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Abstract
In this paper, we report an open-source toolkit for protein 3D structure modeling,

named OPUS-X. It contains three modules: OPUS-TASS2, which predicts protein

torsion angles, secondary structure and solvent accessibility; OPUS-Contact, which

measures the distance and orientations information between different residue pairs;

and OPUS-Fold2, which uses the constraints derived from the first two modules to

guide folding. OPUS-TASS2 is an upgraded version of our previous method

OPUSS-TASS (Bioinformatics 2020, 36 (20), 5021-5026). OPUS-TASS2 integrates

protein global structure information and significantly outperforms OPUS-TASS.

OPUS-Contact combines multiple raw co-evolutionary features with protein 1D

features predicted by OPUS-TASS2, and delivers better results than the open-source

state-of-the-art method trRosetta. OPUS-Fold2 is a complementary version of our

previous method OPUS-Fold (J. Chem. Theory Comput. 2020, 16 (6), 3970-3976).

OPUS-Fold2 is a gradient-based protein folding framework based on the

differentiable energy terms in opposed to OPUS-Fold that is a sampling-based method

used to deal with the non-differentiable terms. OPUS-Fold2 exhibits comparable

performance to the Rosetta folding protocol in trRosetta when using identical inputs.

OPUS-Fold2 is written in Python and TensorFlow2.4, which is user-friendly to any

source-code level modification. The code and pre-trained models of OPUS-X can be

downloaded from https://github.com/OPUS-MaLab/opus_x.
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Introduction
Protein 3D structure prediction is crucial since the experimental approaches are

usually time-consuming. In recent years, with the development of deep learning

techniques, many methods have been proposed 1-7, improving the performance of

protein structure prediction by a large margin. In the recent 14th Community-Wide

Experiment on the Critical Assessment of Techniques for Protein Structure Prediction

(CASP14), AlphaFold2 developed by DeepMind exhibits astonishingly performance 7,

indicating that the computational methods have reached a practicable level.

Although protein 3D structure prediction is important, there are scenarios in

which high-accuracy prediction of low-dimensional structural features, such as 1D

features like torsion angles (Φ and Ψ), secondary structure (3-state and 8-state) and

solvent accessibility, may be useful for successive modeling 8. Protein backbone

torsion angles (Φ, Ψ and Ω) determine the entire protein conformation. Among them,

Ω is around 180° in most case. Therefore, most researches only take Φ and Ψ into

consideration 9-12. Protein secondary structure has been classified into either 3- or

8-state 13, and it can be used to describe protein local conformation. Protein solvent

accessibility measures the residue’s exposure to solvent at its folded state. Many

successful methods have been proposed to predict protein 1D features 9-12, 14, 15, among

which SPIDER3 11 and NetSurfP-2.0 12 adopted bidirectional recurrent neural

networks to measure long-range interactions, SPOT-1D 9 integrated the predicted

contact map 16 to capture protein global information. Our previous work OPUS-TASS
10 introduced some new features derived from our potential functions 17-19 to improve

the accuracy.

Protein contact map is critical to template-free modeling. At first, protein contact

map is used to predict whether the Euclidean distance between two Cβ atoms is less

than 8.0 Å 3, 16. Then, some studies demonstrated the advantages of predicting real

values of contact distance for the folding 4, 20. Recently, trRosetta 5 expanded the

definition of contact information, including both distance and orientations information.

In trRosetta, the distance information refers to the traditional Cβ- Cβ distance, and the
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orientations information between residues 1 and 2 contains 3 dihedrals (ω, θ12, θ21)

and 2 angles (φ12, φ21) 5. Here, ω denotes the dihedral of Cα1- Cβ1- Cβ2- Cα2, θ12

denotes the dihedral of N1-Cα1- Cβ1- Cβ2, φ12 denotes the angle of Cα1- Cβ1- Cβ2. Their

results showed that orientations-guided folding performs better than distance-guided

folding.

