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Abstract 
 
Background: Adaptive sampling is a method of software-controlled enrichment unique to 
nanopore sequencing platforms recently implemented in Oxford Nanopore’s own control software. 
By examining the first few hundred bases of a DNA molecule as it passes through a pore, software 
can determine if the molecule is sufficiently interesting to sequence in its entirety. If not, the 
molecule is ejected from the pore by reversing the voltage across it, freeing the pore for a new 
molecule. User supplied sequences define the targets to be sequenced or ejected. Here we 
explore the potential of using adaptive sampling for enrichment of rarer species within 
metagenomic samples. 
  
Results: We created a synthetic mock community consisting of seven bacterial species at different 
proportions ranging from 1.2% to 47% and used this as the basis for a series of enrichment and 
depletion experiments. To investigate the effect of DNA length on adaptive sampling efficiency, we 
created sequencing libraries with mean read lengths of 1.7 kbp, 4.7 kbp, 10.6 kbp, and 12.8 kbp 
and enriched or depleted for individual and multiple species over a series of sequencing runs. 
Across all experiments enrichment ranged from 1.67-fold for the most abundant species with the 
shortest read length to 13.87-fold for the least abundant species with the longest read length. 
Factoring in the reduction to sequence output associated with repeatedly rejecting molecules 
reduces the calculated efficiency of this enrichment to between 0.96-fold and 4.93-fold. We note 
that reducing ejections due to false negatives (approximately 36%) would significantly increase 
efficiency. We used the relationship between abundance, molecule length and enrichment factor to 
produce a mathematical model of enrichment based on molecule length and relative abundance, 
whose predictions correlated strongly with experimental data. A web application is provided to 
allow researchers to explore model predictions in advance of performing their own experiments. 
  
Conclusions: Our data clearly demonstrates the benefit for enriching low abundant species in 
adaptive sampling metagenomic experiments, especially with longer molecules, and our 
mathematical model can be used to determine whether a given experimental DNA sample is 
suitable for adaptive sampling. Notably, repeated voltage reversals have no effect on pore stability.  
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1. Background 
 
Whole genome shotgun sequencing of metagenomic samples has become a popular tool for 
understanding communities of mixed species. In particular, the ability to assemble individual 
species, or gene clusters such as antibiotic resistance genes, has the potential to shed new light 
on function, or to enable generation of reference sequences for unculturable organisms. With the 
increasing use of long read technologies, either on their own, or combined in hybrid approaches 
with short-read technologies, metagenome assembled genome (MAG) contiguity and accuracy 
metrics have improved still further[1]. Such approaches have been applied widely including in the 
assembly of pathogen genomes from clinical samples[2], bacterial genomes and gene clusters from 
the human gut[3], the rumen microbiome of cattle[4], and a project which assembled tens of 
thousands of MAGs by re-analysing over 10,000 previously collected metagenomes[5]. 
Nevertheless, despite these successes, some doubts remain about the reliability of MAG 
approaches when faced with complex populations[6]. 
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Metagenomic samples are composed of a range of different species at varying levels of 
abundance. In nature, abundance often follows a power law[7] and this can mean that sequencing 
of metagenomic samples produces data that results in deep coverage of some species with low or 
partial coverage of others. For rarer species, this is likely to result in much poorer assemblies and 
a reduction in the ability to distinguish between strains or related species.  Effective enrichment 
strategies to maximise the sequence outputs of the rare species would address this weakness, and 
biodiversity blindspot. 
 
Reducing host DNA is an important consideration in diagnostic applications, especially in clinical 
settings.  A number of approaches are available as commercial kits, or detailed in published work 
including differential lysis, saponin-based depletion[8], osmotic lysis[9] or by enriching microbial 
DNA[32]. However, these approaches are not universally applicable, and require sample-specific 
adaptation often with many additional steps. 
 
