the function ‘t.test’. Pielou’s J was calculated for each sample using function ‘diversity’ in the 179 

R package vegan v. 2.2-1 (Oksanen et al., 2015) to obtain first the Shannon index and then dividing it 180 

by the natural logarithm of the number of species. For one sample in the matte, Pielou’s J was not 181 

calculated as only one species was observed. Second, we tested whether richness or abundance changed 182 

with food availability and habitat complexity, as well as over time. We used the length of the leaves 183 

and the organic carbon content of the sediment as a proxy for food availability in the leaves and the 184 

matte, respectively. The length of the leaves was measured as the average distance in centimetres from 185 

the ligula to the apical end of all the complete leaves found in each sample, which is known to correlate 186 

positively with the abundance of epiphytic microorganisms (Mabrouk et al., 2010) that may serve as 187 

food for many halacarid species (Bartsch, 1989). Likewise, the percentage of organic carbon of the 188 

sediment was calculated using the Walkley-Black method (Walkley & Black, 1934), indicating the 189 

amount of accumulated organic matter in the matte, representing available food for mites. Habitat 190 

complexity was inferred through the density of leaves or matte, calculated as the dry weight of the 191 
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leaves or the matte divided by the total volume of the habitat, which varied in the leaves (Average 192 

leave length * 20 cm x 20 cm) and was constant in the matte (2 cm x 20 cm x 20 cm). We performed 193 

linear models using function ‘lm’ to examine the effect on richness, abundance (as log10), and evenness 194 

of the environmental variables within each habitat: the length and density of the leaves within the 195 

leaves, and the percentage of organic matter and density of the matte within the matte. We accounted 196 

for the temporal variation in the seagrass over the period of study by including the sampling date in all 197 

models. The significance of each independent variable was summarized as a Type II ANOVA table, 198 

using the function ‘Anova’ in the R package car version 3.0.9 (Fox et al., 2012). The assumptions of 199 

the linear models were controlled visually by checking the normality of model residuals, the plots of 200 

residual versus fitted values, and normal Q-Q plots (Crawley, 2013). 201 

To further investigate whether halacarids preferred a certain habitat, we performed two 202 

additional analyses. First, since different ecological preferences have been reported between life stages 203 

in halacarids (Somerfield & Jeal, 1995, 1996; Bartsch, 2004), we tested for differences in percentage of 204 

juveniles (i.e., number of non-adult individuals / total individuals of each sample; in %) between the 205 

matte and the leaves within sampling points. Second, we tested for differences in abundance between 206 

habitats of the dominant species found within each habitat, for which data were sufficient to perform 207 

the analyses. Again, we performed paired t-tests for both differences in percentage of juveniles and 208 

abundance of the dominant species between habitat samples within sampling points. Paired samples 209 

were removed from the analyses when no individuals were found in a sampling point. For all paired t-210 

tests, we first checked the normality of the differences between paired samples by Shapiro-Wilk tests 211 

using the function ‘shapiro.test’.  212 

Last, we examined the differences in species composition between communities occurring in 213 

different habitats including their nestedness and turnover components, through the Jaccard abundance-214 

based index (Legendre, 2014), using the function ‘beta’ in the R package BAT v. 1.5.5 (Cardoso et al., 215 

2015). For both species- and community-level tests, the abundances were again transformed to log10 216 

(abundance + 1) to cope with stark differences in abundance between samples as well as with 0 values. 217 

We then assessed the percentage of variability in community composition observed across samples 218 

through a permutational analysis of variance (PERMANOVA) using distance matrices with the 219 

function ‘adonis’ included in the R package vegan. Again, we explicitly included the sampling date as 220 
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an independent variable, to account for the temporal variation in the seagrass in structuring differences 221 

of species assemblage.  222 

 223 

3. RESULTS 224 

3.1 Review of meiofauna in P. oceanica 225 

We reviewed a total of 69 relevant studies: 51 of them consisting of taxonomic papers or 226 

species inventories and 18 comprising ecological studies (see Supplementary Information). Together 227 

with the data published within the present study, we compiled 1045 records for 664 species (Table S1). 228 

Nematoda, Copepoda, and Acari accumulated 73% of the records; Tardigrada, Platyhelminthes, 229 

