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Abstract  22 

Background and purpose: Brain ischemia is one of the most important pathologies of the central 23 

nervous system. Non-invasive molecular imaging methods have the potential to provide critical 24 

insights into the temporal dynamics and follow alterations of receptor expression and metabolism 25 

in ischemic stroke. The aim of this study was to assess the cannabinoid type 2 receptors (CB2R) 26 

levels in transient middle cerebral artery occlusion (tMCAO) mouse models at subacute stage 27 

using positron emission tomography (PET) with our novel tracer [18F]RoSMA-18-d6, and 28 

structural imaging by magnetic resonance imaging (MRI).  29 

Methods: Our recently developed CB2R PET tracer [18F]RoSMA-18-d6 was used for imaging the 30 

neuroinflammation at 24 h after reperfusion in tMCAO mice. The RNA expression levels of 31 

CB2R and other inflammatory markers were analyzed by quantitative real-time polymerase chain 32 

reaction using brain tissues from tMCAO (1 h occlusion) and sham-operated mice. 33 

[18F]fluorodeoxyglucose (FDG) was included for evaluation of the cerebral metabolic rate of 34 

glucose (CMRglc). In addition, diffusion-weighted imaging and T2-weighted imaging were 35 

performed for anatomical reference and delineating the lesion in tMCAO mice.  36 

Results: mRNA expressions of inflammatory markers TNF-α, Iba1, MMP9 and GFAP, CNR2 37 

were increased at 24 h after reperfusion in the ipsilateral compared to contralateral hemisphere of 38 

tMCAO mice, while mRNA expression of the neuronal marker MAP-2 was markedly reduced. 39 

Reduced [18F]FDG uptake was observed in the ischemic striatum of tMCAO mouse brain at 24 h 40 

after reperfusion. Although higher activity of [18F]RoSMA-18-d6 in ex-vivo biodistribution 41 

studies and higher standard uptake value ratio (SUVR) were detected in the ischemic ipsilateral 42 
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compared to contralateral striatum in tMCAO mice, the in-vivo specificity of [18F]RoSMA-18-d6 43 

was confirmed only in the CB2R-rich spleen.   44 

Conclusions: This study revealed an increased [18F]RoSMA-18-d6 measure of CB2R and a 45 

reduced [18F]FDG measure of CMRglc in ischemic striatum of tMCAO mice at subacute stage. 46 

[18F]RoSMA-18-d6 might be a promising PET tracer for detecting CB2R alterations in animal 47 

models of neuroinflammation without neuronal loss.  48 

 49 

Key words: cannabinoid type 2 receptor; [18F]RoSMA-18-d6; ischemic stroke; 50 

neuroinflammation; magnetic resonance imaging; positron emission tomography 51 
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Introduction  53 

The pathophysiology of ischemic stroke is complex and associated with a myriad of cellular and 54 

molecular pathways. The severe reduction in cerebral blood flow (CBF) initiates a cascade of 55 

hemodynamic, vascular and inflammatory processes in a time-dependent manner in the supplied 56 

brain territory, and subsequent defensive response for repair related to lesion expansion and 57 

containment. Irreversible tissue damage occurs in the core of the ischemic area; while neurons in 58 

the ischemic penumbra face excitotoxicity, peri-infarct polarizations, inflammation and apoptosis, 59 

leading to a secondary tissue damage and expansion of the lesion if reperfusion cannot be 60 

restored within an early time frame [2-4]. Neuroinflammation post stroke has been an important 61 

therapeutic target. Anti-inflammatory, immunomodulatory treatments and microglia-targeted 62 

therapy were evaluated in clinical stroke trials [5-7]. Thus, there is a need for imaging the 63 

regional neuroinflammatory pattern for understanding disease mechanism and for therapeutic 64 

monitoring.  65 

Positron emission tomography (PET) using [18F]fluorodeoxyglucose ([18F]FDG) for 66 

cerebral metabolic rate of glucose (CMRglc), [15O]H2O for perfusion imaging, and diffusion 67 

weighted (DW) magnetic resonance imaging (MRI) are valuable tools to support understanding 68 

of the pathophysiology in patients with ischemic stroke [3, 8-14]. However, in vivo imaging of 69 

neuroinflammation and gliosis is challenging [12, 13, 15]. One reason is that the astrocytes and 70 

microglia are highly dynamic and heterogeneous in their subtypes, locations and activation status. 71 