Protein 3D structure can be generated directly by optimization using

energy-guided information. For instance, RaptorX-Contact 3 used Crystallography and

NMR System (CNS) 21 to optimize its predicted distance constraints. trRosetta 5

developed a Rosetta protocol to optimize its distance and orientations constraints

based on pyRosetta 22, 23. Currently, trRosetta-style’s folding is the most common one

since it is fast and accurate.

In this research, we propose an open-source toolkit for protein 3D structure

modeling, named OPUS-X. It consists of three modules: OPUS-TASS2,

OPUS-Contact, and OPUS-Fold2. Comparing with its previous version OPUS-TASS
10, OPUS-TASS2 introduces the results from trRosetta 5 to measure its global

information and adds protein solvent accessibility as its extra outputs. OPUS-Contact

combines three raw co-evolutionary features similar to TripletRes 24 (including the

covariance matrix (COV), the precision matrix (PRE) 25 and the coupling parameters

of the Potts model by pseudo-likelihood maximization (PLM) 26, 27), the results from

trRosetta 5, and the protein 1D features predicted by OPUS-TASS2 to deliver the final

trRosetta-style’s outputs (ω, θ12, θ21, φ12, φ21). Different from our previous

sampling-based protein folding framework OPUS-Fold 8, OPUS-Fold2 is a

gradient-based method and can be used to perform the modeling guided by the

trRosetta-style’s outputs from OPUS-Contact.

The contributions of this work can be summarized as follows:

1. The protein torsion angles, secondary structure, solvent accessibility

predicted by OPUS-TASS2 are significantly more accurate than those predicted by the

state-of-the-art methods in the literature.

2. The protein 3D folding performance of OPUS-Contact is better than that of

trRosetta, which is an open-source state-of-the-art method.
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3. We develop a flexible gradient-based protein folding method, OPUS-Fold2,

which is written in Python and TensorFlow2.4, providing an alternative for the

researchers who may need to modify the folding protocol or energy terms at

source-code level. The accuracy of the results modeled by OPUS-Fold2 is comparable

to that modeled by the Rosetta folding protocol in trRosetta.
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Methods

Datasets

OPUS-TASS2 and OPUS-Contact use the same training and validation sets as

OPUS-TASS 10, which were culled from the PISCES server 28 by SPOT-1D 9 on

February 2017 with following constraints: resolution > 2.5 Å, R-free <1, and

sequence identity < 25%. There are 10029 and 983 proteins in the training set and

validation set, respectively.

In this research, we use 5 independent test sets to evaluate the performance of

different approaches. CASP-FM (56), collected by SAINT 29, contains 10

template-free modeling (FM) targets from CASP13, 22 FM targets from CASP12, 16

FM targets from CASP11, and 8 FM targets from CASP10. CASP13 (26) contains 26

FM targets from CASP13. CASP14 (15) contains 15 FM targets from CASP14. The

native structures of the targets in CASP13 (26) and CASP14 (15) are downloaded

from the CASP website (http://predictioncenter.org). CAMEO-Hard61 (60), collected

by OPUS-Rota3 30, contains 60 proteins (one is discarded since it contains over 900

residues) released between January 2020 and July 2020, and labeled as hard targets by

the CAMEO website 31. CAMEO (78), collected by trRosetta 5, contains 78 hard

targets (we remove the targets that have missing residues for better evaluation)

released between December 2018 and June 2019.

Performance Metrics

MAE(Φ) and MAE(Ψ) are used to measure the mean absolute error (MAE) between

the native protein backbone torsion angle and predicted one. SS3 and SS8 denote the

percentage of correct prediction for 3- and 8-state protein secondary structure,

respectively. ASA denotes the Pearson Correlation Coefficient of protein solvent

accessibility.

To evaluate the performance of contact distance prediction, we use Ps ≥ 24 and Ps ≥

12 to denote the precision of the top L predicted contacts with sequence separation of s,

F/M and F/L to denote the F1-score of all possible contacts with sequence separation
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of 12 ≤s< 24 and 24 ≤s, respectively. TM-score 32 is used for protein 3D structure

evaluation.

Framework of OPUS-X

OPUS-X consists of three modules: OPUS-TASS2, OPUS-Contact and

OPUS-Fold2. More details are shown in Figure 1.

