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Abstract  15 

Brain and behavioural asymmetries have been documented in various taxa. Many of these asymmetries 16 

involve preferential left- and right-eye use. However, measuring eye use through manual frame-by-frame analyses 17 

from video recordings is laborious and may lead to biases. Recent progress in technology allowed the development 18 

of accurate tracking techniques for measuring animal behaviour. Amongst these techniques, DeepLabCut, a 19 

python-based tracking toolbox using transfer learning with deep neural networks, offers the possibility to track 20 

different body parts with unprecedented accuracy. Exploiting the potentialities of DeepLabCut, we developed 21 

‘Visual Field Analysis’, an additional open-source application for extracting eye-use data. To our knowledge, this is 22 

the first application that can automatically quantify left-right preferences in eye use. Here we test the performance 23 

of our application in measuring preferential eye-use in young domestic chicks. The comparison with manual scoring 24 

methods revealed a perfect correlation in the measures of eye-use obtained by ‘Visual Field Analysis’. With our 25 

application, eye-use can be analysed reliably, objectively and at a fine scale in different experimental paradigms. 26 

 27 

Keywords: automated tracking, lateralization, DeepLabCut, computational methods, behavioural scoring 28 

  29 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 10, 2021. ; https://doi.org/10.1101/2021.05.08.443242doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.08.443242
http://creativecommons.org/licenses/by-nc/4.0/


 3

 30 

Introduction 31 

Quantifying accurately animal behaviour is crucial to understand its underlying mechanisms. Historically, 32 

behavioural measurements were collected manually. However, with technological progress, automated data 33 

collection and analyses have expanded (Anderson and Perona 2014), making behavioural analyses more precise, 34 

reliable and effortless for the experimenter (Wood and Wood 2019; Versace et al. 2020; Lemaire et al. 2021), 35 

Automated data collection may allow finer and more objective behavioural analyses than the ones 36 

provided by manual coding. However, many of the currently available tracking techniques and software can be 37 

complex to use and even inaccurate in some experimental conditions (such as in poor and changing illumination, 38 

low contrasts, etc.). The open-source toolbox DeepLabCut copes with these limitations (Mathis et al. 2018; Nath 39 

et al. 2019). DeepLabCut exploits deep learning techniques to track animals’ movements with unprecedented 40 

accuracy, without the need to apply any marker on the body of the animal (Labuguen et al. 2019; Wu et al. 2019; 41 

Worley et al. 2019), opening a new range of possibilities for measuring animal behaviour such as preferential eye-42 

use.  43 

It is now clear that structural and functional asymmetries, once believed to be unique of humans, are 44 

widespread among vertebrates (Rogers et al. 2013; Versace and Vallortigara 2015; Vallortigara and Versace 2017) 45 

and invertebrates (Frasnelli et al. 2012). The study of sensory and perceptual asymmetries is a powerful tool to 46 

understand functional lateralization, especially in animals with laterally placed eyes. For instance, in non-47 

mammalian models, researchers can take advantage of anatomical features causing most of the information 48 

coming from each eye-system to be processed by the contralateral brain hemisphere (Vallortigara and Versace 49 

2017). To date, temporary occlusion of one eye has been the main method used for behavioural investigation of 50 

these eye asymmetries (Güntürkün 1985; Vallortigara 1992; Vallortigara et al. 1999; Chiandetti 2017), However, 51 

studying the spontaneous eye-use without monocular occlusions is important to shed light on the lateralization of 52 

naturalistic behaviours. Indeed, a considerable amount of evidence has shown that animals actively use one or the 53 

other visual hemifield depending on the task (Güntürkün and Kesch 1987; Vallortigara et al. 1996; Sovrano et al. 54 

1999; Tommasi et al. 2000; De Santi et al. 2001; Santi et al. 2002; Prior et al. 2004; Rogers 2014; Schnell et al. 55 

2018) and/or motivational/emotional state (Andrew 1983; Bisazza et al. 1998).  56 

A widespread method to test preferences in eye use is the frame-by-frame analyses of video recordings 57 

(Fagot et al. 1997; Rogers 2019). A drawback of this procedure is that it is tedious and may originate potential 58 

errors and biases (Anderson and Perona 2014). Moreover, in animals with two foveae (or a ramped fovea) like 59 

birds, it is necessary to distinguish the use of frontal and lateral visual fields, making manual coding of these data 60 

even more complicated (Vallortigara et al. 2001; Lemaire et al. 2019). To address these issues, we developed an 61 
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application for the automatic recording of eye-use preferences for comparative neuroethological research. This 62 

application, named ‘Visual Field Analysis’, is based on DeepLabCut tracking (Nath et al. 2019) and enables eye-63 

use scoring as well as other behavioural measurements (see Josserand and Lemaire 2020 for more details). 64 