Hybridisation has been used effectively to both deplete and enrich samples prior to sequencing. 
For prokaryotes there are a number of commercially available ribosomal RNA depletion kits which 
claim to reduce the rRNA levels for transcriptomic studies from around 95% to less than 20%, but 
this still equates to a considerable amount of off target sequencing. Within eukaryotes as little as 
2% of the genome can represent gene sequences coding for proteins. Exonic probe sets designed 
to target sequences of a few hundred base pairs have been widely used for mammals and plants 
and this strategy has been further optimised for molecules of a few thousand base pairs to 
determine gene structures when using approaches such as RenSeq[10,11] when individual genes or 
families of genes are targeted. A common feature of these methods is an extended and often 
complicated library construction protocol which involves multiple PCR amplification steps that limits 
the length of DNA that can be interrogated. This can result in amplification biases in the output 
data and they require highly stringent hybridisation conditions coupled with accurate probe design 
to be effective.  
 
In the same way that RNA sequencing can be compromised by highly expressed genes, 
metagenomic DNA samples can be compromised by highly abundant species. By adapting duplex 
specific nuclease based methods widely used for normalising cDNA libraries it is possible to 
normalise metagenomic samples. By denaturing and then slowly reannealing DNA molecules the 
likelihood is that the DNA from more abundant species are more likely to reanneal and become a 
substrate for the endonuclease[12]. However, problems can arise with non-specific annealing and 
with common regions such as the RNA operon which can share a high degree of similarity.  
 
An additional development came with Clone Adapted Template Capture Hybridisation (CATCH-
Seq) which was developed to resolve target regions of interest and circumnavigate the need to 
design specific probes. Using a bacterial artificial chromosome (BAC) known to contain regions of 
interest, generic probes are generated from the BAC and then used to pull down fragments 
spanning 60 kbp (single BAC) up to several hundred kbp (multiple BACs) to target difficult to 
sequence regions and help identify structural variation. Later protocols such as HLS-CATCH[13] and 
nCATs[14] use Cas-9 nuclease with guide RNAs to target DNA molecules up to several million base 
pairs in length. 
 
An alternative to lab-based depletion or enrichment approaches is promised by Oxford Nanopore 
Technologies’ (ONT) adaptive sampling concept (sometimes called selective sequencing) which 
represents a form of software controlled enrichment. A programming interface known as 
“ReadUntil” enables control over individual pores and provides a mechanism for software to 
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request ejection of the molecule currently being sequenced in a given pore. Thus the first few 
hundred bases of a molecule can be examined and a decision made if the molecule is ‘on target’. 
‘Off target’ molecules are ejected by reversing the current across the pore, freeing the pore to 
capture a new molecule. In order for this to be effective, this must happen within a short time, so 
that the molecule can be ejected from the pore before most of it is sequenced. The longer the time 
taken for decision making and rejection, the lower the potential levels of enrichment possible. 
 
Initially, ONT provided the ReadUntil programming interface and left it to third party developers to 
work out how to interrogate the raw pore signal to determine if a molecule was on-target. The first 
published implementation utilised a signal comparison algorithm known as Dynamic Time Warping 
(DTW) to compare the signal from the pore with pre-computed signals for sequences of interest[15] 
(DTW also used in DySS[16]). However, this approach was computationally expensive, particularly 
for anything but relatively short reference sequences. Practical use was therefore limited due to the 
time required to make a decision when using larger reference databases. An alternative signal-
based approach was provided by UNCALLED, which converted stretches of raw signal into k-mers 
and used higher probability k-mers as a query for a Ferragina-Manzini (FM) index search against a 
target database[17]. While more efficient than the DTW approach, it still required significant 
computational resources. RUBRIC[18] abandoned signal-based comparison in favour of basecalling 
short (~150bp) portions of the start of reads and aligning to reference sequences using LAST[19]. 
However, this demonstrated limited enrichment and still required significant computational 
resources. More recently, ONT’s provision of real-time GPU-based basecalling on GridION devices 
enabled the development of Readfish[20], which basecalls the first ~180 bases of sequence and 
aligns to references with minimap2[21] in order to make a decision on accepting or rejecting a 
molecule. These solutions still required third party software in addition to ONT’s own control 
software. From the November 2020 release of the GridION control software, adaptive sampling 
was built in as a user-selectable option, which has opened it up to much wider adoption. The 
software requires a user to upload a file of reference sequences and the system can be set to 
either deplete or enrich for these. 
 
