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Abstract 
 
A variety of enhanced sampling methods can predict free energy landscapes associated with 
protein/ligand binding events, characterizing in a precise way the intermolecular interactions involved. 
Unfortunately, these approaches are challenged by not uncommon induced fit mecchanisms. Here, we 
present a variant of the recently reported volume-based metadynamics (MetaD) method which 
describes ligand binding even when it affects protein structure. The validity of the approach is 
established by applying it to a substrate/enzyme complexes of pharmacological relevance: this is the 
mono-ADP-ribose (ADPr) in complex with mono-ADP-ribosylation hydrolases (MacroD1 and MacroD2), 
where induced-fit phenomena are known to be operative. The calculated binding free energies are 
consistent with experiments, with an absolute error less than 0.5 kcal/mol. Our simulations reveal that 
in all circumstances the active loops, delimiting the boundaries of the binding site, rearrange from an 
open to a closed conformation upon ligand binding. The calculations further provide, for the first time, 
the molecular basis of the experimentally observed affinity changes in ADPr binding on passing from 
MacroD1 to MacroD2 and all its mutants. Our study paves the way to investigate in a completely 
general manner ligand binding to proteins and receptors.  
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Introduction  
 
Structure-based drug design (SBDD) analyzes at the atomic level how ligands interact with their 
biological targets. It identifies new ligands by mapping biological activity data to distinct structural and 
energetic features of ligand-target complexes. In silico predictions of the poses and affinities of ligands 
for their biological targets constitute a key step of the approach [1, 2].  
The predictions challenge the computational chemist when considerable structural adaptations of the 
ligand and the target are involved [3-5]. Indeed, induced-fit mechanisms play a role beyond the better 
ligand juxtapositioning in the binding site: slow targets' conformational transitions induced by ligands 
during the binding/unbinding process govern the differences of the free energies of all states along 
the binding/unbinding pathway [6, 7]. These differences can determine ligand specificity even in 
structurally highly similar targets, with changes in affinity up to several hundred-fold [6]. Thus, the 
knowledge of those pathways can reveal induced-fit mechanisms and allow the calculation of other 
important pharmaceutical parameters like residence time [8-12].  
Traditionally, in a drug design setting, medicinal and computational chemists often use molecular 
docking that has the enormous advantage of being computationally cheap [13]. It can screen poses 
and trends in affinities for 106-107 compound libraries in the order of days (with performances 
depending on docking software and rotational freedom of the compounds [14]). However, these 
approaches quantify target–ligand energies in terms of simple scoring functions [15-17], that generally 
neglect entropic contributions of the binding along with the solvent effects [18]. As a result, scoring 
functions can be used at most for qualitative comparisons. In addition, and most importantly for the 
present discussion, they cannot predict (un)binding pathways and oversimplify the binding process: 
usually only residues around the ligand are considered to be flexible, under the assumption - not 
justifiable with induced-fit - that neither the binding site nor the binding mode is changed significantly. 
Therefore, docking algorithm performance drops in the presence of induced fit even in predicting 
poses and affinity trends. These limitations can in theory be overcome by predicting (un)binding 
processes and affinities by means of molecular dynamics (MD) simulations. The main issue in this 
approach is given by the timescales in which these processes live (from the order of the microsecond 
and longer). Despite using an especially designed calculator (i.e., Anton) that allows the identification 
and characterization of the binding pose of a ligand inside a protein [19], a quantitative description is 
currently achievable only for fast binders [20], within the limitation of the force field. 
For slower binders (i.e., with a residence time that exceeds the timescale reachable by specific purpose 
computers-namely milliseconds-) two classes of MD-based approaches can be used. One is based on 
free energy perturbation (FEP) approaches [21-23]. These predict relative differences in binding free 
energies of ligands for the same target, of the same ligands for a set of different targets or for mutants 
of the same target [24-28]. They correctly take into account entropic effects and they are used widely 
in drug design campaigns [29]. However, likewise molecular docking approaches, they cannot predict 
(un)binding pathways and become infeasible when significant induced-fit effects take place [19, 30].  
These latter limitations may be overcome by potential mean force calculations. These predict the 
absolute binding/unbinding free energy as a function of reaction coordinate(s) or collective variable(s) 
(CVs) and provide binding/unbinding pathways. Among these methods, metadynamics (MetaD) has 
been shown to be particularly successful to predict unbinding pathways even in case where target 