Figure 1. Three modules in OPUS-X. The red structures are the predicted structures
during the folding, the blue structure is its native counterpart.

OPUS-TASS2

The input features of OPUS-TASS2 can be categorized into three parts. The first part

contains the same 76 features as OPUS-TASS 10, including 20 Position Specific

Scoring Matrix (PSSM) profile features generated by three iterations of PSI-BLAST
33 v2.10.0+ with default parameters against UniRef90 database 34 updated in

December 2019, 30 HHM profile features generated by HHBlits v3.1.0 35 with default

parameters against Uniclust30 database 36 updated in August 2018, 7 physicochemical

properties and 19 PSP19 features 17, 18. The second part is 30 HHM profile features

generated using hhmake from the multiple sequence alignment results obtained by
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DeepMSA 37. DeepMSA is a state-of-the-art multiple sequence alignment method

which searches the alignment results in UniRef90, Uniclust30 and Metaclust 38. The

third part is the output of trRosetta 5. Therefore, both distance and orientations global

information can be captured in OPUS-TASS2.

The output features of OPUS-TASS2 contain one regression output node to

predict solvent accessibility, 3 regression output nodes to predict CSF3 features 10, 19,

4 regression output nodes to predict sin(Φ), cos(Φ), sin(Ψ) and cos(Ψ), 11

classification output nodes to predict 3- and 8-state secondary structure. 8-state

secondary structure is defined as follows: coil C, high-curvature S, β-turn T, α-helix H,

310-helix G, π-helix I, β-strand E and β-bridge B 9, 13. They can be further classified

into coil C (C, S and T), helix H (H, G and I) and strand E (E and B).

The neural network architecture of OPUS-TASS2 is shown in Figure 2. To

introduce the results from trRosetta, we use a stack of dilated residual-convolutional

blocks similar to trRosetta to perform the feature extraction. Sequentially, we perform

feature selection, using the 64 filter-dimension features at (n, n) to represent the

features of residue n. Then, we concatenate the 2D inputs with the 1D inputs, which

contain the first part and second part input features of OPUS-TASS2 defined above,

and feed them into the following modules which are basically identical to that in

OPUS-TASS 10.

Figure 2. Framework of OPUS-TASS2. The outputs of trRosetta go through 61 dilated
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residual-convolutional blocks and output 64 features for each residue in which
distance and orientations global information are included. Then, these 64 features and
106 1D features are concatenated to go through three modules: Resnet module 39,
modified Transformer module 10, 40 and bidirectional Long-Short-Term-Memory
module 41. The residual unit used here is similar to the conventional residual block
except the strides of all units are set to be one. B denotes batch size, which is set to be
one in OPUS-TASS2. L denotes sequence length.

OPUS-TASS2 adopts ensemble strategy as OPUSS-TASS 10 and SPOT-1D 9, and

it consists of 9 models. The average is used for 3- and 8-state secondary structure

classification prediction, and the median is used for backbone torsion angles and

solvent accessibility regression prediction.

OPUS-Contact

The inputs of OPUS-Contact contain 4 parts. Following TripletRes 24, the first three

parts are the three raw co-evolutionary features: the covariance matrix (COV), the

precision matrix (PRE) 25 and the coupling parameters of the Potts model by

pseudolikelihood maximization (PLM) 26, 27. The fourth part contains 92 1D features:

including 76 features from the first part of input features of OPUS-TASS2, and 1

solvent accessibility, 4 torsion angles (sin(Φ), cos(Φ), sin(Ψ) and cos(Ψ)) and 11

secondary structure (3- and 8-state) predicted by OPUS-TASS2. We use outer

concatenation function as SPOT-1D 9 to convert 1D features (L, 92) into 2D features

(L, L, 184). Together with the results from trRosetta 5 (L, L, 100) and CCMpred 42 (L,

L, 1), the final fourth part features have 285 features in total. Here, COV, PRE, PLM,

CCMpred and the results from trRosetta are generated from the multiple sequence

alignment results obtained by DeepMSA 37.