Adaptive sampling offers a potential solution to enrich for species of interest in metagenomic 
samples. It requires a simple library construction method and samples can be processed within an 
hour without the need for amplification. However, a challenge for microbiome research is the 
difficulty of extracting high molecular weight DNA from metagenomic samples. Their unknown 
nature and the likely presence of both Gram positive, Gram negative and fungal species have led 
to the development of protocols such as the three peak extraction protocol where samples undergo 
three different methods involving either enzymatic, chemical or physical disruption to try and 
preserve DNA molecule length and ensure that the DNA faithfully represents all the species 
present in the sample[22]. This has shown that DNA molecules >20 kbp can be achieved, but for 
many scientists analysing microbiomes, bead beating is a necessity for DNA extraction due in part 
to the limitation of samples, the inability to effectively culture everything present and, in some 
cases, the need for rapid diagnostic results. This approach can be completed inside 20 minutes but 
typically produces DNA molecules <10 Kbp in length.  
 
We wanted to investigate the effect of DNA molecule length on the efficiency and efficacy of 
adaptive sampling to determine its usefulness for both MAG and diagnostic applications. Here we 
present a mathematical model which can predict the enrichment levels possible in a metagenomic 
community given a known relative abundance and read length distribution. Using a synthetic mock 
community, we demonstrate that the predictions of the model correlate well with observed 
behaviour and quantify the negative effect on flow cell yields caused by employing adaptive 
sampling. 
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2. Results 
 
2.1. A mathematical model of enrichment potential for metagenomic samples 
 
A number of factors will affect the potential enrichment achievable through adaptive sampling. 
Here we derive a model to predict the theoretical enrichment of a set of taxa within a metagenomic 
community, based on the community composition and average read length. In the sections that 
follow, we show how this compares with real results achieved using the GridION. We begin with 
the assumptions (sequencing speed is 420 bases/s, the time taken to capture strands is 0.5 s and 
the response time once a strand is captured is 1.0 s) given in the worked example in the nanopore 
adaptive sampling information sheet[23]. 
 
We can consider two alternative measures of enrichment: enrichment by yield and enrichment by 
composition. We define enrichment by yield as the ratio of the yields (per unit time) of target 
sequence (species) with and without adaptive sampling. This measure is likely to be the main 
consideration for researchers wishing to target particular sequences - if the overall target yield is 
less during targeted sequencing, then a better strategy would be to perform deeper untargeted 
sequencing and bioinformatically filter for the sequences of interest. One key factor that affects a 
nanopore sequencing run’s yield is the number of active pores. As the quality of pores before 
sequencing varies by flowcell, it is difficult to predict the yield of an experiment and compare 
adaptive sampling experiments between flowcells. Furthermore the use of protein pores is known 
to degrade them over time, possibly from the electric potential[24], or from pore blockage[17], thus 
repeated potential flipping from adaptive sampling could further decrease active pores and yield.  
 
Enrichment by composition is the ratio of the relative abundance of target sequence (species) with 
and without adaptive sampling. This shows us how much the abundance of a given species in a 
metagenomic sample can be changed simply by employing adaptive sampling. This measure is not 
affected by yield, so we are able to use it to compare different experiments using different 
flowcells. By estimating the composition of target sequences in the community, it is then possible 
to estimate the target yield for a particular experiment design (assuming all flow cells being equally 
productive). Below, we develop a model to predict enrichment by composition. 
 