flexibility plays a significant role [31-36]. However,  in the presence of induced-fit mechanisms,  the 
correct identification of the relevant CVs requires knowledge of the ligand binding/unbinding 
processes, in particular of the conformational rearrangement taking place upon binding. This is not 
trivial to know a priori when induced fit is involved. Volume-based MetaD might in principle solve this 
issue by using system-independent CVs allowing the ligand to explore all the accessible volume 
surrounding the target [37]. However, in practice the volume needed to exhaustively cover the 
relevant conformational space with induced fit (e.g. for including large induced conformational 
changes upon binding) is very large. As a result, recrossing events (required for the convergence of the 
free energy) are not very likely and the calculations are overall not very efficient.  
Herein, we have improved volume-based MetaD by: (i) Combining the strengths of system-
independent CVs with the benefits of reducing the ligand accessible conformational space to target 
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smaller volumes relevant for the binding. This strategy was already implemented in other MetaD 
approaches to favor the recrossing events [38-41]. (ii) Restraining the part of the target that is not 
directly involved in the binding process. This reduces the chances to minimize the possibility of local 
unfolding caused by the presence of a localized potential. We show here that this new approach, called 
Localized Volume-based Metadynamics (LV-MetaD), does not lose the adaptability to conformational 
changes upon-binding, and it dramatically decreases the computational cost needed to obtain 
convergence. Furthermore, it permits the exploration of possible ligand binding pathways and it finally 
overcomes the challenges of ligand induced fit and slow conformational changes by predicting poses, 
affinities and binding mechanisms.  
As a test case, we focus on the human MacroD1 and MacroD2 enzymes. These catalyze the hydrolysis 
of mono ADP-ribose (ADPr) from protein substrates [42] as well as they can efficiently reverse ADPr 
modification from the 5′ or 3′ terminal phosphates of DNA and RNA [43]. ADP-ribosylation is an 
important post-translational modification (PTM) that occurs in multiple key biological processes. In 
spite of the high pharmacological relevance of these targets [42], drug design campaigns have been 
unsatisfying [44, 45], mostly because they have not been able to identify selective inhibitors for the 
two enzymes. These would provide important tools to regulate intracellular signaling and regulatory 
processes, with important applications in neurodegeneration and cancer [46].  
The X-ray structures of the two proteins with and without ADPr (apo- and holo- forms, respectively) 
show that the catalytic sites are deeply buried in the protein [47, 48]. Two active loops (loop1 and 
loop2  red in Figure 1a) delimit the binding site and function as switch loops to sequester the substrate 
and they provide sufficiently structural flexibility to accommodate diverse types of substrates [49]. 
Therefore, not only does ligand binding require substantial changes of the loops' conformations to 
access in the inner cavity, but also it induces specific loops' conformations upon binding that cannot 
be predicted a priori [50].  
Inspection of the X-ray structures shows that in both enzymes, the ligand ADPr presents an L-shape 
conformation and the binding poses of the ligand are the same (Figure 1b and S1). The residues in the 
two binding sites are also the same on passing from MacroD1 to MacroD2, except that a phenylalanine 
(F272) and a valine (V271) in the former are replaced by a tyrosine (Y190) and an isoleucine (I189) in 
the latter, respectively (Figure S1). These two different residues in loop2 cause a change in affinity 
toward ADPr from -9.5 kcal/mol to -8.4 kcal/mol on passing from MacroD2 to MacroD1, respectively. 
Further mutations of these same two key residues in MacroD2, Y190N and I189R, substantially 
increase the affinity for ADPr up to -10.1 kcal/mol and -10.3 kcal/mol, respectively [50]. This 
experimental evidence suggests a key role of the loops' residues in substrate specificity. However, the 
molecular mechanisms of such changes in affinity are not known. 
Our LV-MetaD scheme turned out to reproduce (i)  the ADPr binding poses of the known complexes in 
the wild-type (WT) systems and it predicts the unknown ones for Y190N and I189R MacroD2 mutants. 
(ii) the experimentally measured protein-ADPr binding free energy of the two WT enzymes, along with 
those of the Y190N and I189R MacroD2 mutants, providing a rationale for the increased affinity of the  
latter.  This information may help understand the druggability and substrate specificity of such classes 
of proteins. Furthermore, our calculations elucidate the molecular interactions induced upon binding 
at each stage of the binding/unbinding process, paving the way to the design of highly selective 
inhibitors. Finally, our calculations provide the molecular basis, for the first time, of the impact of all 
the mutagenesis experiments on the measured binding affinities so far conducted.  Overall, our novel 
LV-MetaD protocol emerges as a powerful tool to efficiently investigate the induced-fit molecular 
recognition in ligand/receptor events.  
 