The outputs of OPUS-Contact are identical to that of trRosetta 5, which include

the predicted Cβ- Cβ distance, 3 dihedrals (ω, θ12, θ21) and 2 angles (φ12, φ21) between

residues 1 and 2. The distance ranges between 2 and 20 Å, and it is segmented into 36

bins with 0.5 Å interval, plus one bin represents the >20 Å case. φ ranges between 0

and 180°, and it is segmented into 12 bins with 15° interval, plus one bin represents

the non-contact case. ω, θ range between -180 and 180°, and they are segmented into
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24 bins with 15° interval, plus one bin represents the non-contact case.

The neural network architecture of OPUS-Contact is shown in Figure 3. We use a

stack of dilated residual-convolutional blocks similar to the 2D feature extraction step

in OPUS-TASS2. The 4 inputs parts (COV, PRE, PLM and Others) go through 41

blocks separately at first, and then concatenate to go through the following 21 blocks.

Figure 3. Framework of OPUS-Contact. The dilated residual unit is identical to that in
OPUS-TASS2. B is also set to be one in OPUS-Contact.

OPUS-Contact also adopts ensemble strategy as trRosetta 5 and it consists of 7

models. The average is used for the final prediction.

OPUS-Fold2

OPUS-Fold2 is a gradient-based protein folding framework. The variables of

OPUS-Fold2 are the backbone torsion angles (Φ, Ψ and Ω) of all residues.

OPUS-Fold2 minimizes the loss function derived from the outputs of OPUS-Contact

by adjusting its variables.

The initial Φ, Ψ are predicted by OPUS-TASS2, and Ω is set to 180°. The loss

function of OPUS-Fold2 in this research is defined as follows:
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�������� is the collection of distance constraints, in which �4≤����<20 ≥ 0.05. ����ω

and ����θ are the collections of ω and θ constraints, respectively, in which

�������� ≥ 0.55. ����φ is the collections of φ constraints, in which �������� ≥ 0.65.

�����, �ω, �θ and �φ are the weights of each term, which are set to be 10, 8, 8 and

8, respectively. Similar to the folding protocol in trRosetta 5, we convert the distance

and orientations distributions to the energy terms by the following equations:

���������� =− ���� + ln ( ��/�� ���)

������������ =− ���� + ln ��

Following Dfire 43, the α is set to be 1.57. The reference state for the distance

distribution is the probability of the Nth bin [19.5, 20], and for the orientation

distribution is the probability of the last bin [165°, 180°]. �� is the distance for the ith

distance bin. �� is the probability for the ith bin. Cubic spline curves are generated to

make the energy terms differentiable.

The optimization process of OPUS-Fold2 is based on TensorFlow2.4 44, which is

a flexible commonly-used tool to deal with the gradient descent tasks. We use Adam
45 optimizer to optimize our loss function with an initial learning rate of 0.5, 1000

steps are performed.
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Results

Performance of OPUS-TASS2

We compare the performance of OPUS-TASS2 with that of NetSurfP-2.0 12,

SPOT-1D 9 and our previous work OPUS-TASS 10 on CAMEO-Hard61 (60),

CASP-FM (56) and CASP14 (15). The results of NetSurfP-2.0 and SPOT-1D are

obtained from their official websites. As shown in Table 1, OPUS-TASS2 achieves the

highest accuracies for 3- and 8-state secondary structure prediction, the lowest mean

absolute errors for torsion angles (Φ and Ψ) prediction and the highest Pearson

Correlation Coefficient for solvent accessibility prediction on all three datasets.

Table 1. Performance of different predictors on CAMEO-Hard61 (60), CASP-FM
(56), and CASP14 (15). The best result for each test is shown in boldface.