Gastrotricha, and Annelida 21%; Kinorhyncha, Xenacoelomorpha, Ostracoda, Gastropoda, 230 

Chaetognatha, Mystacocarida, and Rotifera accounted for the remaining 6% of the dataset. No records 231 

were found for Gnathostomulida and Loricifera. The majority of sampling sites were concentrated in 232 

the Central Mediterranean Sea, particularly in Corsica, Sardinia, and the Gulf of Naples (Figure 1). 233 

Most of the species have been recorded within the seagrass (346 species), mostly in the matte (292 234 

species), as well as in the sediments adjacent to the meadows (275 species) (Figure 2A). Interestingly, 235 

ca. 85% of the species recorded in the adjacent sediments and within the seagrass have been 236 

exclusively found in these habitats. Copepoda, Platyhelminthes, Gastrotricha, Annelida, Tardigrada, 237 

and Xenacoelomorpha were mainly found in the sediments, whereas Nematoda and Acari were 238 

observed principally within the seagrass (Figure 2D), being records for Nematoda particularly abundant 239 

in the matte. Most studies relied on samples collected by hand (562 species), generally by SCUBA 240 

divers (Figure 2B), which recovered generally different species from the studies that relied on boat-241 

operated collections (Figure 2E). Most species and meiofaunal groups were reported from shallow 242 

waters (476 species; between 0–20 m), and these numbers decreased with increasing depth (Figure 2C 243 

and 2F). 244 

We sorted 18 ecological studies (Table S2) that addressed the variation in taxonomic richness, 245 

species composition, and abundance of meiofaunal communities at regional (i.e., between localities, 246 

generally kilometres away; in nine studies) and local spatial scales (i.e., between samples within the 247 

same habitat in a given locality; in 13 studies). Only three of these studies incorporated functional 248 
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metrics (Novak, 1989; Mirto et al., 2014; Guilini et al., 2017), and a single paper investigated diet 249 

preferences (Mascart et al., 2018). Nematodes and copepods were the preferred groups (six studies at 250 

specific level), whereas other groups were often recorded at the taxonomic rank of phylum or class. 251 

Moreover, 16 studies searched for the ecological factors influencing the presence of meiofauna in 252 

different habitats of the meadows, stressing the importance of hydrodynamics, habitat complexity, and 253 

food availability. Last, 10 of the studies highlighted temporal variation as another major driver of 254 

meiofaunal communities, mainly affecting abundances.  255 

3.2 Case study on halacarid mites 256 

We counted 1730 individuals belonging to 21 species and 9 genera (Table 1). One species was 257 

restricted to the leaves and four to the matte, whereas 16 species co-occurred in both habitats. No 258 

halacarids were found in the sediments. The genus Copidognathus was represented by 7 species, 259 

followed by the genera Agauopsis and Agaue (3 species each), and Rhombognathus and Arhodeoporus 260 

(2 species each). The genera Halacarus, Lohmanella, Pelacarus, and Simognathus were represented by 261 

one species.  262 

Species richness showed no significant differences between habitats (Figure 3A; paired t-test: t 263 

= -0.78, p = 0.44), though abundances were significantly higher in the leaves than in the matte (Figure 264 

3B; paired t-test: t = 5.77, p < 0.001), with 82% of the individuals found in the leaves. Species 265 

evenness, however, was significantly higher in the matte than in the leaves (Figure 3C; paired t-test: t = 266 

7.63, p < 0.001). Rhombognathus praegracilis Viets, 1939 was the dominant (58% of total mites 267 

found) and most frequent (96% of total samples) species in the meadow, occurring predominantly in 268 

the leaves; after R. praegracilis, Copidognathus lamelloides Bartsch, 2000 dominated the matte, yet 269 

being much sparser in the meadow (4% of total mites). These two species together with Copidognathus 270 

magnipalpus (Police, 1909) accounted for 85% of the total mite abundance and occurred in more than 271 