Results and Discussion 
 
 LV-MetaD calculates the ligand substrate (ADPr) binding free energies as a function of apt collective 
variables. These are the 3D positions of the ligand relative to the binding pocket. The calculations allow 
to predict substrate ADPr poses and binding pathways in WT MacroD1 and WT, Y190N and I189R 
MacroD2. An efficient sampling is achieved by: (i) Limiting the exploration of the ligand within a well-
defined volume around the target binding pocket, thus avoiding that most of the sampling time for the 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 8, 2021. ; https://doi.org/10.1101/2021.05.08.443251doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.08.443251


4 

ligand is spent in the solvent, a portion of the space not relevant for binding and unbinding. This is 
achieved by adding a repulsive potential at the boundaries (see Section below). (ii) Adding a constraint 
on the backbone in parts of the protein not directly involved in the binding/unbinding process (red 
part in Figure 1c and 1d). This potential is added because the ligand can be forced to explore volume 
portions occupied by the host, unfolding the protein.  
 

 
Figure 1. MacroD2 X-ray structure and the volume used in our Localized Volume-based Metadynamics simulations. (a) WT 
holo-MacroD2 X-ray structure (PDB code: 4IQY). The protein features a three-layered α-β-α sandwich-like conformation. The 
ligand ADPr is represented as sticks. The part of the protein involved in the binding pocket is highlighted in red. Loop1, 97-
GGGGV-101, and loop2, 188-GIYG-191 are highlighted in red color. The backbone of the parts in gray undergoes a light 
constraint. (b) ADPr pose. Hydrogen bonds and hydrophobic interactions are depicted as black and red dashed lines, 
respectively. (c) ⅓ sphere-solid restraint volume. The ρ, θ, and φ spherical coordinates define ADPr position. (d) Parabolic-solid 
restraint potential. The ρ, θ and σ coordinates identify the position of the restraint potential. In both (c) and (d), the residues 
involved in the ligand binding site (in red) are completely contained in the restraining volume. The center of mass of the protein 
and binding site (shown in blue balls) are considered to define the orientation of the volume. 
 
Choice of the volume. For WT MacroD2, we set up 2 different volume shapes to limit the sampling of 
the ligand. These are either a ⅓ sphere-solid shape (Figure 1c) or a parabolic-solid (Figure 1d and Figure 
S2) shape. The exploration of the conformational space is satisfactory as several recrossing events 
occur in both cases (Figure S3). The binding free energies, calculated as specified in the Methods 
section, turns out to agree well with experimental measurement (Tables S1). This confirms the 
flexibility of the method irrespective of the choice of the volume shape; indeed, the latter can be 
adapted to maximize sampling efficiency depending on the specific case.  
Here, since we observed a slightly better agreement with the experimental data (Table S1) for 
parabolic-solid volume in MacroD2, we decided to implement this shape for all the remaining systems. 
The latter allowed us to compute binding affinities in extremely good agreement with the experimental 
ones (Table 1). 
All the systems were initially equilibrated by 300 ns of MD, followed by ~0.8 μs-long LV-MetaD 
simulations. In the next Sections, we discuss the impact of induced fit on the binding poses and the 
(un)binding processes for each system. 
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Table 1. Absolute free energy from parabolic-solid LV-MetaD simulation (∆G_standard) and experiment [49-51] (∆G _exp).  

Systems ∆G_metad 
(kcal/mol) 

∆G_correction 
(kcal/mol) 

∆G_standard 
a 

(kcal/mol) 
∆G_expb 

(kcal/mol) 

MacroD2 -7.8±0.3 1.6 -9.4±0.3 -9.5 

MacroD1 -6.6±0.3 1.6 -8.2±0.3 -8.4 

MacroD2 I189R mutant -8.1±0.3 1.6 -9.7±0.3 -10.3 

MacroD2 Y190N mutant -8.4±0.3 1.6 -10.0±0.3 -10.1 

∆G_standarda is calculated at T= 298 K and the ionic strength of 100 mM. ∆G_expb of WT MacroD2 and its mutant is 
determined at 298 K, while ∆G_expb of WT MacroD1 is detected at 303 K. The ionic strength is 100 mM and the method of 
binding assays is isothermal titration calorimetry.  
 

WT MacroD2. The calculations on the MacroD2 were based on the holo structure of MacroD2 in 
complex with ADPr [52]. The free energy shows the presence of four basins (Figure 2). The lowest free 
energy minima (basins 1 and 2) differ by only 1 kT (thus they are both populated at room temperature) 
and represent the bound state. The structure associated with basin 2 reproduces the pose in holo-
MacroD2 X-ray structure (Figure 3a and 3b) [50]: the ADPr adenine ring is deeply buried in the highly 
conserved binding pocket [50] and forms bifurcated H-bonds with the backbone and sidechain of D78, 
respectively. The ADPr adenosine ribose forms H-bonds with the backbones of C222 and C184. The 
negatively charged ADPr pyrophosphate moiety located in the cleft of active loop1 and loop2 forms H-
bond networks with backbone atoms of I185, S186, T187, G188, I189, and bifurcated H-bonds with the 
backbone and sidechain of Y190. The ADPr distal ribose faces the entrance of the binding cavity. It 
forms H-bonds with backbone of A90 and sidechain of N92 in loop1.  

 
Figure 2. Free energy surface associated with MacroD2/ADPr binding as a function of ρ ( the distance between the center of 
mass of the target and the center of mass of the ligand and the number of hydrogen bonds between the residues in the binding 
pocket and the ligand (n_H). In LV-MetaD, free energy as calculated in LV-MetaD as a function of the spherical or parabolic 
coordinates of the ligand, cannot be interpreted straightforwardly. To overcome this issue, the figure shows the free energy 
surface reweighted along variables that can be more meaningful for the identification of relevant minima, such as ρ and the 
number of hydrogen bonds. 
 

In basin 1 (Figure 3c), the adenine ring of ADPr no longer Interacts with D78 and F224 due to slight 
variation of ADPr pose. These interactions are substituted by the formation of hydrophobic contacts 
with residues V101 and A90 and H-bonds with V88 backbone (Figure 3c). ADPr adenosine ribose no 
longer forms hydrogen bonds interactions with the backbone of C222 and C184 but with the backbone 
of V101. The pyrophosphate moiety form hydrogen bonds with the sidechain of R150 and backbone 
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atoms of residues in the loop2 (i.e. G188, I189, and Y190) as well as with G99 (Figure 3c), which is 
similar to what is observed in basin 2. The distal ribose faces the solvent and forms hydrogen bonds 
with the backbones of N92 and A93, respectively.  
 