Let  be the set of taxa present in a sample, and for a taxon  define  to be the 
abundance of  in terms of bases sequenced. This can be calculated by sequencing the sample 
without adaptive sampling, and calculating the sequence length of all reads that belong to the 
taxon . Then the abundance of  can be given as this length divided by the total sequence length 
of all reads in the sample. For an experiment in which we enrich for , let  be the abundance of 
 observed in this experiment, calculated as before. Then we say that the enrichment factor for  

(or simply, the enrichment of ) denoted , is given by  

 
 

From this, it's clear that the enrichment must be less than , since  (for example, a taxon 
at 50% abundance cannot have an enrichment factor greater than 2). However, this fails to take 
into account the fact that in order to determine whether a read should be accepted or rejected, it 
has to be sequenced to some extent, and so we propose that the maximum achievable enrichment 
is in fact lower than this. 
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For more generality, we will partition  into the taxa to enrich (also called the target taxa), denoted 
, and those not to enrich (which by definition, will be depleted), denoted . Following 

the ONT info sheet[23], we estimate enrichment by the proportion of the total sequencing time that is 
spent sequencing the target taxa. We assume a constant sequencing rate throughout, denoted by 

 and in the units of number of bases sequenced per second. Let  be the proportion of 
sequencing time spent sequencing reads belonging to  without adaptive sampling, and  the 
proportion of time spent sequencing reads belonging to  with adaptive sampling. Then, since the 
sequencing rate is assumed constant, we can estimate the enrichment of  as  
 

 
 

To determine the values  and , we will fix the following quantities. Let  be the time taken 
between a molecule entering a pore and a decision being made on whether it should be accepted 
or rejected. Let  be the average read size, and let  be the time taken for a pore to capture a new 
molecule after sequencing a molecule. First we give an estimate for . Denote by  the sum of 
abundances in , that is 

 
 

Each molecule takes, on average,  seconds to pass through the pore, and then a further  
seconds until a new molecule is captured. The proportion of molecules that we want to enrich (i.e. 
to not eject from the pore) is , so we have 

                                             (1) 
 

For , we make the following observation. For molecules belonging to  we still spend  
seconds sequencing each molecule. For molecules belonging to  however, we spend  
seconds sequencing each molecule. Thus the total sequencing time is given by 

, and so  

              (2) 
 
Taking the quotient of (1) and (2) gives us the formula for enrichment 
 

                (3) 
 

This formula gives us the enrichment of the whole set , but what if we want to determine the 
enrichment for a single taxon in ? It's an interesting feature of this model that it predicts 
enrichment to be the same for each taxon in . To see this, note that if we were to determine the 
enrichment of a single taxon , then in equations (1) and (2), we would replace  in the 
numerator with , whilst the denominators remain the same. But then, in taking the quotient in 
equation (3) these terms cancel. 
 
If we wish to enrich for a taxon  (so that ), then we have that  and equation 
(3) becomes 
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We can rewrite the denominator as . Since  and 

 we have that , and so 
 

 
 
Thus our model predicts that enrichment of a single species will be lower than , as discussed at 
the beginning of this section. 
 
We created a Shiny web application which allows researchers to explore the potential enrichment 
that may be possible for their experiments. The app can be found at https://sr-
martin.shinyapps.io/model_app/ and allows the user to adjust parameters such as the average 
read length to explore the effect on enrichment potential for species of varying abundance.  
 
2.2. Starting relative abundance and molecule length determine the level of 
enrichment 
 
We created a bacterial mock community consisting of seven species ranging in abundance from 
just over 1% to around 47% (Table 1) as determined during control sequencing runs. In order to 
observe the effect of molecule length on enrichment, we performed a series of experiments with 
different library preparations, each producing a different read length from the same input material 
(Table 2). For simplicity, we refer to the library by the mean read length generated during control 
runs; however, this value alone is insufficient to capture the sometimes complex read length 
distribution of the library (Figures 1a,b). For each library, we performed a control run in which we 
sequenced for approximately 1 hour (enough for at least 17,086 reads, and averaging 70,420) . 
We then enabled Adaptive Sampling and enriched for each bacterial genome, one by one, starting 
with the most abundant species and ending with the least abundant. For the library with a mean of 
10.6kbp, we performed an additional “Low to High” run, in which the bacteria were enriched in 
reverse order, lowest abundance first. For both of these runs, we maintained half the pores as 
control pores throughout; for all other runs, we did not maintain control pores after the initial control 
run. 
 