Additionally, the identification of an ideal target for neuroinflammation imaging is highly 72 

demanding. Translocator protein (TSPO) is the most widely used neuroinflammation target for 73 

PET imaging. [11C]PK-11195, the first generation TSPO PET tracer, and several second-74 

generation tracers such as [11C]DAA1106, [11C]PBR06, [11C]PBR28, [11C]GE180, and 75 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2021. ; https://doi.org/10.1101/2021.05.08.441033doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.08.441033
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

 

[18F]DPA-713, [18F]DPA-714 [16-24] have been evaluated in (pre)-clinical studies. So far, 76 

imaging neuroinflammation with TSPO PET tracers yielded controversial results in rodents and 77 

patients with ischemic stroke [1, 13, 20]. Thus, the development of novel PET probes for 78 

visualizing  alternative targets in neuroinflammation have received great attention in recent years 79 

[25-27].  80 

Cannabinoid type 2 receptors (CB2R) are mainly expressed by immune cells including 81 

monocytes and macrophages. In the brain, CB2Rs are primarily found on microglia and have low 82 

expression levels under physiological conditions [2, 4, 28]. Upregulation of brain CB2R 83 

expression is reported under acute inflammation such as ischemic stroke, and related to lesion 84 

extension in the penumbra and subsequent functional recovery [29]. Treatment with CB2R 85 

agonists has been shown to be neuroprotective and attenuates macrophage/microglial activation 86 

in the mouse models of cerebral ischemia [29, 42-45]. CB2R is also upregulated in other brain 87 

diseases with involvement of inflammation/microglia under chronic inflammation in 88 

neurodegenerative diseases such as Alzheimer’s disease [30-33] and senescence-accelerated 89 

models [34], associated with amyloid-β deposits[28, 35-41].  90 

Several structural scaffolds of CB2R PET tracers have recently been developed [46-50] 91 

including pyridine derivatives, oxoquinoline derivatives; thiazole derivatives [51, 52]; 92 

oxadiazole derivatives [53]; carbazole derivatives [54]; imidazole derivative [55]; and thiophene 93 

derivatives [56, 57]. In this study, our newly developed pyridine derivative [18F]RoSMA-18-d6, 94 

which exhibited sub-nanomolar affinity and high selectivity towards CB2R (Ki: 0.8 nM, 95 

CB2R/CB1R > 12’000) [58] is selected as the CB2R PET tracer.  96 

The aim of the current study was to evaluate the novel CB2R tracer [18F]RoSMA-18-d6 in 97 

the transient middle cerebral artery occlusion (tMCAO) mouse models of focal cerebral ischemia  98 
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[60-66] using microPET. In addition,  [18F]FDG was included for evaluation of the cerebral 99 

metabolic rate of glucose (CMRglc). Diffusion-weighted imaging and  T2- weighted imaging 100 

were performed for anatomical reference and for delineating the lesion in tMCAO mice.  101 

 102 

Methods  103 

Radiosynthesis 104 

[18F]RoSMA-18-d6 was synthesized by nucleophilic substitution of the tosylate precursor with 105 

[18F]KF/Kryptofix222 in acetonitrile [58]. The crude product was purified by reverse phase 106 

semi-preparative high-performance liquid chromatography and formulated with 5 % ethanol in 107 

water for intravenous injection and for biological evaluations. In a typical experiment, a 108 

moderate radiochemical yield of ~ 12 % (decay corrected) was achieved with a radiochemical 109 

purity > 99 %. The molar activities ranged from 156 to 194 GBq/μmol at the end of synthesis. 110 