Figure 3. LV-MetaD simulation of ADPr binding to WT MacroD2. (a) Representative conformations of basin 2 (left) and its 
ligand-protein interaction diagram (right). Bulk water is not shown for clarity Hydrogen bonds and hydrophobic interactions 
are depicted as black and red dashed lines, respectively. (b) Superposition of holo-MacroD2 X-ray structure (in grey) with the 
binding pose of basin 2 (in blue). (c), (d), (e) Same as (a) for basin 1, 3, 4. The calculations use the parabolic-solid scheme of 
Figure 1.  
 

In basin 3 (Figure 3d) the ADPr is partially out from the cleft between the two loops and exposed to 
the solvent. The adenine ring maintains hydrogen bonds with the sidechain of D78 and backbone of 
I79 and a π-stacking with F224, and the adenosine ribose forms the H-bonds with the C222 and C184 
backbones and with C184 sidechain (Figure 3d). But the pyrophosphate and distal ribose moiety rotate 
above loop2 and are partly sandwiched between helix9 and helix10. The pyrophosphate moiety is 
stabilized by the H-bonds with T187, G188, I189 and N194, while the distal ribose loses all the 
interactions with loop1 and loop2. In basin 4, the ADPr is located at the entrance of the binding cavity 
(Figure 3e). The adenine ring is located in the cleft formed by the loop1 and loop2 and forms π-stacking 
interactions with Y190 (Figure 3e), and the adenosine ribose forms H-bonds with backbones of A91 
and A93. The pyrophosphate moiety and distal ribose is completely exposed to the solvent, the former 
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forms H-bonds with R150 sidechain, while the later forms H-bond interactions with T125, and D160, 
backbone and sidechain, respectively. 
 
From this free energy landscape, we can gain qualitative insight on the induced-fit ligand (un)binding 
mechanism: the ADPr adenine ring approaches the binding pocket by interacting with loop1, then it 
passes through the cleft between loop1 and loop2 and subsequently reaches the inner binding site in 
the binding pose (Figure S4b). During the unbinding process, the pyrophosphate moiety and distal 
ribose of ADPr escape from the groove between loop1 and loop2 and move towards the cleft between 
helix 9 and helix 10 and then lose all the interactions with the binding pocket (Figure S4b). In the bound 
state (basin 2), the loops are as close as 10.8 Å (centroid distance). The transition from the bound to 
the unbound state, however, triggers a closure and an opening of the loop1-loop2 interface (Figure 
S4c and S4d), with their centroid distances ranging from a minimum value of ~10.0 Å to a maximum of 
~14.5 Å (Table S2 and Figure S4c), indicating the presence of ADPr dependent induced-fit mechanisms. 
Such movements of the loops cannot be appreciated in the X-ray structure where the loop 
conformations in apo and holo states are very similar, with centroid distances of 12.9 Å  and 11.6 Å, 
respectively (Table S2) [52]. Therefore, our simulations reveal key ligand-dependent events involving 
loop1 and loop2 impacting on the binding pathway, and in turn on the binding affinity (see follow-up 
paragraphs). 
 
WT MacroD1. The calculations on WT MacroD1 were based on the apo X-ray structure instead of the 
holo structure (Figure 4a) to check the robustness of the method in reproducing induced-fit effects of 
the binding process even starting from a conformation where the ligand is not at its energy minimum. 
As already discussed above, they turned out to reproduce the free energy of binding (Table 1).  
The free energy landscape features only two basins, 1 and 2 (Figure 4b). Remarkably, basin 1 
corresponds to the pose observed in the holo MacroD1 X-ray structure (Figure 4c). It features a close 
conformation as in the holo form, where the centroid distances of loop1 and loop2 are ~10.5 Å and 
~10.9 Å, respectively (Figure 4a and Table S2) [49], to be compared with the distance in the apo form 
where loop1 and 2 are in an open conformation with a centroid distance of ~14.6 Å. This is a 
remarkable result, as the simulation started from the apo form with the ligand docked a posteriori, 
instead of the holo form. In basin 1, the adenine ring of ADPr binds to the inner binding pocket 
establishing π-stacking interaction with F306 and maintains a similar hydrogen bonding network as in 
the holo-MacroD1 structure (Figure 4d and S5c). The adenosine ribose forms H-bonds with the 
backbone of C266 and sidechain of T269. The pyrophosphate moiety is stabilized by hydrogen bonds 
formed with backbones of the residues in the two active loops, i.e. G182, V183, S268, T269, G270 and 
V271 (Figure 4e). The distal ribose is slightly further away from loop1 and it does not form direct 
interactions with the two loops. Indeed, it is slightly twisted with respect to the holo- MacroD1 and 
MacroD2 X-ray structure (Figure 4c). Basin 2 is ~ 4 kcal/mol higher in free energy with respect to basin 
1 (Figure 4b). Here, the adenine ring of ADPr is stacked between loop1 and loop2 (Figure S6a). The 
other parts of the ligand are completely exposed to the solvent above loop1, forming hydrogen bonds 
with the backbone amino groups of G182, G185 and C186, and with the sidechain guanidino group of 
R189 (Figure S6b).  
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Figure 4. LV-MetaD simulation of ADPr binding to apo-MacroD1. (a) Superposition of holo-MacroD1 (PDB code: 6LH4, in purple) 
and apo-MacroD1 (PDB code: 2X47, in yellow) X-ray structures. The distance between the center of mass of loop1 and loop2 
are highlighted. They consist of 179-GGGGV-183 and 270-GVFG-273 residues, respectively. (b) Free energy surface as a 
function of ρ and n_H. (c) Superposition of the holo-MacroD1 X-ray structure (in purple) with the calculated MacroD1_ADPr 
binding pose of free energy basin 1 (in blue) highlighted on the free energy landscape. (d) Representative conformation of free 
energy basin 1. Same color-code and representation mode of Figure 3 is used; (e) Ligand-protein interaction diagram for 
representative structure of free energy basin 1. 
 