SS3 SS8 MAE(Φ) MAE(Ψ) ASA
CAMEO-Hard61 (60)

NetSurfP-2.0 83.78 70.38 20.1 29.99 0.779
SPOT-1D 83.69 70.72 19.55 29.97 0.775

OPUS-TASS 84.15 72.12 19.26 29.47 -
OPUS-TASS2 84.55 72.5 19.07 28.79 0.797

CASP-FM (56)
NetSurfP-2.0 80.68 69.14 19.94 31.43 0.749
SPOT-1D 82.37 71.11 19.39 30.1 0.744

OPUS-TASS 83.4 73.27 18.85 28 -
OPUS-TASS2 85.96 76.28 17.94 25.17 0.804

CASP14 (15)
NetSurfP-2.0 75.39 61.87 22.62 40.54 0.68
SPOT-1D 75.19 61.41 23.19 43.98 0.663

OPUS-TASS 77.3 63.53 21.91 38.93 -
OPUS-TASS2 80.87 68.26 20.53 33.48 0.735

The major differences between OPUS-TASS2 and OPUS-TASS 10 are the two

extra input features, which are the second part 30 HHM profile features and the third

part 64 global information features. To verify the importance of these two extra input

features, we add them to the OPUS-TASS original 76 input features one by one. The

results are shown in Table 2, it suggests that both of them are beneficial to the final
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prediction accuracy, especially the third part which contains the distance and

orientations global information predicted by trRosetta 5.

Table 2. Importance of different parts in OPUS-TASS2 input features.

1st 76-d 2nd 30-d 3rd 64-d SS3 SS8 MAE(ϕ) MAE(ψ) ASA
CAMEO61 (60)

√ 83.55 71.06 19.59 29.52 0.786
√ √ 83.45 71.39 19.6 29.51 0.782
√ √ √ 83.68 71.58 19.17 29.24 0.788

CASP-FM (56)
√ 84.02 74.22 18.58 26.91 0.77
√ √ 84.14 74.27 18.72 26.65 0.767
√ √ √ 85.85 75.63 18.35 25.47 0.795

CASP14-FM (15)
√ 76.02 62.41 21.79 38.65 0.68
√ √ 77.3 64.15 21.92 36.91 0.705
√ √ √ 80.37 67.1 20.73 33.59 0.733

Since global information is crucial for protein 1D features prediction, we would

like to find out the best performance OPUS-TASS2 can achieve if the input features

for global information are all from the native structures. In Table 3, we list the

performance of OPUS-TASS2 using the real orientation information (ω, θ and φ), real

distance information, and both of them, respectively. The results show that, after

introducing the real values, the performance of OPUS-TASS2 is significantly

improved, which means the accuracy of OPUS-TASS2 can be increased by the

improvement of trRosetta-style’s outputs.

Table 3. Performance of OPUSS-TASS2 based on the real values of different global
information.

SS3 SS8 MAE(ϕ) MAE(ψ) ASA
CAMEO61 (60)

OPUS-TASS2 84.55 72.5 19.07 28.79 0.797
w/real orient 89.29 81.37 15.9 17.39 0.877
w/real dist 87.08 76.42 17.91 24.14 0.835
w/real all 90.85 83.35 15.32 15.97 0.888
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CASP-FM (56)
OPUS-TASS2 85.96 76.28 17.94 25.17 0.804
w/real orient 89.46 82.81 15.2 16.25 0.885
w/real dist 88.04 79.33 16.87 21.47 0.85
w/real all 90.85 84.42 14.68 15.35 0.9

CASP14-FM (15)
OPUS-TASS2 80.87 68.26 20.53 33.48 0.735
w/real orient 87.51 78.01 16.5 17.83 0.874
w/real dist 84.9 72.45 18.92 26.82 0.805
w/real all 90.04 81 15.41 16.45 0.889

Performance of OPUS-Contact

To evaluate the performance of contact distance information, current studies 3, 5, 16

usually used precision of the top L predicted contacts or F1-score as the metric.

However, as shown in Figure 4, the correlation between theses distance-based metrics

and the TM-score of their corresponding 3D structures modeled by the folding

protocol in trRosetta 5 is not significant.

Figure 4. Correlation between distance-based metrics (Ps ≥ 24, Ps ≥ 12, F/M and F/L) and
the TM-score of their corresponding 3D structures based on different OPUS-Contact
models on CASP14 (15). Each dot denotes an OPUS-Contact model. The x-axis
represents the result of each metric and the y-axis represents the TM-score.