50% of the samples. In contrast, the following 8 species ranked by abundance represented only 11% of 272 

the total mite abundance, with the remaining species representing only 1%. Three of these rare species 273 

were represented by one individual. 274 

Halacarid abundances changed significantly over time only in the leaves, reaching the highest 275 

abundance in summer, but no temporal change was found in species richness or evenness (Figure 3G-I; 276 
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Table S3). However, we found no effect of length or density of the leaves on species richness, 277 

abundance, or evenness (Table S3). Within the matte, by contrast, halacarid abundance was positively 278 

affected by the density of matte (Table S3). No temporal differences (Figure 3G-I) and no effect of any 279 

of the environmental variables in this habitat was found on species richness or evenness (Table S3). 280 

Juvenile mites were relatively more abundant in the matte than in the leaves (Figure 3D; paired 281 

t-test: t = 2.67, p = 0.01). Likewise, we found significant differences in abundance between habitats for 282 

the dominant species of the leaves, Rhombognathus praegracilis, which preferred the leaves (Figure 283 

3E; paired t-test: t = -7.53, p < 0.001), as well as for the second dominant species of the matte, 284 

Copidognathus lamelloides, which preferred the matte (Figure 3F; paired t-test: t = 3.29, p = 0.005). 285 

Last, we found that species composition accounting for abundance of mites varied between leaves and 286 

matte, through different sampling events in time, as well as with the interaction term between habitat 287 

and time (Table 2 and Figure 3J). This suggests that the composition of halacarid species not only 288 

differed between habitats, but also shifted within each habitat over the studied period. In addition, most 289 

of the differences in species composition were caused by species replacement between habitats (69%). 290 

 291 

4. DISCUSSION 292 

The main findings of the present paper are straightforward: (1) the diversity of meiofauna in P. 293 

oceanica is not only comparable, but even higher than that reported for other groups of organisms 294 

associated with this plant (i.e., epiphytes and macrofauna); (2) most species show specific habitat 295 

preferences, which vary from regional to local scales, depending mainly on hydrodynamics, habitat 296 

complexity, and food availability. The latter has been shown mainly by copepods and nematodes in the 297 

literature, and by marine mites in the presented case study. 298 

4.1 Meiofaunal diversity in P. oceanica  299 

Overall, we gathered evidence of 664 meiofaunal species occurring in the different habitats 300 

provided by the P. oceanica (Table S1). Interestingly, 258 of these 664 species were reported by the 301 

authors as doubtful or unclear identification (e.g., reporting either ‘sp.’ or ‘cf.’ in the specific name). 302 

Since most of these reports were done by internationally acknowledged taxonomical specialists (e.g., 303 
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Novak, 1989; Curini-Galletti et al., 2012; Guilini et al., 2017), this uncertainty suggests that they may 304 

correspond to undescribed, new species to science, or belong to poorly investigated groups meriting 305 

further attention. This scenario increases the value of the P. oceanica ecosystem as a biodiversity 306 

reservoir, not only for macrofaunal species as previously indicated, but also for meiofaunal groups. In 307 

fact, the outstanding diversity of meiofaunal species found here largely overcomes the diversity 308 

recorded for other groups in species richness. In a similar review, Piazzi et al. (2016) compiled records 309 

for 307 species of algae and 353 species of sessile macrofauna in P. oceanica, whereas field-based 310 

research reports generally lower diversity for other groups. For instance, 68 species of diatoms were 311 

reported in a meadow from the Adriatic Sea (Kanjer et al., 2019), 171 species of molluscs in the 312 

Alborán Sea (Urra et al., 2013), and 42 species of fish in Hellenic waters (Kalogirou et al., 2010). 313 

Interestingly, meiofaunal species were not reported evenly across the different habitats within 314 

the P. oceanica ecosystem. While most of the reports correspond to the seagrass habitat (i.e., leaves 315 

and matte; 525 records), and the adjacent sediments (341 records),the meiofaunal communities in the 316 

macrophyte accumulations (114 records; see also Mascart et al., 2013; Mascart, Lepoint, et al., 2015), 317 

and the banquette (6 records; Jansson, 1966; Casu & Curini-Galletti, 2006) remain neglected, despite 318 

the latter provides a vast inshore habitat that extends from the water line up to several meters inland 319 