Also in this case, we attempt to gain insight on the (un)binding process by investigating the free energy 
landscape. The loop distance change increases relative to the WT MacroD2: the centroid distance 
ranges between 10.3 Å and 16.8 Å (Table S2). The adenine ring of ADPr initially approaches the binding 
site by interacting with helix5 or helix10 and then the other moieties of the ligand directly lie in the 
groove between loop1 and loop2. During the unbinding process, the ligand moves its distal ribose and 
pyrophosphate moiety towards the solvent and then drags the adenine moiety directly from the cleft 
between the loop1 and loop2 (Figure S5b). This is relevant if we consider that the two residues that 
discriminate between MacroD2 to MacroD1 (F272 and V271 in MacroD1 are Y190 and I189 in MacroD2) 
are located in loop2: these difference in the amino acid sequence indeed affect the steric hindrance of 
the entrance of the binding pocket (V271 in MacroD1 is smaller than I189 in MacroD2), as well as the 
number of protein-ligand interactions (e.g. the H-bonds between pyrophosphate moiety and F272 are 
not present in MacroD1), and in turn the ADPr-induced loops' configurations, possibly providing a 
rationale also for the lower number of intermediate states. Thus, the two residues which are modified 
on passing from WT MacroD1 to WT MacroD2 cause a loss of interactions between ADPr and loop2, 
leaving loop1 as the sole player in ligand binding, in contrast to WT MacroD2. Again, these aspects 
were not identifiable by just the comparison of the apo and holo crystal structure of MacroD1. 
 
Y190N and I189R MacroD2. No structural information is available for these systems, therefore, they 
were modeled from WT holo MacroD2 (see Methods).  
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 8, 2021. ; https://doi.org/10.1101/2021.05.08.443251doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.08.443251


9 

 
Figure 5. LV-MetaD simulation of ADPr binding to the Y190N MacroD2. (a) Free energy surface as a function of ρ and n_H. ρ 
is here the distance of the center of mass between Y190N MacroD2 and ADPr. (b) Superposition of WT holo-MacroD2 X-ray 
structure (in gray) with the binding pose of free energy basin 1 (in blue) highlighted on the free energy landscape. (c) The 
representative conformation of free energy basin 1 in the binding pocket. Same color-code and representation mode of Figure 
3 is used. (d) Ligand-protein interaction diagram for representative structure of free energy basin 1. 

 
Y190N MacroD2. The free-energy profile shows four basins as in the WT protein (Figure 5a). Basin 1 is 
the lowest free energy minimum. The ligand pose is similar to those of WT MacroD2/1 (Figure 5b). The 
interactions established by the adenine ring and the adenosine ribose with the protein are similar to 
the ones established in MacroD2 (basin 2). The distal ribose and pyrophosphate moiety form extensive 
hydrogen bond networks with residues in the vicinity of loop1 and loop2, i.e. backbones of G100, V101, 
S186, T187, G188 and sidechain of D102 (Figure 5c and 5d). However, the pyrophosphate moiety no 
longer interacts directly with I189 and N190 as in WT MacroD2. Indeed, we observed that the active 
loop2 in Y190N MacroD2 is in an open conformation, different from the close one observed in the WT 
MacroD2 bound state (Figure 5b). In basin 2, the ligand locates at the entrance of the binding site 
appearing as in a pre-binding state (Figure S7a), while in basin 3, ADPr hangs over the gap between 
loop1 and loop2 (Figure S7b). In basin 4, ADPr completely escapes from the binding pocket (Figure S7c).  
Y190N MacroD2 displays the same number of basins found in WT MacroD2. However, interestingly, 
during the binding/unbinding process the centroid distances between the two loops sample a broader 
range of values (from 10.2 Å to 22.5 Å, Table S2) with respect to the WT MacroD2. Notably, the two 
loops are all in an open conformation in basins 1-4. Also, ADPr undergoes the same binding process as 
WT MacroD2 but a different unbinding process. Namely, ADPr escapes from the binding site along the 
cleft between helix5 and helix6 (Figure S8b). These differences on passing from WT MacroD2 to the 
Y190N mutant might be caused by the smaller sidechain in the 190 position, which from one side 
increases loop2 flexibility and from the other side decreases the steric hindrance of the cleft between 
loop1 and loop2. The observed effects could provide a rationale for the increased binding affinity. 
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Figure 6. LV-MetaD simulation of ADPr binding to the I189R MacroD2. (a) Free energy surface as a function of ρ and n_H. ρ is 
the distance of the center of mass between I189R MacroD2 mutant and ADPr. (b) Superposition of WT MacroD2 crystal 
structure in complex with ADPr (in grey) with the binding pose of free energy basin 1 (in blue) highlighted on the free energy 
landscape. (c) The representative conformation of basin 1 in the binding pocket. Same color-code and representation mode of 
Figure 3 is used. (d) Ligand-protein interaction diagram for representative structure of free energy basin 1. 
 