The identity of the final product was confirmed by comparison with the HPLC retention time of 111 

the non-radioactive reference compound by co-injection. [18F]FDG was obtained from a routine 112 

clinical production from the University Hospital Zurich, Switzerland. 113 

 114 

Animals  115 

Twenty-four male C57BL/6J mice were obtained from Janvier Labs (Le Genest-Saint-Isle, 116 

France). The mice were scanned at 8–10 weeks of age (20–25 g body weight). Mice were 117 

randomly allocated to sham-operation (n = 10) or tMCAO (n = 14). Mice underwent MRI, 118 

µPET/ computed tomography (CT), and 2,3,5-Triphenyltetrazolium chloride (TTC) histology 119 

staining for validation 24 h or 48 h after reperfusion. Animals were housed in ventilated cages 120 

inside a temperature-controlled room, under a 12-hour dark/light cycle. Pelleted food 121 
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(3437PXL15, CARGILL) and water were provided ad-libitum. Paper tissue and red Tecniplast 122 

mouse house® (Tecniplast, Milan, Italy) shelters were placed in cages as environmental 123 

enrichments. All experiments were performed in accordance with the Swiss Federal Act on 124 

Animal Protection and were approved by the Cantonal Veterinary Office Zurich (permit number: 125 

ZH018/14 and ZH264/16).  126 

 127 

Surgeries for tMCAO and sham-operation were performed using standard-operating procedures 128 

as described before [67, 68]. Anaesthesia was initiated by using 3 % isoflurane (Abbott, Cham, 129 

Switzerland) in a 1:4 oxygen/air mixture, and maintained at 2 %. Before the surgical procedure, a 130 

local analgesic (Lidocaine, 0.5 %, 7 mg/kg, Sintectica S.A., Switzerland) was administered 131 

subcutaneously (s.c.). Temperature was kept constant at 36.5 ± 0.5 °C with a feedback controlled 132 

warming pad system. All surgical procedures were performed in 15-30 min. After surgery, 133 

buprenorphine was administered as s.c. injection (Temgesic, 0.1 mg/kg b.w.), and at 4 h after 134 

reperfusion and supplied thereafter via drinking water (1 mL/32 mL of drinking water) until 24 h 135 

or 48 h. Animals received softened chow in a weighing boat on the cage floor to encourage 136 

eating. tMCAO animals were excluded from the study if they met one of the following criteria: 137 

Bederson testing was performed 2h post-reperfusion. Bederson score of 0, no reflow after 138 

filament removal, and premature death.  139 

 140 

mRNA isolation, reverse-transcription reaction and real-time polymerase chain reaction  141 

Brain hemispheres of C57BL/6 mouse, tMCAO mice at 24 h and 48 h post reperfusion were 142 

used for total mRNA isolation according to the protocols of the Isol-RNA Lysis Reagent (5 143 

PRIME, Gaithersburg, USA) and the bead-milling TissueLyser system (Qiagen, Hilden, 144 
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Germany). QuantiTect® Reverse Transcription Kit (Qiagen, Hilden, Germany) was used to 145 

generate cDNA. The primers (Microsynth, Balgach, Switzerland) used for the quantitative 146 

polymerase chain reaction (qPCR) are summarized in Supplementary Table 1. Quantitation of 147 

CNR2, Iba1, TNF-α, MMP9, GFAP and MAP-2 mRNA expression was performed with the 148 

DyNAmo™ Flash SYBR® Green qPCR Kit (Thermo Scientific, Runcorn, UK) using a 7900 HT 149 

Fast Real-Time PCR System (Applied Biosystems, Carlsbad, USA). The amplification signals 150 

were detected in real-time, which permitted accurate quantification of the amounts of the initial 151 

RNA template during 40 cycles according to the manufacturer's protocol. All reactions were 152 

performed in duplicates and in two independent runs. Quantitative analysis was performed using 153 

the SDS Software (v2.4) and a previously described 2−ΔΔCt quantification method [69]. The 154 

specificity of the PCR products of each run was determined and verified with the SDS 155 

dissociation curve analysis feature. 156 

 157 

In vivo MRI  158 

Data were acquired at 24 h after reperfusion on a 7 T Bruker Pharmascan (Bruker BioSpin 159 