We calculated the enrichment by composition by dividing the relative abundance of a species with 
enrichment by the relative abundance without enrichment. As predicted by the model, the 
enrichment factor was higher for less abundant species, and for longer read lengths (Figure 1c). 
Highest levels of enrichment were produced for S. dysgalactiae, with relative abundance changed 
from 1.19% to 16.52%. The effect on community composition can be seen in Figure 1d. 
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Species NCTC ID 1.7kbp 4.7kbp 12.8kbp 

10.6kbp 
High to 

Low 

10.6kbp 
Low to 
High 

Achromobacter xylosoxidans 10807 36.98% 36.72% 42.67% 30.13% 28.99% 

Morganella morganii 235 37.29% 34.68% 32.05% 38.30% 37.68% 

Leminorella richardii 12151 12.07% 11.89% 11.25% 7.50% 7.19% 

Moellerella wisconsensis 12132 4.36% 5.82% 4.39% 11.49% 11.04% 

Pseudomonas aeruginosa 10332 5.23% 5.32% 5.91% 4.39% 4.79% 

Proteus vulgaris 13145 2.69% 4.03% 2.51% 5.92% 6.22% 

Streptococcus dysgalactiae 5370 1.34% 1.55% 1.19% 2.20% 2.58% 

Unmapped  0.03% 0.01% 0.04% 0.07% 1.50% 

Table 1: Relative abundance of the 7 bacteria used in the mock community, as determined from control runs. All were 
selected from the National Collection of Type Cultures and strain IDs are given. Percentages represent the percentage of 
sequenced bp aligned to reference genomes. Read counts give similar percentages and can be found in Supplementary 

Table 1. 
 

Library Control Run 
Reads 

Median Mean N50 

1.7kbp 213,035 1,300 1,696.5 2,441 

4.7kbp 47,772 4,718 4,686.7 6,011 

12.8kbp 17,086 6,739 12,767.7 26,160 

10.6kbp (High to Low) 32,345 2,495 10,581.3 41,464 

10.6kbp (Low to High) 41,864 2,651 9,845.5 35,428 

Table 2: Read statistics for control runs for each library. 
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Figure 1: (a) Read length distributions from control runs. Reads were binned by length into bins of size 1000bp. 

Distribution for 10.6kbp library taken from control run in High-to-Low experiment. (b) Violin plots (log scale) of read length 
distributions from control runs. Distribution for 10.6kbp library taken from control run in High-to-Low experiment. Extrema 
and means shown in black. (c) Enrichment factor against relative abundance. Each point represents a species, with the 
position on the x axis indicating the original relative abundance of the species and the position on the y axis indicating 

the enrichment factor obtained. (d) Community composition for each enrichment target during the runs. 
 
2.3. Enrichment by composition approaches the maximum predicted by the model 
 
We compared the model predictions with the results of the mock community runs. For the 1.7kbp, 
4.7kbp and 12.8kbp runs, we calculated enrichment by composition as the quotient of the 
abundance during enrichment and the abundance during the control run. For the 10.6kbp runs, 
enrichment by composition was calculated as the quotient of the abundance on enrichment 
channels (1-256) and abundance on control channels (257-512) for each species in the mock 
community. Following the ONT info sheet[23] we used the fixed values  (bases per 
second), , and . Figure 2a overlays results from the experimental runs with 
predictions from the model.  
 
We calculated the root-mean-square deviation of each data set from the values predicted by the 
corresponding model (Table 3). Our model predictions also correlated strongly with our 
observations (Pearson’s r = 0.9825) as can be seen in Figure 2b. 
 