I189R MacroD2. Only three basins are observed (Figure 6a), in contrast to four of the WT MacroD2 
and the Y190N mutant. This might be due to the fact that R189 attracts the ligand and locks its 
orientation inside the binding pocket. Therefore, the conformational freedom of the ligand in the 
pocket is reduced, possibly lowering the number of intermediate states. The binding pose of ADPr in 
basin 1 reproduces the conformation observed in WT MacroD2 and involves almost the same 
interactions (Figure 6b). The main difference is that the negatively charged pyrophosphate moiety is 
stabilized by a salt bridge interaction with R189 (Figure 6c and 6d). This new interaction might 
contribute to the observed higher ADPr binding affinity. Basin 2 corresponds to a pre-dissociated 
transition state where the ligand attempts to escape from the binding groove into the solvent by 
moving its distal ribose across loop1. During the motion, the salt bridge interaction with R189 is 
however maintained (Figure S9a). The binding pose of basin 3 occurs when the ligand leaves basin 2 
to reach a more solvent exposed state (Figure S9b). During the binding/unbinding process, the centroid 
distance between loop1 and loop2 varies from a maximum distance of ~17.5 Å to a minimum distance 
of ~9.8 Å, having 10.6 Å in the bound state (basin 1), comparable to the value observed in the bound 
states of ADPr in the WT MacroD2. 
 
Molecular basis for the change in affinity of MacroD2 mutants. Based on the affinity of ADPr, the 
Macro2 mutants have been classified in three groups [50]: (i) variants featuring low affinity (below 20% 
of that of the WT); (ii) variants featuring intermediate ADPr affinity (about 40-60 % of that of the WT); 
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(iii) variants featuring WT-like activity and affinity for ADPr or even higher than the WT, i.e. I189R and 
Y190N, investigated above. On the basis of our calculations, we attempt here to provide a rationale 
for the changes in affinity of all the mutants by visual inspection of the two free energy minima of WT 
MacroD2/ADPr (basins 1 and/or 2 in Figure 3), and of the X-ray structures (Figure S1b).  
G188E, G100E and G100E/I189R MacroD2 belong to (i). In basin 2 and in the X-ray, G188 backbone 
establishes bifurcated H-bonds with the negatively charged pyrophosphate moiety of ADPr; G100 
backbone establishes a single H-bond with the pyrophosphate moiety in the X-ray, while in basins 1 
and 2, it is in close proximity (Figure 3a). Therefore, the G100E and G188E mutations are expected to 
introduce a bulky negatively charged group near to pyrophosphate, leading to the disruption of the 
hydrogen bonding network between the pyrophosphate and the two loops. This may lead to 
rearrangement of how the ligand is positioned in the catalytic site or it might even prevent binding 
completely, possibly explaining the dramatic loss of affinity. The affinity of G100E/I189R MacroD2 is 
larger than that of G188E and G100E MacroD2 but still lower than that of variants in group (ii). The 
I189R mutation introduces a positively charged group close to the negatively charged pyrophosphate. 
Thus, we speculate here that the I189R mutation stabilizes, at least in part, loop2/ligand interactions, 
leading to a less dramatic change of affinity relative to the WT, as observed experimentally. 
D78A, G100S and N92A/D102A MacroD2 belong to (ii). In basin 2, D78 sidechain and backbone 
establish bifurcated H-bonds with ADPr’s amino group N6 and N1 atoms (Figure 3a), respectively. The 
H-bond with N6 is observed also in the X-ray structure (Figure S1). The N92 sidechain forms a H-bond 
with an OH group of the distal ribose in both basin 2 and in the X-ray (Figure 3a and Figure S1). These 
interactions are however not observed in basin 1 of the same system (where the binding pose of the 
ligand is still preserved), suggesting that these aminoacids are not key for stabilizing ligand binding. 
D102 in our simulations and in the X-ray is in close proximity to the distal ribose and the pyrophosphate 
moiety, respectively, but it does not appear to form key interactions with the ligand. Therefore, it is 
not possible to understand whether the D102A mutant might have an effect if uncoupled from the 
N92A. G100, as said above, only establishes a single H-bond with the  pyrophosphate moiety in the X-
ray that is not observed in basins 1 and 2. Indeed, G100S has only a mild effect on the binding affinity. 
The smaller impact of G100S with respect to G100E described above can be rationalized by the smaller 
steric hindrance and missing net charge of serine with respect to glutamate. 
I189R Y190N, F224A and G99E MacroD2 belong to (iii). The rationale for the increased affinity of I189R 
and Y190N has been given above. F224A and G99E MacroD2 feature affinities similar to that of the WT. 
Notably, while in the X-ray these residues feature a π-stacking with the adenine ring and H-bond with 
the distal ribose, respectively. These interactions are not observed in basin 2 and 1 of our simulations. 
G99 is indeed solvent-exposed in our simulations and therefore its substitution for E is not expected 
to affect ligand binding, as confirmed by the experiments (Figure 3a). F224 is only in close proximity to 
the ligand, therefore its substitution with A is not expected to play a key role for the affinity, 
consistently with experimental evidence. 
Overall, our simulations can provide a rationale for the different affinity observed in mutagenesis 
experiments, not fully emerging just from the visual inspection of the X-ray structure. 
 