GmbH, Germany), equipped with a volume resonator operating in quadrature mode for 160 

excitation and a four element phased-array surface coil for signal reception and operated by 161 

Paravision 6.0 (Bruker BioSpin) [67, 70-72]. Mice were anesthetized with an initial dose of 4 % 162 

isoflurane in oxygen/air (200:800 ml/min) and maintained at 1.5 % isoflurane in oxygen/air 163 

(100:400 ml/min). Body temperature was monitored with a rectal temperature probe (MLT415, 164 

ADInstruments) and kept at 36.5 °C ± 0.5 °C using a warm water circuit integrated into the 165 

animal support (Bruker BioSpin GmbH, Germany). T2-weighted MR images were obtained 166 

using a spin echo sequence (TurboRARE) with an echo time 3 ms, repetition time 6 ms, 100 167 
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averages, slice thickness 1 mm, field-of-view 2.56 cm × 1.28 cm, matrix size 256 × 128, giving 168 

an in-plane resolution of 100 μm × 100 μm. For DWI, a four-shot spin echo–echo planar imaging 169 

sequence with an echo time = 28 ms, repetition time = 3000 [70, 71] acquired with a field-of-170 

view of 3.3 cm × 2 cm and a matrix size of 128 × 128, resulting in a nominal voxel size of 258 171 

μm × 156 μm. Diffusion-encoding was applied in the x-, y-, and z-directions with b-values of 172 

100, 200, 400, 600, 800, and 1000 s/mm2, respectively, acquisition time 3 min 48 s. The 173 

ischemic lesion was determined as an area of significant reduction of the apparent diffusion 174 

coefficient (ADC) value compared with the unaffected contralateral side [73]. On T2-weighted 175 

images, the lesion was determined as an area of hyperintensities compared with the contralateral 176 

side. 177 

 178 

In vivo microPET studies 179 

MicroPET/CT scans were performed at 24 h after reperfusion with a calibrated SuperArgus 180 

µPET/CT scanner (Sedecal, Madrid, Spain) with an axial field-of-view of 4.8 cm and a spatial 181 

resolution of 1.6–1.7 mm (full width at half maximum). tMCAO and the sham-operated 182 

C57BL/6J mice were anesthetized with ca. 2.5 % isoflurane in oxygen/air (1:1) during tracer 183 

injection and the whole scan time period. The formulated radioligand solution ([18F]FDG: 9.9-11 184 

MBq or [18F]RoSMA-18-d6: 7.2-13 MBq) was administered via tail vein injection, and mice 185 

were dynamically scanned for 60 min. For blocking experiments, 1.5 mg/kg GW405833 was 186 

dissolved in a vehicle of 2 % Cremophor (v/v), 10 % ethanol (v/v), and 88 % water for injection 187 

(v/v) and injected together with [18F]RoSMA-18-d6. Body temperature was monitored by a 188 

rectal probe and kept at 37 °C by a heated air stream (37 °C). The anesthesia depth was measured 189 

by the respiratory frequency (SA Instruments, Inc., Stony Brook, USA). µPET acquisitions were 190 
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combined with CT for anatomical orientation and attenuation correction. The obtained data were 191 

reconstructed in user-defined time frames with a voxel size of 0.3875 × 0.3875 × 0.775 mm3 as 192 

previously described [74].  193 

 194 

Triphenyltetrazolium chloride (TTC) staining  195 

To assess the ischemic lesion severity in the brain of tMCAO mice and to validate the absence of 196 

lesion in the sham-operated mice, staining with TTC staining was performed. After 197 

measurements mice were euthanized, their brains were removed and 1-mm thick brain slices 198 

were obtained with a brain matrix. Slices were incubated in a 2.5 % TTC solution (Sigma-199 

Aldrich, Switzerland) in PBS at 37 °C for 3 min. Photographs of the brain sections were taken. 200 