(Mateo et al., 2003; Boudouresque et al., 2017). This bias suggests that the actual meiofaunal diversity 320 

associated with P. oceanica might be much greater than currently reported. This is not a unique feature 321 

of these meadows, since meiofauna is often ignored in most biodiversity reports, despite it has been 322 

acknowledged as one the major components of diversity in marine ecosystems (Schatzberger et al. 323 

2018). Moreover, many of the species recorded in the literature are putatively exclusive from the P. 324 

oceanica ecosystem, including evolutionarily interesting species such as the cephalocarid Lightiella 325 

magdalenina Carcupino et al. 2006, and annelids such as Psammodrilus curinigallettii Worsaae, 326 

Kvindebjerg & Martínez, 2015 and P. didomenicoi Worsaae & Martínez 2018, as well as a single 327 

record of Lobatocerebrum, possibly corresponding to a new undescribed species (Sanna et al., 2014; 328 

Kerbl et al., 2015; Worsaae et al., 2015; 2018). 329 

A similar meiofaunal diversity might occur in meadows dominated by different seagrass species 330 

(Sánchez-Jerez et al., 1999a; Cvitković et al., 2017). For example, surveys conducted in meadows of 331 

Cymodocea nodosa (Ucria) Ascherson, 1870 in the Canary Islands have revealed a large diversity of 332 
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Gnathostomulida (Sterrer, 1997; Riera, 2012), Chaetognatha (Hernández et al., 2009), Kinorhyncha 333 

(Martínez, pers. obs.), and Annelida (Brito et al., 2001, Brito et al., 2005), including the description of 334 

new species only known from Cymodocea so far (Brito & Nuñez, 2003). These results collectively 335 

warrant future comprehensive investigations in other geographical areas and seagrass species. 336 

4.2 Habitat preferences in P. oceanica 337 

Meiofauna showed differences in habitat occupation in almost all analysed ecological studies 338 

(>90%), regardless of the taxonomic ranks of their operational units. Overall, these studies highlighted 339 

hydrodynamics, habitat complexity, and food availability as the major drivers for these differences. 340 

These drivers not only act hierarchically nested at different spatial scales, but also vary through time. 341 

Indeed, the same drivers seem to affect the structure of meiofaunal assemblages in other seagrass 342 

ecosystems (mainly copepods and nematodes; see Bell et al., 1984; Decho et al., 1985; Hicks, 1989; De 343 

Troch et al., 2001, 2003, 2005, 2006). 344 

At a regional scale, shore hydrodynamics exerts a relatively homogeneous physical pressure on 345 

the entire P. oceanica ecosystem (Vacchi et al., 2017). However, the great structural heterogeneity of 346 

P. oceanica—consisting of a mosaic of living plants, macrophyte accumulations, and sandy patches—347 

shelters certain areas within a meadow from the currents (see Abadie et al., 2018). More specifically, 348 

patches of high habitat complexity protect the meiofaunal communities from the local hydrodynamics 349 

in P. oceanica (Mascart, Lepoint, et al., 2015), as commonly observed in seagrasses for other animal 350 

groups (e.g., Heck & Orth., 1980; Stoner & Lewis, 1985; Hall & Bell, 1988; Moore & Hovel, 2010). 351 

Such sheltering effect is stronger in the matte, which also shows a higher diversity than that in the 352 

leaves, both in meiofaunal (Novak, 1982, 1989; Guilini et al., 2017; see Figure 2A and 2D) and 353 

macrofaunal species (Gambi et al., 1995; Borg et al. 2006; Piazzi et al. 2016). Food availability within 354 

each habitat, finally, drives the presence of different species not only depending on the amount of food 355 

(Mirto et al., 2010, 2014; Castejón Silvo, 2011; Losi et al., 2012; Mascart et al., 2013; Cvitković et al., 356 

2017; Polese et al., 2018) but also upon the presence of specific food sources. In fact, it has been shown 357 

that even closely related meiofaunal species may prefer different food sources (Mascart et al., 2018).  358 

Temporally, hydrodynamics, habitat complexity, and food availability are inherently linked to 359 

the annual cycle of P. oceanica, in which long old leaves fall at the end of the summer, being replaced 360 
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by short young leaves (Larkum et al., 2006). These drastic annual changes in the plant structure affect 361 

how the hydrodynamic forces impact P. oceanica, since the habitats become increasingly complex and 362 

sheltered as the meadow develops (Folkard, 2005). At the same time, densely aggregated leaves foster 363 

many epiphytes, offering new and more abundant food sources to the meiofauna (Velimirov & 364 