 Our application can be used to measure eye-use for any setting in which one animal is video-recorded 65 

from the top by a fixed camera. It aims to measure eye-use preferences while observing different stimuli (an 66 

approach that has been used, for instance, in Dharmaretnam and Andrew 1994; De Santi et al. 2001; Vallortigara 67 

et al. 2001; Rogers et al. 2004; Dadda and Bisazza 2016; Schnell et al. 2016). Moreover, it is possible to measure 68 

other variables such as the level of locomotor activity (a measurement used in open field or runway tests, e.g. 69 

Gallup and Suarez 1980; Gould et al. 2009; Ogura and Matsushima 2011) and how much time the animal spends 70 

in different areas of the test arena (a measure widely used in recognition, generalization and spontaneous 71 

preference tests, which measure animals’ preferences between two stimuli, Wood 2013; Rosa-Salva et al. 2016; 72 

Versace et al. 2016). Using Visual Field Analysis, eye-use can be assessed when the animal is moving or still and 73 

while it is looking at one or two stimuli. These can also be either stationary or in motion, but must be placed at 74 

opposite sides of the apparatus. Eye-use is calculated as the number of frames spent looking at a stimulus with 75 

either one eye or the other. Furthermore, each hemifield can be divided into two separate visual fields (frontal and 76 

lateral, of adjustable size). This is particularly relevant for species that use their frontal and lateral visual fields 77 

differently (e.g., domestic chicks and king penguins, Vallortigara et al. 2001; Lemaire et al. 2019). Moreover, Visual 78 

Field Analysis measures the movements of the animal’s head, by reporting the number of pixels crossed by the 79 

tracking-point associated with the top of the animal’s head over several frames. This measure can reveal the overall 80 

locomotor activity of an animal moving freely in its environment or the extent of the head movements of a restrained 81 

animal. In this latter case, our activity measurement can inform about head saccades, a behaviour present in birds, 82 

which is correlated with arousal (Kjrsgaard et al. 2008; Golüke et al. 2019). Finally, the time spent by an animal in 83 

up to five different areas of a rectangular arena can be conviently monitored by Visual Field Analysis. For further 84 

details on the functioning and current limitations of this application, please see the full protocol published by 85 

Josserand and Lemaire (2020). 86 

The aim of the current study was to provide an experimental validation of the main function of Visual Field Analysis: 87 

scoring preferential eye-use in animals with laterally placed eyes. To do so, we assesed the accuracy of Visual 88 

Field Analysis in scoring preferential eye use of domestic chicks (Gallus gallus), while looking at an unfamiliar 89 

stimulus, in comparison with traditional manual scoring.  90 

 91 
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Methods 93 

Subjects 94 

The experimental procedures were approved by the Ethical Committee of the University of Trento and licenced by 95 

the Italian Health Ministry (permit number 53/2020). We used 10 chicks, of undetermined sex (strain Ross 308). 96 

The eggs were obtained from a commercial hatchery (Azienda Agricola Crescienti) and incubated at the university 97 

of Trento under controlled conditions (37.7°C and 40% of humidity). Three days before hatching, we moved the 98 

eggs into an hatching chamber (37.7°C and 60% of humidity). Soon after hatching, the chicks were housed together 99 

within a rectangular cage (150 x 80 x 40 cm) in standard environmental conditions (30°C and homogenous 100 

illumination, adjusted to follow a natural day/night cycle) and in groups of maximum 40 individuals. Food and water 101 

were available ad libitum. The animals were maintained in these conditions for 3 days, until the test was performed. 102 

After the test, all animals were donated to local farmers. 103 

Test  104 

The test took place the third day post-hatching. Each chick was moved into an adjacent room and placed in a 105 

smaller experimental cage (45 x 20 x 30 cm) to begin the pre-test habituation phase, which usually lasted about 106 

30 minutes. The cage had a round opening (4cm), and during the habituation phase the animal could pass its head 107 

trough it at will, to inspect an additional empty compartment (20 x 20 x 30 cm, see Figure 1). Young chicks tend to 108 

spontaneously perform this behaviour, when given the opportunity. Once a subject was confidently passing its 109 

head through the opening, the proper test phase began and a red cylinder (5 cm high, 2 cm diameter) was added 110 

in the additional compartment (20 cm away). The subject’s head was then gently placed through the round opening 111 

by the experimenter and and the animal was manually kept in this position for 30 seconds (Figure 1). The behaviour 112 

of each animal was recorded with an overhead camera (GoPro Hero 5, 1290x720, ~ 25 - 30 fps) for 30 seconds. 113 