Edema-corrected lesion volumes were quantified as described [75].  201 

 202 

Biodistribution studies in the mouse brain 203 

After PET/CT scanning of tMCAO mice at 24 h after reperfusion with [18F]RoSMA-18-d6, 204 

animals were sacrificed at 70 min post injection by decapitation. The spleen and brain regions of 205 

ischemic ipsilateral area and contralateral hemisphere were collected for analysis with a gamma 206 

counter. The accumulated radioactivities in the different tissues were expressed as percent 207 

normalized injected dose per gram of tissue normalized to 20 g body weight of the animals 208 

(norm. percentage injected dose per gram tissue (% ID/g tissue)).  209 

 210 

Data analysis and Statistics  211 

Images were processed and analyzed using PMOD 4.2 software (PMOD Technologies Ltd., 212 

Zurich, Switzerland). The time−activity curves were deduced from specific volume-of-interest 213 
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that were defined based on a mouse MRI T2-weighted image template [76]. Radioactivity is 214 

presented as standardized uptake value (SUV) (decay-corrected radioactivity per cm3 divided by 215 

the injected dose per gram body weight). [18F]RoSMA-18-d6 SUVR was calculated by using the 216 

midbrain in the corresponding hemisphere as reference brain region. For [18F]FDG PET, regional 217 

SUV was calculated. Two-way ANOVA with Sidak post-hoc analysis was used for comparison 218 

between groups (Graphpad Prism 9.0, CA, U.S.A).  219 

 220 

Results  221 

Increased expression of inflammation makers and neuronal damage after focal cerebral ischemia 222 

in tMCAO mice 223 

mRNA levels were measured to address the question whether mouse non-ischemic and ischemic 224 

hemispheres differ in their expression levels of CNR2 and other inflammatory genes. CNR2 225 

mRNA expression was increased to around 1.3 fold after 24 h reperfusion and at 48 h in the 226 

ipsilateral comparing to contralateral hemisphere (Fig. 1a). Similar 1.5-2.5 fold increases were 227 

observed in the mRNA expression of inflammatory markers including TNF-α, Iba1, MMP9 and 228 

GFAP at 24 h and 48 h after reperfusion in the ipsilateral compared to contralateral brain region 229 

(Fig. 1b-e). MAP-2 expression has been shown to be a reliable marker of neurons that undergo 230 

irreversible cell death [77, 78]. The neuron-specific MAP-2 expression was markedly reduced in 231 

the ipsilateral compared to contralateral hemisphere at 24 h and 48 h after reperfusion (Fig. 1f). 232 

As similar CNR2 mRNA expression were observed in 24 h and 48 h, our studies were performed 233 

at early time point of 24 h after reperfusion for investigating the functional, structural and 234 

molecular changes in the following experiments. 235 
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 236 

Reduced cerebral glucose metabolism and structural MRI lesion following tMCAO 237 

Reduced [18F]FDG uptake was observed in the presumed MCA territory of the ipsilateral 238 

hemisphere in tMCAO mice, while there was no difference in [18F]FDG uptake between 239 

hemispheres in sham-operated mice (Fig. 2a). SUVs were significantly lower in the ipsilateral in 240 

the striatum in tMCAO compared to the contralateral side and compared to the same region in 241 

sham-operated mice 1.8 vs 1.4 (Fig. 2b). There were no differences in [18F]FDG uptake in the 242 

cortex and cerebellum between the ipsilateral and contralateral hemisphere in tMCAO mice and 243 

sham-operated mice. T2-weighted MRI and DWI imaging were performed in tMCAO and sham-244 

operated animals at 24 h after reperfusion (Fig. 2c). The lesions in the ipsilateral side in the 245 

striatum and cortex were visible as areas of decreased values on the ADC maps calculated from 246 

DWI, and as areas of increased intensities on the T2-weighted MR images at 24 h after 247 

reperfusion following 1 h tMCAO (Figs. 2c-d). Ischemic lesions in the tMCAO were also seen 248 

ex vivo as white areas while viable tissue appeared red in TTC stained brain sections(Fig. 2e). 249 