Walenta-Simon, 1993; Mascart et al., 2018; but see Lebreton et al., 2012 on Zostera noltii). Indeed, all 365 

studies addressing temporal variation in P. oceanica found substantial differences over time, not only 366 

in taxa composition and abundance (Novak, 1989; Villora-Moreno et al., 1991; Losi et al., 2012; 367 

Mascart, Lepoint, et al., 2015; Cvitković et al., 2017; Polese et al., 2018), but also in species’ dietary 368 

preferences (Mascart et al., 2018). These studies collectively showed that abundances of most 369 

meiofaunal taxa peaked between spring and summer (Novak, 1982, 1989; Villora-Moreno et al. 1991; 370 

Sánchez-Jerez et al. 1999a; Losi et al., 2012; Mascart, Lepoint, et al., 2015; Cvitković et al., 2017; 371 

Polese et al., 2018), in accordance with the apogee of P. oceanica. Similar trends are found in other 372 

groups, such as epiphytic forams, diatoms, and dinoflagellates (Piazzi et al., 2016), as well as 373 

macrofauna (e.g., Gambi et al., 1992, 1995; Bedini et al., 2011; Urra et al., 2013). 374 

Migration between adjacent habitats is also important to understand the distribution of 375 

meiofauna in the meadow (Villora-Moreno et al., 1991; Sánchez-Jerez et al., 1999b; Mascart et al., 376 

2013; Mascart, Agusto, et al., 2015). Meiofaunal migration occurs amongst the different habitats in a 377 

meadow and depends on the dispersal ability of the different taxa (Mascart, Agusto, et al., 2015; but 378 

see Commito & Tita, 2002; De Troch et al., 2005). These movements may take place seasonally (e.g., 379 

nematodes migrating from the matte to the leaves in summer; Novak, 1989), or in shorter time frames 380 

(e.g., day-night cycles of vertical migration in copepods; Sánchez-Jerez et al., 1999a). In similar 381 

seagrasses, some meiobenthic copepods migrate between the sediment and the vegetated canopy over 382 

their life spans (Walters, 1988; Bell & Hicks, 1991), and even within the same day (Hicks, 1986), 383 

emerging into the water column at night-time (Bell et al., 1988). 384 

4.3 Halacarid assemblages in the meadow 385 

In congruence with published studies on copepods and nematodes (Novak, 1989; Mascart, 386 

Lepoint, et al., 2015), we found that halacarid communities in the leaves consisted mainly of few very 387 

abundant species, whereas in the matte, mite abundances were more even between species (Figure 3A-388 
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C). We speculate that such difference might be explained by the higher exposure of the leaves to both 389 

hydrodynamics (Borg et al., 2006; but see Pugh & King, 1985, in halacarids) and predation (Hovel et 390 

al., 2002; Hovel & Fonseca, 2005), which may filter and select for those species that withstand the 391 

water currents and avoid predation. In effect, the exposure of the halacarids in the leaves to these 392 

stressors might explain that neither their species richness nor abundances were affected by the changes 393 

in this habitat (e.g., increase of leaf length and so its epiphytic load; Mabrouk et al., 2010). In contrast, 394 

halacarids are protected from predators and water currents in the matte since more individuals occurred 395 

in patches of greater habitat complexity. However, unlike other detritivorous groups, such as copepods, 396 

annelids, and nematodes (Vizzini et al., 2002; Mirto et al., 2014; Cvitković et al., 2017), halacarids 397 

showed no relationship with the organic carbon in the matte. Whether this is due to different dietary 398 

preferences in halacarids (Pugh & King, 1986; Bartsch, 1989) will warrant future research.  399 