The outputs of OPUS-Contact contain both distance and orientations information,
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instead of evaluating them separately, we directly use the TM-score to measure the

accuracy of the predicted 3D structures obtained using these outputs information as

the constraints in trRosetta folding protocol. In Table 4, we list the performance of

OPUS-Contact and trRosetta 5 on CAMEO-Hard61 (60), CAMEO (78), CASP13 (26)

and CASP14 (15). Both OPUS-Contact and trRosetta use the same multiple sequence

alignment results from DeepMSA 37.

Table 4. TM-score of OPUS-Contact and trRosetta on different datasets.

CAMEO-Hard61 (60) CAMEO (78) CASP13 (26) CASP14 (15)
trRosetta 0.600 0.668 0.659 0.427

OPUS-Contact 0.616 0.684 0.671 0.469

Performance of OPUS-Fold2

We compare the folding performance of OPUS-Fold2 and the Rosetta 22, 23 folding

protocol in trRosetta 5 on CAMEO-Hard61 (60). As shown in Figure 5, when using

the distance constraints exclusively, OPUS-Fold2 outperforms trRosetta by a large

margin. OPUS-Fold2 also slightly outperforms trRosetta when using both distance

and orientations constraints. However, the complete folding protocol of trRosetta

includes some other terms that haven’t been included into OPUS-Fold2 yet. The final

result of the complete version of trRosetta is slightly better than that of OPUS-Fold2.

Figure 5. Performance of OPUS-Fold2 and the Rosetta folding protocol in trRosetta
based on the outputs from OPUS-Contact on CAMEO-Hard61 (60). dist denotes the
prediction obtained by distance-guided folding exclusively, ori denotes the prediction
obtained by orientations-guided (ω, θ and φ) folding exclusively, dist+ori denotes the
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prediction obtained using both of them, and complete denotes the prediction obtained
using trRosetta’s original complete energy terms (including the ramachandran, the
omega, the van der Waals (vdw), and the centroid backbone hydrogen bonding
(cen_hb) terms). The y-axis represents the TM-score.

We list the results of OPUS-Fold2 and the results of the complete version of

trRosetta in Figure 6. OPUS-Fold2 exhibits a consistent well performance on all four

datasets and achieves comparable performance to trRosetta when using identical

inputs from OPUS-Contact.

Figure 6. Performance of OPUS-Fold2 and the complete version of trRosetta on
CAMEO-Hard61 (60), CAMEO (78), CASP13 (26) and CASP14 (15).

We show the optimization process of OPUS-Fold2 in Figure 7. The total loss

become lower and the TM-score become higher along with the optimization. We also

show some intermediate structures during the optimization process of OPUS-Fold2 in

Figure 8, Figure 9 and Figure 10. For example, Figure 8 shows the optimization for

target 2020-01-18_00000081_1.pdb (with 444 residues in length) in CAMEO-Hard61

(60). In the first 100 epochs, the loss rapidly decreases from -67 to -130, and the

TM-score rapidly increases from 0.247 to 0.792. The loss continually decreases in the

following epochs and stabilizes around -140, and the TM-score stabilizes around 0.87.
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Figure 7. OPUS-Fold2 optimization process of target 2020-01-18_00000081_1.pdb
(with 444 residues in length) in CAMEO-Hard61 (60). The blue line is the total loss
and the red line is the TM-score.

Figure 8. Some intermediate structures of target 2020-01-18_00000081_1.pdb (with
444 residues in length) during the optimization process of OPUS-Fold2.
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Figure 9. Some intermediate structures of target 6BZT_D_21_522.pdb (with 501
residues in length) during the optimization process of OPUS-Fold2.