Homogenous deep red color was observed across both hemispheres in sham-operated mice, 250 

verifying the absence of any lesion. The hemispheric lesion volumes  in tMCAO mice were 42.8 251 

± 10.2 % (mean ± standard deviation).  252 

 253 

Increased [18F]RoSMA-18-d6 retention in the striatum after tMCAO 254 

To analyze the distribution of [18F]RoSMA-18-d6 in tMCAO mice brain, dynamic µPET/CT 255 

scans were performed at 24 h after reperfusion. The standard uptake values (SUVs) of 256 

[18F]RoSMA-18-d6 did not reveal significant difference in various brain regions of tMCAO mice 257 

(Supplementary Fig 1). However, we found a reduced uptake at early time frame (1-3 min) and 258 
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a similar uptake after 7 min in the ipsilateral side compared to that of contralateral side (Fig. 3a). 259 

Thus, to exclude the perfusion influence, we averaged the brain signals from 21-61 min and 260 

selected the midbrain as the reference region. Higher [18F]RoSMA-18-d6 SUVR was observed in 261 

the ischemic ipsilateral striatum compared to the contralateral striatum (two-way ANOVA with 262 

Sidak multiple comparison correction, 0.97± 0.02 vs 0.87 ± 0.06, p = 0.0274), but not in other 263 

brain regions such as cortex (Fig. 3b, c). The increased signals at ischemic ipsilateral striatum, 264 

however, could not be blocked by the selective CB2R agonist GW405833 (Fig. 3c).  265 

 266 

At the end of the in vivo experiments, we dissected the mice to verify the activity accumulation 267 

and specificity of [18F]RoSMA-18-d6 in the spleen and different brain regions with a gamma 268 

counter. In line with the results obtained from the averaged SUVRs in the tMCAO mouse brain, 269 

the radioactivity in the ipsilateral side was indeed significant higher than that of the contralateral 270 

hemisphere (0.037 ± 0.007 vs 0.026 ± 0.003, n = 5 each group), but no blockade effect was seen 271 

under blocking conditions (Fig. 4a). As expected, radioactivity in the CB2R-rich spleen was 272 

much higher than the brain and 58 % of the signals was blocked by co-injection of CB2R specific 273 

ligand GW405833, demonstrating specific target engagement of [18F]RoSMA-18-d6 in vivo (Fig. 274 

4b). 275 

 276 

Discussion  277 

This study assessed the utility of CB2R PET tracer [18F]RoSMA-18-d6 for imaging  278 

tMCAO mouse at subacute stage, concomitant with decreased CMRglc levels and formation of a 279 

structural lesion. Previous PET imaging of stroke animal models led to inconclusive results. In a 280 

rat model of photothrombotic stroke at 24 h after surgery, increased [11C]NE40 (CB2R tracer) 281 
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uptake and unvaried [11C]PK11195 (TSPO tracer) uptake were reported [79]. In another study, 282 

[11C]NE40 uptake did not show any difference in the same rat model of photothrombotic stroke 283 

[80]. Moreover, reduced [11C]A836339 (CB2R tracer) uptake was reported in a focal tMCAO rat 284 

model over 1-28 days after occlusion [51]. Possible reasons for these different observations 285 

include the time point of assessment, different methods for inducing acute stroke (transient or 286 

permanent ischemia) resulting in variations of ischemic severity and levels of inflammatory-cell 287 

expression [43].  288 

CB2R has negligible expression in the mouse brain and is mainly expressed in the spleen 289 

under physiological conditions [30, 36, 60-65, 81]. Under neuroinflammatory conditions, CB2R 290 

is upregulated in activated microglial cells. In this study, we used quantitative real-time 291 

polymerase chain reaction to measure gene expression levels of CNR2, TNF-α, Iba1, MMP9, 292 