The findings of our case study supported partially the habitat preferences shown by the 400 

literature survey for P. oceanica meiofaunal species (Figure 2A and 2D). Indeed, 16 of the 21 halacarid 401 

species recorded here co-occurred in both the leaves and the matte. Nevertheless, when accounting for 402 

abundances, the species composition of halacarid assemblages differed between the leaves and the 403 

matte (Table 2). These differences were mainly due to turnover rather than to differences in species 404 

nestedness, indicating a certain habitat sorting between the leaves and matte. Such habitat sorting is 405 

evident amongst the dominant species Rhombognathus praegracilis and Copidognathus lamelloides, 406 

preferring the leaves and the matte, respectively (Figure 3E and 3F). Indeed, Rhombognathus 407 

praegracilis belongs to the phytal-specialist subfamily Rhombognathinae, which possesses 408 

morphological adaptations for an epiphytic phytophagous lifestyle, such as complex and thick claws 409 

and serrate setae, useful to graze on the rich algal communities of the leaves and withstand the currents 410 

(Pugh et al., 1987; Bartsch, 2006; Martínez, García-Gómez, in press). In contrast, Copidognathus 411 

lamelloides, which thrive in the matte, is attributed with an infaunal lifestyle, as it has been usually 412 

reported from sheltered habitats (Somerfield & Jeal, 1995; Barstch, 2009; Riesgo et al., 2010). In 413 

addition, juvenile halacarids were significantly rarer than adults in the leaves (Figure 3D). Noticeably, 414 

juveniles have developing structures, such as claws, an additional pair of legs, and more leg segments 415 

(Bartsch, 2015). These structures enhance the adult’s grip to the substrate, and so, their absence might 416 

relegate the juveniles to the matte, which is considerably more protected from currents than the leaves. 417 
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Overall, our results suggest that, as in nematodes and copepods (Novak, 1989; Mascart, Agusto, et al., 418 

2015), migration between leaves and matte is frequent in halacarids, yet only certain species thrive in 419 

each of those habitats. 420 
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FIGURES 907 

 908 

Figure 1. Distribution of the meiofauna recorded in Posidonia oceanica in the West (A), Central (B), 909 

and East (C) Mediterranean Sea, coloured according to the number of species (see Table S1 for 910 

coordinates). Abbreviations: Ac, Acari; An, Annelida, C, Copepoda; Ce, Cephalocarida; Ch, 911 

Chaetognatha; G, Gastrotricha; K, Kinorhyncha; M, Mystacocarida; Mo, Mollusca; N, Nematoda; O, 912 

Ostracoda; P, Platyhelminthes; R, Rotifera; T, Tardigrada; X, Xenacoelomorpha. *Unspecified location 913 

in the Adriatic Sea.  914 
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 915 

Figure 2. Number of species per meiofaunal group categorized by habitat, collection method, and depth 916 

range. Top panels (A-C) indicate the species exclusively observed in one category in green, and those 917 

found in more than one category in grey. Bottom panels (D-F) show the number of species per 918 

meiofaunal group from light to dark green. In A and D, the seagrass habitat was further divided into the 919 

leaves and the matte. Abbreviations as in Figure 1; ND, no data.  920 
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 921 

Figure 3. Main findings of the case study on halacarids in a P. oceanica meadow (see text for details). 922 

Colours differentiate between samples from the leaves (green) and the matte (blue). Top panels (A-F) 923 

show paired-t tests and p-values for the metrics in this study comparing the leaves and the matte. Panels 924 

G-I are boxplots of the variation in species richness, abundance, and evenness in the leaves and the 925 

matte through the four sampling campaigns of this study. Panel J show the abundance (as log10+1) of 926 

each species per sample, coloured from light to dark green. In A-F, samples collected from the same 927 

sampling point are connected by lines. In G-I, the error bars indicate the 10th and 90th percentiles of the 928 

data, the box’s boundaries indicate the 25th and 75th percentiles, and the solid line within each box 929 

marks the median. In J, rows indicate the samples of leaves or matte, whereas columns denote the 930 

species; the dendrogram was built using method ‘complete’ by function ‘hclust’. Abbreviations: Dec 931 

15, December 2015; Mar 16, March 2016; Apr 16, April 2016; Aug 16; August 2016. 932 