Conclusions 
 
We have presented a new method, called Localized Volume-based MetaD scheme (LV-MetaD), to 
predict poses, affinities and (un)binding mechanisms of small ligands targeting proteins under any 
circumstances, even in case induced-fit effects are significant. The method exploits the advantages of 
system-independent CVs with a restricted conformational space sampling. To the best of our 
knowledge, this is the first time that such a general scheme has been developed. LV-MetaD has been 
applied to substrate (ADPr) binding to macrodomain enzymes, WT MacroD1 and WT MacroD2 and 
their binding to ADPr, for which we know that induced fit effects are present: two highly flexible loops 
regulate the access to the active site and rearrange in a specific manner depending on the ligand [49]. 
Simulations have been extended also to the Y190N MacroD2 and I189R MacroD2 mutants, which are 
the only mutants for which the affinity increases.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 8, 2021. ; https://doi.org/10.1101/2021.05.08.443251doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.08.443251


12 

The calculated absolute binding free energy differences of the ligand binding to the WT proteins turn 
out to compare well with experiments. The scheme reproduces also the increased affinity of the 
mutants with respect to the WT MacroD2, although the difference in affinity between Y190N MacroD2 
and I189R MacroD2 is beyond the precision of the method. Taken together, these results establish the 
accuracy of the calculations.  
The calculations further predict the ligand poses of ADPr in MacroD2 mutants, without prior 
knowledge of it and depict the differences in the binding/unbinding pathways with respect to the WT 
MacroD2. In addition, they provide a rationale for the impact of the other mutations for their 
consequences of affinity. Overall, our simulations confirm that the conformational rearrangements of 
the binding pocket are induced by ADPr binding and they demonstrate the capability of LV-MetaD 
protocol to exactly calculate the binding free energy, predict the binding conformation and 
characterize the induced-fit binding mechanisms. Moreover, no prior knowledge of the binding pose 
is required.  
The scheme is entirely general and it could be applied to investigate ligand binding to other enzymes 
and receptors for which induced fit is important. The free energy is described by a set of collective 
variables that can be set up according to the shape of the binding pocket. The application of this 
scheme with new and efficient form of CV-based enhanced sampling protocols, such as the on-the-fly 
probability (OPES) [53]), combined with the new computational capabilities given by the exascale 
computing project, can finally pave the way for a totally general in silico drug discovery approach based 
on molecular simulations. 
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Methods 
 
System preparation. The crystal structure of human mono-ADPr hydrolase macrodomains have been 
reported in the literature: the first is MacroD2 in complex with ADPr (PDB access code 4IQY), resolved 
at 1.5 Å atomic resolution [50]. The crystal structure has two protein molecules, by aligning them, the 
RMSD is less than 0.1 Å, revealing it has two nearly identical structures. Hence, in order to reduce the 
computational cost, we performed all the simulations using the monomer molecule. The second is 
MacroD1 monomer in the apo state at 1.7 Å resolution (PDB access code 2x47) [48] and 
MacroD1_ADPr complex at 2.0 Å resolution (PDB access code 6LH4) [49]. The two monomers involve 
a general macrodomain fold as three-layered α-β-α sandwich structure with a central six-stranded β 
sheet and are evolutionarily conserved protein with an almost identical binding site. In order to model 
a possible bound-conformation of ADPr, the initial structure of the MacroD1 system was built by 
docking ADPr to the apo-MacroD1 instead of starting from the holo-MacroD1. Additional two mutants 
of MacroD2 were obtained by replacing I189 with arginine and Y190 with asparagine respectively using 
UCSF Chimera [55]. The missing loops in these two protein crystallographic structures were 
reconstructed by using the protein preparation wizard of Schrödinger module [56]. Due to the lack of 
the structure of MacroD2 mutant bound to ADPr, the structure of WT MacroD2 complex was employed 
as a reference model for the MacroD2 mutant binding mode. 
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Each protein-ADPr complex system was performed with AMBER ff99SB-ILDN force field for the protein 
and ions [57], and was solvated with TIP3P explicit water molecules in a periodic cubic box, in which 
the protein surface are 20 Å far away from the periodic box edge[58]. Additional appropriate number 
of sodium and chloride counterions were added to neutralize the charge of the whole system and to 
achieve a physiological salt concentration of ~100 mM which was consistent with experimental ionic 
force used to determine the binding constant [50, 51]. Topology for the ligand was constructed using 
the general AMBER force field (GAFF) [59] and its partial atomic charges were parameterized with 
AM1-BCC semiempirical method [60].  
  