GFAP and MAP-2 at 24 h and 48 h. All tested inflammatory markers displayed increased mRNA 293 

levels in the ipsilateral brain hemisphere, in agreement with the reported findings in tMCAO 294 

mouse model [29, 45, 82, 83]. In line with the increased CNR2 gene expression levels, 295 

significantly higher [18F]RoSMA-18-d6 SUVR (standard uptake value ratio) was observed in 296 

striatum at ipsilateral vs contralateral under baseline conditions in our PET studies. The 50 % 297 

reduction of the neuronal marker MAP-2 indicated neuronal damage. 298 

The dynamic µPET scan using [18F]RoSMA-18-d6 indicated a reduced perfusion in the 299 

lesion brain regions at the first time frame of 1-3 minutes. This is probably due to the changes of 300 

microvascular response (no-reflow phenomenon) and the reduction in neuronal activity. Taking 301 

the midbrain as the reference region, the ratios of SUV averaged from 21-61 min revealed 302 

increased [18F]RoSMA-18-d6 SUVR in the ipsilateral ischemic striatum compared to that of the 303 

contralateral side. Our ex vivo bio-distribution studies confirmed the difference of the 304 
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radioactivity distribution in the left and right brain hemisphere. The in vivo specificity of 305 

[18F]RoSMA-18-d6 towards CB2R is evidenced by a 58 % reduction in radioactivity in the 306 

mouse spleen under blockade conditions in ex vivo biodistribution studies. Underlying reasons 307 

for the lack of specificity of [18F]RoSMA-18-d6 in the mouse brain may because 1) the increased 308 

tracer availability in the blood induced by blocking the CB2R peripheral targets in the presence 309 

of the blocker GW405833; and 2) the relatively low brain uptake of our CB2R-selective 310 

radioligand [18F]RoSMA-18-d6 in the mouse brain resulted in undetectable changes of 311 

radiosignals under baseline and blockade conditions. Notably, the time-activity curves of 312 

[18F]RoSMA-18-d6 in tMCAO mouse brain showed remarkably higher initial brain uptake under 313 

blockade conditions than the baseline in both sides of the mouse brain (Supplementary Fig 1), 314 

indicating the influence of blocking CB2R target in the peripheral organs on the availability of 315 

radiotracer concentrations in the blood. In our previous studies with Wistar rat, the spleen uptake 316 

of [18F]RoSMA-18-d6 was blocked by nearly 90 % suggesting a high possibility of species 317 

difference of [18F]RoSMA-18-d6 binding [57]. Therefore, we speculate that rat stroke models 318 

might be superior to mice models for imaging neuroinflammation with CB2R PET tracers. 319 

We observed that [18F]FDG measure of CMRglc was reduced in the ischemic areas i.e. 320 

ipsilateral striatum of the tMCAO mice at 24 h after reperfusion. The reduced CMRglc was 321 

reported in many earlier studies in disease animal models and in stroke patients [84-87], masking 322 

CMRglc reduction of neuronal tissue in the brain At an extended time points of the recovery 323 

stage from day 4 - 40, an increased CMRglc level was reported in the ischemic regions due to the 324 

increased consumption from inflammatory cells along with microglial activation [88-90]. 325 

There are several limitations in the current study. 1) As there is no reliable specific CB2R 326 

antibody, we did not include immunohistochemical staining for CB2R protein distribution in the 327 
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mouse brain. The qPCR measures of CNR2 mRNA level provided an alternative readout, but do 328 

not provide spatial distribution of cerebral CB2R expression. 2) Due to the logistic barrier, MRI 329 

and µPET/CT scans were performed with different cohorts of animals. Nevertheless, standard 330 

operating procedures for the surgery were used. 3) Our in vivo data with tMCAO mice were 331 

collected at 24 h after surgery, longitudinal imaging of tMCAO mice with [18F]RoSMA-18-d6 332 

along with structural and functional readout will provide further insight into the spatial-temporal 333 

dynamics of CB2R expression in the brain.  334 

 335 

Conclusion 336 

Our newly developed CB2R PET tracer [18F]RoSMA-18-d6 revealed limited utility to image 337 

neuroinflammation in the ischemic ipsilateral of the tMCAO mice at 24 h after reperfusion. 338 

Although lesion regions in tMCAO mouse brain could be followed by the ratios of averaged 339 