  933 
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TABLES 934 

Table 1. Halacarid species found in this study and their abundances (i.e., number of individuals) and 935 

occurrences (i.e., % of samples in which each species was observed) within the leaves and the matte of 936 

the Posidonia oceanica meadow. 937 

 Abundance Occurrence 

Species Leaves Matte Leaves Matte 

Agaue adriatica Viets, 1940 2 1 4.17 4.17 

Agaue cf. abyssorum (Trouessart, 1896) 0 1 0.00 4.17 

Agaue panopae (Lohmann, 1893) 15 5 41.67 12.50 

Agauopsis brevipalpus (Trouessart, 1889)  3 8 12.50 29.17 

Agauopsis microrhyncha (Trouessart, 1889) 12 8 45.83 25.00 

Agauopsis minor (Trouessart, 1894) 13 8 33.33 29.17 

Arhodeoporus gracilipes (Trouessart, 1889) 6 17 25.00 54.17 

Arhodeoporus labronicus (Morselli, 1981) 0 4 0.00 12.50 

Copidognathus lamelloides Bartsch, 2000 22 52 41.67 66.67 

Copidognathus latisetus Viets, 1940 6 20 12.50 45.83 

Copidognathus magnipalpus (Police, 1909) 360 23 66.67 45.83 

Copidognathus oculatus (Hodge, 1863) 49 9 79.17 20.83 

Copidognathus quadricostatus (Trouessart, 1894) 0 3 0.00 8.33 

Copidognathus remipes (Trouessart, 1894) 7 21 12.50 54.17 

Copidognathus reticulatus (Trouessart, 1893)  6 0 8.33 0.00 

Halacarus actenos Trouessart, 1889 0 1 0.00 4.17 

Lohmannella falcata (Hodge, 1863) 7 6 20.83 16.67 

Pelacarus aculeatus (Trouessart, 1896) 1 3 4.17 12.50 

Rhombognathus cf. procerus Bartsch, 1975 0 1 0.00 4.17 

Rhombognathus praegracilis Viets, 1939 901 109 100.00 91.67 

Simognathus minutus (Hodge, 1863)  4 16 12.50 37.50 
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Table 2. PERMANOVA results based on Jaccard dissimilarities using the abundance (as log10+1) for 939 

the differences in composition of halacarid species between habitats (leaves vs. matte) and through 940 

sampling campaigns. P values are based on 999 permutations. Abbreviation: Df, Degrees of freedom. 941 

Factors Df pseudo-F R2 p 

Habitat 1 9.958 0.164 0.001 

Sampling campaign 3 1.755 0.087 0.008 

Habitat:Sampling campaign  3 1.793 0.089 0.004 

Residuals 40  0.660  

 942 
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SUPPORTING INFORMATION 944 

Table S1. Records of meiofaunal species in Posidonia oceanica habitats compiled during our review, 945 

both collected from the literature as well as directly from the specialists’ unpublished records. 946 
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Table S2. Summary of the ecological research on meiofauna in Posidonia oceanica.  948 
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Table S3. Results of the linear models for richness (i.e., number of species), abundance (log10-950 

transformed) and evenness (Pielou’s J), and the environmental factors measured in each habitat, 951 

reported as type-II analysis-of-variance tables. Abbreviation: Df, Degrees of freedom. 952 

Habitat 

Response 

variable 

Environmental 

predictors Df F p 

Leaves 

  
Richness length of leaves 1 0.104 0.751 

 density of leaves 1 0.000 0.993 

 sampling campaign 3 0.194 0.899 

 residuals 18   
Abundance length of leaves 1 0.900 0.355 

 density of leaves 1 2.481 0.133 

 sampling campaign 3 9.874 0.005 

 residuals 18   
Evenness length of leaves 1 0.006 0.941 

 density of leaves 1 3.593 0.074 

 sampling campaign 3 1.487 0.252 

 residuals 18   

Matte 

  
Richness density of matte 1 4.052 0.059 

 organic matter 1 0.063 0.805 

 sampling campaign 3 3.103 0.053 

 residuals 18   
Abundance density of matte 1 9.232 0.007 

 organic matter 1 0.254 0.620 

 sampling campaign 3 3.153 0.050 

 residuals 18   
Evenness length of leaves 1 0.207 0.655 

 density of leaves 1 0.810 0.381 

 sampling campaign 3 0.006 0.999 

 residuals 17   

 953 
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