MD simulations. All of the simulations were performed using GROMACS 2019.2 [61] patched with the 
PLUMED 2.6 [54, 62]. Long-range electrostatic interactions were calculated with the particle mesh 
Ewald (PME) scheme using a grid spacing of 1.2 Å and the distance cutoff for the short-range 
electrostatic interactions and van der Waals was set to 12 Å [63]. All the bonds including the hydrogen 
bonds were restrained with the LINCS algorithm [64]. The velocity rescale thermostat [65] with solvent 
and solute coupled to separate heat baths was employed for the temperature regulation and the 
pressure was controlled by the Parrinello-Rahman barostat [66]. After an energy minimization of the 
solvent with the steepest descent algorithm, the temperature of each system was gradually increased 
from 0 to 298 K in 1 ns of MD. Keeping the position restraints for protein and ligand, the system was 
equilibrated at 298 K for 10 ns in the NVT ensemble; after this step we released the ligand, and the 
system was equilibrated by 10 ns in the NPT ensemble. Finally, a long equilibration of 300 ns without 
any restraint was performed before the production MetaD simulation. 
  
Metadynamics simulations. Here we developed the Localized Volume-based Metadynamics scheme 
on the base of funnel-shaped MetaD and spherical volume-based MetaD. We chose two different 
restraining volume shapes. The first restraining applied was ⅓ sphere-solid. As in the original volume-
based protocol, we biased the spherical coordinate system: CV1-ρ, the distance between the center of 
mass of the ligand and protein, CV2-φ, the polar angle measured from the z-axis, and CV3-θ, the 
azimuthal angle of its orthogonal projection on the x-y plane [37, 67] (Figure 1c). To find an appropriate 
size of the restraining potential (i.e., that contains a reasonably solvated set of conformation for the 
ligand), we first performed a calculation to estimate the distance between protein and ligand to avoid 
any host-guest interactions. After this estimate, the value of ρ was restricted to 35 Å and the φ was 
limited to pi/3. The second restraining potential was shaped as a rotational parabolic-solid. Like in the 
first case, we biased three CVs, ρ, θ, and σ, where ρ and θ was the same spherical coordinate as above, 
and σ was a series of confocal parabolas centered on the center of mass of protein heavy atoms (Figure 
1d). The value of σ (σ = 1) depends on the restraining space which should totally include the protein 
pocket and allow the ligand flexible exploration of the binding/unbinding orientation. 
As previously said, a repulsive potential was applied at the edge of the designed volume, impeding the 
ligand from visiting less relevant regions in the solvated state. In our case, the restraining potential 
completely enveloped the binding pocket and was applied along the direction defined from the centers 
of mass of the whole protein and the binding pocket alone (aligned to the z-axis in the initial structure). 
We also applied a restraining bias to limit the translation of the center of mass of the protein 
(restrained a radius of 10 Å). We finally applied a restraining potential on the backbone of the residues 
that are not involved in the protein-ligand binding process (RMSD < 1 Å).  
In our case, the MetaD simulations with these two LV-MetaD schemes in the WT MacroD2 systems led 
to very similar results, which further verified the reliability of both the shapes (Supplementary Table 
S1). Given that the ADPr binds to a buried and open active site, the MacroD1 and two MacroD2 variants 
systems were performed with parabolic-solid-shaped potentials. In the well-tempered MetaD 
simulation, Gaussian hills with a height of 1.2 kJ/mol was deposited every ps, and the Gaussian 
functions were rescaled using a bias factor of 20, while the widths of Gaussians were set as 1.0 Å, pi/8 
radian, and 0.04 for the three CVs - ρ, θ, and σ, respectively. For all the systems, 0.8 μs of MetaD 
simulation were conducted and their convergence were achieved approximately at 0.6 μs 
(Supplementary Figure S3a). All the errors for free energy differences were evaluated using a block 
average analysis. 
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The lowest energy basin of each system has been equilibrated by unbiased MD. Flexibility of the 
binding site and the ligand atoms was evaluated and reported in Figure S11. 
 
Free energy calculation. The experimental absolute free energy values were calculated from the 
equilibrium dissociation constant Kd through the formula [36] 

              𝛥𝐺𝑒𝑥𝑝 
0  = −𝑅𝑇 𝐼𝑛 ( 

𝐾𝑑

[𝐿]0
)                     [1] 

Where [L]0 is the standard state concentration of 1 mol/L, Kd is the ratio between the concentration in 
the bound state and that in the unbound state at specific temperature. Ιn the MetaD simulation, the 
binding free energy (∆G_metad) was the free-energy difference between the bound and unbound 
states. 
However, the application of restraining potential caused a loss of the translational degrees of freedom 
of ligand in the solvated state, which would need to be corrected when calculating the absolute free 
energy (∆G_standard) [2, 37, 38, 68].  

                         [2]      
R is the gas constant, T the system temperature, [L] is the concentration of the ligand in the restraining 
space, NA= 6.022×1023 is the Avogadro constant, Vspace is the volume of the restraining potential, and 
Vprot is the volume of protein inside the restraint. The bound state was identified as the free energy 
minimum of the landscape and the unbound state as the area of the free energy surface with a distance 
between the protein center of mass and the ligand larger than 30 Å. Further information on the 
calculation of volume of parabolic-solid can be found in Figure S1. 
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