SUVs from 21-61 with midbrain as the reference region, the in-vivo specificity of [18F]RoSMA-340 

18-d6 was confirmed only in the CB2R-rich spleen. Different neuroinflammatory animal models 341 

which has comparable neuronal numbers in the lesion regions are recommended for evaluation 342 

of CB2R in further PET imaging studies.   343 

 344 
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Figures677 

678 

Fig 1. Relative mRNA levels of inflammatory markers and neuronal damage in sham-operated 679 

and tMCAO mouse brain in contra-and ipsilateral brain hemisphere at 24 h and 48 h after 680 

reperfusion. (a) CNR2, (b) Iba1, (c) TNF-α, (d) MMP9, (e) GFAP and (f) MAP-2 . Values 681 

represent mean ± standard deviation. Expression levels were quantified by qPCR relative to β-682 

actin.  683 
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 685 

Fig 2. In vivo MRI and [18F]FDG PET in tMCAO mouse brain. (a) Representative PET images 686 

of coronal, sagittal and horizontal mouse brain sections after intravenous injection of [18F]FDG 687 

in sham-operated and tMCAO mice. The radiosignals were averaged from 21-61 min; (b) 688 

[18F]FDG accumulation (SUV) at different mouse brain regions (Str: striatum; Ctx: cortex; Cb: 689 

cerebellum) in sham and tMCAO mice. Significantly reduced [18F]FDG accumulation was 690 

observed in the ipsilateral striatum compared to contralateral side in tMCAO mice; (c-e) In vivo 691 

T2-weighted image, ADC map and ex vivo TTC stained brain sections, indicating the delineation 692 

in tMCAO mice. TTC: 2,3,5-triphenyltetrazolium chloride; ADC: apparent diffusion coefficient; 693 

SUV: standard uptake value. 694 
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 696 

Fig 3. In vivo microPET imaging of tMCAO mouse brain using [18F]RoSMA-18-d6. (a) 697 

Representative PET images of horizontal mouse brain sections at different time frames after 698 

intravenous injection of [18F]RoSMA-18-d6; SUV: 0-0.5; (b, c) Ratios of [18F]RoSMA-18-d6 699 

uptake under baseline and blockade conditions in cortex and striatum. Significantly higher 700 

[18F]RoSMA-18-d6 standard uptake value ratio (SUVR) was observed in the ischemic ipsilateral 701 

striatum under baseline conditions, but not in the ipsilateral cortex. Midbrain was used as 702 

reference brain region for SUVR calculation.  703 
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 705 

Fig 4. Ex-vivo biodistribution of [18F]RoSMA-18-d6 in the brain and spleen of tMCAO mouse. 706 

Animals (n=4) were sacrificed at 70 min post-injection, the spleen and brain regions were 707 

dissected and analyzed with a gamma counter. (a) Higher [18F]RoSMA-18-d6 binding (norm% 708 

ID/g tissue) was detected in the ipsilateral vs contralateral hemisphere under baseline conditions. 709 

(b) In the spleen about 58 % of the [18F]RoSMA-18-d6 binding (norm% ID/g tissue) was 710 

blocked. No significant blocking was observed in the brain. Data are presented as the mean of 711 

the percentage of injected dose per gram tissue normalized to 20 g body weight; mean ± standard 712 

deviation. % ID/g: percentage injected dose per gram. 713 
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Additional files:  719 

Additional file 1: Supplementary Figure 1. Time activity curves of [18F]RoSMA-18-d6 in vivo 720 

microPET imaging of tMCAO mouse brain. (a-d) In the cortex, striatum, cerebellum and 721 

midbrain under baseline and blockade conditions. No difference in [18F]RoSMA-18-d6 SUV was 722 

observed in different brain regions at ipsilateral vs contralateral side under baseline or blockade 723 

conditions. Data represent mean ± standard deviation.  724 

 725 

Additional file 2: Supplementary Table 1. Primers used for the quantitative polymerase chain 726 

reaction assay on mouse brain tissue 727 
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