 
 

(a)

(b)

(d)

(c)
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Run Name Mean Read Length Root-mean-square deviation 

1.7kbp 1,696 0.350 

4.7kbp 4,957 0.518 

12.8kbp 12,763 1.821 

10.6kbp High to Low 10,581 0.392 

10.6kbp Low to High 9,845 0.333 

Table 3: Root-mean-square deviation of experiments from model. 
 

 
Figure 2: (a) Scatterplots of enrichment vs abundance. Curves show enrichment values predicted by the model for 

average read lengths. (b) Correlation between observed enrichment values and predicted enrichment (Pearson’s r of 
0.9825). 

 
2.4. Enrichment by yield is significantly less than enrichment by composition 
 
For each run, we also calculated enrichment by yield. For the 1.7kbp, 4.7kbp and 12.8kbp runs, we 
calculated enrichment by yield as the quotient of the yield per hour per active channel during 
enrichment and the yield per hour per active channel during the control run. For the 10.6kbp runs, 
enrichment by yield was calculated as the quotient of the yield per hour per active channel on 
enrichment channels (1-256) and yield per hour per active channel on control channels (257-512), 
for each species in the mock community. For the 1.7kbp run, yield of target sequences was slightly 
lower during adaptive sampling than during the control run (Figure 3a). Normalising the yield by the 
number of active channels during the first 30 minutes of each experiment confirms this (Figure 3c). 
For the 1.7kbp and 4.7kbp runs, we performed another control experiment after the adaptive 
sampling. Figure 3a,b,c indicate significantly reduced yield after adaptive sampling than the yield 
before adaptive sampling, particularly for the 1.7 kbp run. 
 
Figure 3d summarises the levels of enrichment found for all bacteria in all runs. Highest enrichment 
of 4.93x was found for P. aeruginosa in the 10.6kbp Low to High run. 

(a)

(b)
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Figure 3: (a) Yield of target sequences in Mb per hour during adaptive sampling (blue), control before/during (red), and 
control after (purple). (b)  Yields per hour for all runs, normalised by channels used. (c) Yield of target sequences in Mb 
per hour per active channel during adaptive sampling. (d) Enrichment by yield values. Each experiment, except for the 

1.7kbp run, gave us increased yield when performing adaptive sampling. 
 

2.5. Reducing false negative identifications and associated pore ejections would 
significantly increase enrichment by yield 
 
It’s apparent from Figure 2a that the observed enrichment for low abundance species during the 
12.8kbp run was less than the model predicted. Figure 4a shows the distribution of read lengths for 
the control portion of this run. 
 
During adaptive sampling we expect to see distributions similar to these for species that are being 
enriched, and a sharp peak around 500bp for all other species, which are depleted. However, we 
find that, when a species is being enriched, it also displays a peak around 500bp, suggesting that 
target molecules are being rejected (Figure 4a). 
 
By parsing the logs provided by the GridION, we found that during adaptive sampling, 
approximately 36% (lowest 24.6%, highest 48.5%) of target molecules were being ejected from the 
pore. These are molecules that are misclassified as non-targets by the first fast mapping, but 
subsequently classified as targets by post-enrichment alignment (Figure 4b).  We performed 
further analysis to determine why this was. We split the read sets first by their species 

(a) (b) (c)