Each animal was tested only once. 114 
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 115 

Figure 1: Schematic representation of the testing condition for Experiment 1 (top view). 116 

 117 

Data acquisition using Visual Field Analysis 118 

Data acquisition 119 

To perform data acquisition, Visual Field Analysis requires three main inputs for each analysed subject (Figure 2). 120 

The first input is the video recording of the animal’s behaviour. The second input is a file containing information 121 

about the tracking (x, y coordinates) of specific body parts (output file provided by DeepLabCut). ‘Visual Field 122 

Analysys’ focuses on three points located on the head: the closest points to the left eye, the right eye and the top 123 

of the head. For the current experiment, the positions of these 3 points were manually labelled on 100 frames so 124 

that DeepLabCut could accurately generalise each point of interest on all video recordings. The third input 125 

corresponds to a spreadsheet where the experimenter manually enters specific information about the observed 126 

animal. Further information is provided in our protocol (Josserand and Lemaire 2020).  127 
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 128 

Figure 2: Diagram showing the inputs required to run Visual Field Analysis. 129 

 130 

To proceed with data acquisition, the extent of the frontal and lateral visual fields for the species under investigation 131 

must also be defined. In the current study, we subdivided the visual field into: two frontal visual fields (each 15° 132 

wide from the midline, Figure 3), two lateral visual fields (each 135° wide starting from the frontal visual field line, 133 

Figure 3) and the blind visual field (30° wide starting from the lateral visual field line, Figure 3). 134 

 135 

 136 

Figure 3: Schematic representation of the visual fields defined for the experiments. The yellow midline separates the left 137 

visual field from the right visual field. The green lines show the borders of the frontal vision (from the midline, 15° on each 138 

side) and the blue lines show the blindspot of the chick. Each angle can be manually chosen in Visual Field Analysis program. 139 
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Using the visual fields previously defined and the location of the stimuli, the program assesses in which 140 

portion (frontal or lateral) of the hemifield (left or right) the stimuli fall in each frame. For each frame, if the stimulus(i) 141 

is located within a visual field, a value of 1 is attributed to that visual field (see the light-green dash line on Figure 142 

4.A). If the stimulus is straddling on two visual fields, the proportion of the object located within each visual field is 143 

attributed to each one of them (see the light-green dash line on Figure 4.B).  144 

The output through which ‘Visual Field Analysis’ provided eye-use data varies depending on the location 145 

and number of stimuli. In this experiment, Visual Field Analysis computed eye-use for one stimulus.  146 

 147 

 148 
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Figure 4: Visualisation of the projection lines defining each region of the visual field. The yellow line indicates the midline and 149 

delimitates each hemifield, providing the nasal margin of the frontal visual fields. The green lines delimitate the frontal visual fields 150 

from the lateral visual fields. The blue lines delimitate the lateral visual fields from the blind spot. In these pictures, referring to 151 

the set up of the current experiment, the visual field used to look at the stimulus is shown, which can be compare to the information 152 

reported on the left side of the pictures (within the dark rectangles on top and bottom left corners of the images). Since our 153 

application allows to record visual field use for up to two simultaneously presented objects, in these images we can see two grey 154 

rectangles (reporting information on the eye-use for each of the two objects). In the current example, where only one stimuls was 155 

present, the relevant information is presented in the grey rectangle in the upper part of the image (referring to the top stimulus), 156 

while the other can be ignored. A value is assigned to every visual field, indicating whether the stimulus was located inside it. A 157 

value of 1 for a given visual field indicates that the stimulus is entirely located within that visual field, such as in figure 4A. However, 158 

the stimulus can be straddling into two visual fields, such as in figure 4B. Consequently, the program attributes different values 159 

depending on the portion of the stimuli extent (lillac dash lines) located in a visual field (the stimulus extent is here defined by its 160 

borders). 161 

 162 

Error threshold setting 163 

As a strategy to identify and exclude frames innacurately tracked by DeepLabCut, we implemented an 164 

error threshold approach. For each video the experimenter can set an error threshold that specified the acceptable 165 

range of distances between the three points tracked on the head of the animal. The error threshold is based on the 166 

average distance between each body parts tracked by DeepLabCut and excludes frames which are too far from 167 

the average distance. As an example, the average distance between the ‘leftHead’ and ‘rightHead’ points was 58 168 