Figure 10. Some intermediate structures of target 2020-02-08_00000106_1.pdb (with
665 residues in length) during the optimization process of OPUS-Fold2.
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Concluding Discussion
Protein 3D structure prediction is an important and challenging task. The feasibility of

it has been demonstrated by the AlphaFold2 in CASP14 7. In this paper, we develop

an open-source toolkit for protein 3D structure modeling, named OPUS-X. It includes

a state-of-the-art protein torsion angles, secondary structure and solvent accessibility

predictor, namely OPUS-TASS2; a better global distance and orientations constraints

predictor compared with the open-source state-of-the-art method trRosetta 5, namely

OPUS-Contact; and a gradient-based protein folding framework that is comparable to

the Rosetta 22, 23 folding protocol in trRosetta 5, namely OPUS-Fold2.

As shown in Table 1, OPUS-TASS2 outperforms NetSurfP-2.0 12, SPOT-1D 9 and

OPUS-TASS 10 by a large margin, especially on the most difficult dataset CASP14

(15). We believe the accurate and detailed distance and orientations global

information plays a dominant role. Table 2 also indicates the importance of global

information. To further demonstrate the importance of global information and the

potentiality of OPUS-TASS2, we feed the real values of global information from the

native structures into OPUS-TASS2 to predict their 1D features. The results (Table 3)

show that, using the real orientation information (ω, θ and φ), real distance

information, and both of them will significantly improve protein 1D features

prediction accuracy. Note that, the improvement of introducing real orientations

information is significantly larger than that of introducing real distance information,

indicating the dominant influence of global orientations information. Combining them

will further boost the final accuracy.

Since the trRosetta-style’s 5 outputs contain both distance and orientations

information, and they may need to achieve a trade-off to deliver better 3D structure

prediction, evaluating them separately may not be a good idea. For example, as shown

in Figure 4, traditional distance-based metrics are not significant correlated with the

final 3D prediction accuracy. Therefore, we directly use the final 3D prediction results

to evaluate the trRosetta-style’s outputs. Comparing with the open-source

state-of-the-art method trRosetta, OPUS-Contact achieves better 3D structure
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prediction accuracy on CAMEO-Hard61 (60), CAMEO (78), CASP13 (26) and

CASP14 (15) (Table 4).

We also compare the performance of OPUS-Contact with that of some other

methods on CASP13 (26) and CASP14 (15). The results of their methods are

downloaded from the CASP website. On CASP13 (26), both OPUS-Contact

(TM-score=0.671) and trRosetta (TM-score=0.659) are better than the best method at

the time A7D (TM-score=0.644) 1. On CASP14 (15), both OPUS-Contact

(TM-score=0.469) and trRosetta (TM-score=0.427) are lower than the best human

group method AlphaFold2 (TM-score=0.850) and the best server group method

Zhang-Server (TM-score=0.540) 6. We believe the reason may lies in the insufficient

multiple sequence alignment searching step since the alignment results of 5 out of 15

targets have less than 5 sequences. Nevertheless, comparing with the other methods,

OPUS-Contact provides a better open-source protein structure prediction tool that can

be run on the user’s own server for the community.

OPUS-Fold2 is a gradient-based protein folding method. It is written in Python

and TensorFlow2.4, easily to be modified at source-code level, which is especially

useful for the folding energy term developers. Figure 5 shows the contributions of

distance and orientations constraints. Same as the Rosetta 22, 23 folding protocol in

trRosetta 5, the folding results guided by orientations constraints are significantly

better than that guided by distance constraints. After combining them together, the

accuracy is further improved. On CAMEO-Hard61 (60), OPUS-Fold2 outperforms

trRosetta when using distance constraints exclusively, orientations constraints

exclusively and both of them jointly as the energy function. However, after

introducing some other terms such as the ramachandran, the omega, the van der

Waals, and the centroid backbone hydrogen bonding into the trRosetta’s energy

function, the folding performance of trRosetta is slightly better than that of

OPUS-Fold2 on CAMEO-Hard61 (60), CAMEO (78), CASP13 (26) and CASP14 (15)

(Figure 6). One of our future goals is to add these terms into OPUS-Fold2. Figure 7

and Figure 8 show some insights of the OPUS-Fold2 optimization step. Along with

the optimization, the total loss descends logically, indicating the effectiveness of
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OPUS-Fold2.
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