(d)
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classification, and then by the signal sent to the pore when they were sequenced. Thus each 
species had a set of sequenced reads (true positives) and ejected reads (false negatives).  First, 
we calculated the average quality score of each read (Figure 4c). This shows that the average 
quality of TPs was higher than the average quality of FNs for each run. Next, we took the first 
200bp from each read and used BLAST[25] to map them against the reference genomes. By doing 
this, we are attempting to use just the sequence data that is available to MinKNOW when it makes 
a decision during sequencing on whether to sequence the molecule, or eject it from the pore. For 
each read we took the mapping of its first 200bp which had the highest identity and mapped to the 
correct genome, and used these to calculate the average identity (Figure 4d). We found that the 
TPs had a higher average identity than the FNs, although in this case the TPs for the 1.7kbp run 
had a lower identity than the FPs from the 12.8kbp run. To determine whether regions of low 
genome complexity can affect the FN rate, we mapped all FN reads to their true target genome. A 
heatmap showing the coverage of each genome by the FN reads is displayed in Figure 4e and 
shows no obvious clustering. 
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Figure 4: (a) Distribution of read lengths during control portion and enrichment portions of 12.8kbp run. Reads are split 
by species. (b) Proportion of target reads rejected during adaptive sampling. (c) Quality values of reads, split by species 

and TP/FN. (d) Average identity of mappings of first 200bp of reads against reference genomes. The mapping  to the 
correct genome with the highest identity was used to calculate the averages. (e) Coverage of target genomes by false 
negative reads (i.e. reads there were incorrectly ejected from the pore during adaptive sampling) during 12.8kbp run. 

Image produced using the alignment visualisation software Alvis[26]. 
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2.6. Use of adaptive sampling has an effect on active pores, but increases target 
yield and MAG assembly potential 
 
Our experiments demonstrated continued enrichment over 8-9 hour sequencing periods, but we 
wanted to see how the repeated rejection of molecules affected the lifespan of the pores and if 
enrichment was still worthwhile over longer periods of time. We ran two new flowcells in which we 
enriched for a low abundant species (S. dysgalactiae, ~2.6%) and a high abundant species (M. 
morganii, ~37.5%). We also ran two flowcells in which we depleted M. morganii (~ 37.5% of total) 
and depleted M. morganii, A. xylosoxidans and L. richardii (together ~ 74.2% of total). With all four 
flowcells, half the channels were used as control channels in which no adaptive sampling took 
place. As previously, all four flowcells demonstrated increased yield of the target species, but a 
decreased total yield (Figure 5). The number of active channels was slightly higher for control 
channels than for enriched channels, but the difference was not large (Figure 6b). Hourly yield for 
target species was consistently higher for the first 24 hours with adaptive sampling (Figure 6c). 
However, yield of target species declined at a greater proportionate rate on the adaptive sampling 
channels (down 36% from hour 1 to hour 6) than the control channels (down 25% between hour 1 
and hour 6). By 50 hours, hourly yield for adaptive sampling was similar to the control channels, 
but overall flow cell life was much declined by this point, in line with expectations for current 
nanopore flow cells. Time between target reads was reduced considerably in adaptive sampling 
channels over the control channels (Figure 6d). 
 
Reasoning that one mechanism of pore loss is clogging by DNA that can’t be ejected[17] we tested 
a nuclease flush during a sequencing run for a possible recoverative effect on pores used for 
adaptive sampling. We ran a new flowcell enriching for a single low abundant species (S. 
dysgalactiae, ~2.6%) for 6 hours, carried out a nuclease flush and then ran the flow cell for a 
further 6 hours. The flush appeared to result in an increased number of active channels for both 
the control and enriched portions of the flowcell (Figure 7a). The effect on hourly yield was less 
clear (Figure 7b). 
 
In order to evaluate the effect of adaptive sampling on the potential for MAG assembly of a low 
abundance species, we took the reads available at 1 hour intervals from the control channels and 
the enriched channels. Reads mapping to the S. dysgalactiae reference were used as the input to 
the Flye assembler[27]. For the enriched channels, a single contig, high accuracy assembly was 
produced with the data available at 2 hours (Table 4, Figure 6a). Subsequently, we also performed 
an assembly of the enriched channel with reads available at 1.5 hours and this also produced a 
single contig assembly. For the control channels, after 6 hours, the S. dysgalactiae yield (32 Mbp) 
had not yet reached that produced by the enriched channels in 1.5 hours (42 Mbp), which was also 
reflected in much lower contiguity (6 contigs vs 1 contig). 
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Enrich S. dysgalactiae (channels 1-256) 