pixels for subject 5 of the current experiment. For this animal, we chose a threshold of 3. This threshold corresponds 169 

to the number of standard deviations above which a frame is considered as an outlier; thus, the absolute value of 170 

the threshold in terms of pixels is variable. With a threshold set at 3, 1.86% of the frames were preliminarly labelled 171 

as outliers. These frames were then manually inspected to address the accuracy of this process and could be 172 

removed from our analysis if visual observation confirmed them to be outliers (Figure 5). The treshold used for 173 

each subject of the current experiment, as well as the percentage of frames manually checked and excluded from 174 

the analyses at these different steps, are reported in Table 1. 175 

To help users choosing an appropriate threshold and check the program’s accuracy, Visual Field Analysis 176 

has a built-in function to visualise frames. It is possible to either visualize the frames removed from the analysis 177 

given the chosen error threshold, in addition to a set of randomly selected frames wich are provided by the program 178 

to assess its accuracy. 179 

 180 
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 181 

Figure 5: Two of the frames considered as outliers in our example (from subject 5 of the current experiment), with a threshold of 182 

3. The red circles on the images highlights the position of the labels. On image 5A, the chick has not placed its head inside the 183 

round opening yet, but DeepLabCut incorrectly placed the ‘leftHead’ (blue dot), ‘topHead’ (green dot) and ‘rightHead’ (red dot) 184 

on an empty portion of the screen, close to the stimulus. On image 5B, the chick started to insert its head in the round opening, 185 

but most of it is still invisible. DeepLabCut incorrectly located the ‘leftHead’, ‘topHead’ and ‘rightHead’ labels on the animal’s beak.  186 

 187 

Manual coding of the data 188 

To assess the reliability of the eye-use data provided by Visual Field Analysis, we manually checked all the frames 189 

analysed by Visual Field Analyses (7639 frames in total). The frames were checked and saved using a built-in 190 

function provided by Visual Field Analysis. Each frame was inspected by two independent coders, each of whom 191 

coded all the frames independently from the other. Then, the two experimenters compared their output, re-192 

inspected all the frames for which a different coding was assigned and agreed on a final labelling of these frames. 193 

The manual scores were attributed using the same score attribution method and the same visual field 194 

subdivisions than Visual Field Analysis. On each frame, the coders surimposed a transparent sheet, on which five 195 

lines originating from a central point represented the subdivisions of the chick visual field (see Fig. 3). For each 196 

frame, if the visual-field delimitation lines of the translucent sheet used for manual scoring overlapped perfectly 197 

with the lines used by Visual Field Analysis for the attribution of the scoring (as visible in Fig. 4), the original 198 

automated scoring was considered accurate. In this case, the same original scoring provided by Visual Field 199 

Analysis was reported also for manual scoring. If there was not a perfect overlap, the original scoring was 200 

considered inaccurate and the frame was “relabelled”, providing new vlaues for manual scoring. In this case, the 201 

same criteria described above were followed: if the stimulus entirely fallen out within a visual field, a value of 1 was 202 

attributed to it. If the stimulus straddled on two visual fields, the proportion of the stimulus located within each visual 203 

field was attributed to each one of them (e.g., 0.75 and 0.25).  204 

 205 
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Statistical analyses 207 

The scores obtained for each visual field (frontal left, frontal right, lateral left and lateral right) were compared 208 

between scoring methods (Visual Field Analysis vs. manual coding) using correlation tests (Pearson’s test) overall 209 

and per individual. As some videos were better tracked by DeepLabCut than others, we report the reliability of our 210 

program in relation to the tracking accuracy (measured as the percentage of frames that received identical scoring 211 

in the manual and automated scoring). The statistical tests were performed using RStudio (RStudio Team 2015). 212 

 213 

Results 214 

Eye-use data reliability 215 

The Pearson’s correlations tests revealed an almost perfect, and highly significant, correlation between scoring 216 

methods, both when the data of the whole sample were taken in in consideration as well as when the analysis was 217 

run at the single subject level. This was true for each visual field (see Table 1 for statistics).    218 

 The number of frames for which the manual scoring of the human coder was discrepant from that assigned 219 

by Visual Field Analysis (relabelled frames) is detailed for each subject in Table 1. No discrepancy between the 220 

manual coding and the automated coding was found for subject 8 and 10. Thus, for these subjects, no frames were 221 

relabelled and a perfect correlation was, of course, found between manual and automated scoring. One should 222 

note that, the reliability of our application is directly dependent on the DeepLabCut tracking accuracy, which differs 223 

across conditions (different videos settings) and individuals (different behaviours). When the DeepLabCut tracking 224 

was 100% accurate, the output produced by Visual Field Analysis perfectly matched the manual scoring done by 225 

the human coders. 226 

For the 8 remaining subjects, the tracking accuracy (i. e. the percentage of frames that received identical 227 

scoring in the manual and automated scoring) fluctuated from 65.4 to 99.9%. Nonetheless, the reliability of the 228 

program to score eye-use remained relatively high in all conditions (see Table 1 for statistics). Even when the 229 

tracking accurary was at its lowest (65.4 % for subject 9), the correlation between the coding provided by Visual 230 

Field Analysis and the manual coding remained strong for most visual fields (pearson’s r ranging from 0.82 to 0.97), 231 

although it decreased in the frontal right visual field (Pearson’s r = 0.63).  232 

 233 

  234 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 10, 2021. ; https://doi.org/10.1101/2021.05.08.443242doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.08.443242
http://creativecommons.org/licenses/by-nc/4.0/


 12 

Table 1: Table showing the tracking accuracy at the individual and at the group level. All the frames analysed by Visual Field 235 

Analysis were then manually coded, and the “frames relabelled” column reports the number of frames for which a discrepancy 236 

emerged between manual and automated coding. The “frame verified” column reports the tracking accuracy, which correspond 237 

to the number of frames correctly tracked (“frames verified” minus “frames relabelled”) over the total number of frames (“frames 238 

verified”). The two types of coding (manual and automatic) have been compared using Spearman’s correlation tests, both at the 239 

individual level and for the whole sample of N=10 chicks. This has been done separately for each visual field (frontal left and 240 

right, lateral left and right). Results of these correlation are reported in the last 8 columns.  241 

 242 

 243 

Discussion 244 

Automated and reliable assessmets of visual field use can support the investigation of behavioural 245 

lateralisation. Our results show that Visual Field Analysis can reliably be used to automatically assess eye-use 246 

behaviour in animals with laterally-placed eyes, substituting manual coding methods. The comparison between the 247 

manual and of the automaned scoring revealed a nearly perfect correlation between manual score and VIdual Field 248 

Analysis score.  249 

With optimum tracking conditions, the results provided by the application can be reliable at 100% (i.e., 250 

identical results can be obtained as with manual scoring). Visual Field Analysis excludes from the analyses frames 251 

with a low degree of likelihood (i.e., frames that DeepLabCut considered as being unlikely to be well-tracked), thus 252 

keeping only frames with a confidence of being well-tracked above 95%. It also excludes frames where the distance 253 

between the DeepLabCut’s labels is higher than a given threshold. Note that the two measures are often correlated: 254 

when DeepLabCut tracking is imperfect, both the number of frames considered as unlikely to be well-tracked and 255 

the number of frames considered as outliers with the threshold method are high. Therefore, most of the frames that 256 

could be wrongly tracked are excluded from the analysis. Moreover, unsing a built-in function of our application, 257 

the user can manually visualize a certain number of random frames of a video to check the program performance. 258 

We suggest to visualise at least 100 frames per individual with more than 90% of tracking accuracy, in order to 259 
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achieve a performance similar to what described in the current study If the tracking accuracy is lower than 90%, 260 

we suggest to train again DeepLabCut using a new set of frames or a different labelling method. 261 

Visual Field Analysis can not only assess simple preferential eye-use (whether the left or right eye is 262 

preferred). It can also investigate the use of sub-regions within each hemifield (frontal visual field vs lateral visual 263 

field), allowing the analysis of eye-use behaviour at a fine level, which would be very time consuming if done 264 

manually. Alongside measuring eye-use, the application allows the recording of other relevant behavioural 265 

measurements, such as the activity level of an animal’s head while keeping track of its positions in different areas 266 

of a testing environment (for this last function, the performance of Visual Field Analysis has been already validated 267 

in a previous study, showing once again very high correlation with the measurements obtrained by traditional 268 

manual coding methods (Santolin et al. 2020)). This provides additional information which can be analysed in 269 

relation to eye-use behaviour or independently from it, allowing for richer behavioural assessements and for more 270 

flexible use in different experimental designs.  271 

Given the numerous practical advantages offered by automated behavior tracking methods, compared to 272 

manual ones, we believe that automated methods should be chosen to ensure reproducible data analysis. Visual 273 

Field Analysis offers an important resource for research on behavioural lateralization, allowing to collect and 274 

analyse a richer set of data, in a less time consuming and unbiased way. 275 
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