Time (hours) 1 1.5 2 3 4 5 6 

Reads 2,066 3,669 3,810 5,648 7,385 8,984 10,467 

Total Read Length 22,620,532 41,656,686 41,901,525 60,708,472 78,890,074 94,518,641 
108,992,42

5 

Contigs 2 1 1 1 1 1 1 

Total Contig Length 2,117,919 2,079,393 2,079,362 2,079,466 2,079,521 2,079,533 2,079,512 

Contig N50 2,111,978 2,079,393 2,079,362 2,079,466 2,079,521 2,079,533 2,079,512 

Longest Contig 2,111,978 2,079,393 2,079,362 2,079,466 2,079,521 2,079,533 2,079,512 

Aligned bases in ref 99.98% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

Assembly Time 00:05:31 00:09:00 00:08:47 00:11:39 00:14:43 00:17:19 00:19:20 

Control (channels 257-512) 

Time (hours) 1 
Not 

performed 2 3 4 5 6 

Reads 466  902 1,406 1,797 2,216 2,609 

Total Read Length 6,021,205  11,113,179 17,840,666 22,769,997 28,302,443 32,833,051 

Contigs 3  8 7 5 5 6 

Total Contig Length 600,309  1,705,413 2,242,365 2,610,844 2,703,245 2,772,594 

Contig N50 442,714  315,659 1,691,837 2,100,413 2,077,669 2,079,314 

Longest Contig 442,714  616,463 1,691,837 2,100,413 2,077,669 2,079,314 

Aligned bases in ref 32.05%  80.47% 98.06% 99.73% 99.88% 100.00% 

Assembly Time 00:02:13  00:03:23 00:04:34 00:05:47 00:06:32 00:07:07 

Table 4: S. dysgalactiae assembly statistics for enriched and control channels.  
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Figure 5: Cumulative yields split by experiment channels and control channels. 
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Figure 6: (a) S. dysgalactiae assembly statistics for enriched and control channels. (b) Plots showing how the number of 

active channels varies with time. (c) Hourly yields from enriched/depleted channels vs control channels. (d) Times 
between consecutive target molecules on individual channels, split by enrich/deplete (channels 1-256, red) and control 

(channels 257-512, blue). 
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Figure 7: Effect of nuclease flush on active channels and yield. 

 
3. Discussion 
 
Previous studies have demonstrated the use of bespoke third party adaptive sampling software to 
enrich for sequences within an organism e.g. exons or loci of key variants. Here we test ONT’s 
own recent implementation of adaptive sampling in the GridION control software as a tool for 
enriching or depleting species in metagenomic samples. We describe a mathematical model that 
can predict enrichment potential for a species of given relative abundance and mean read length, 
and show that enrichment by composition in real experiments closely follows that predicted by the 
model (Pearson’s r of 0.9825). Enrichment by yield, the value that is of most practical benefit to 
researchers, lags behind enrichment by composition, but we show that with longer read lengths, 
we were able to enrich relatively low abundance (~2%) organisms by almost 5x. High quality single 
contig MAG assemblies of the same species were possible within 1.5 hrs using adaptive 
sequencing and around 6 hours without. Adaptive sequencing could be fed with MAG sequences 
(from existing short read assemblies), verifying true assemblies, splitting chimeric MAGs[28] (using 
long nanopore reads as an orthogonal data type), or improving assemblies using long read 
scaffolding.  

(a)

(b)
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Two key factors affect the enrichment potential. Firstly, the initial abundance of the target species  
determines the theoretical maximum levels of enrichment. Secondly, the length of DNA molecules 
presented to the sequencing pores limits the efficiency of the process. For shorter molecules, the 
time taken to basecall, align, reject a molecule and capture an alternative becomes significant 
compared to the time taken to sequence a typical read without adaptive sampling. It is for this 
reason that adaptive sampling of our 1.7kbp mean library was not beneficial and possibly slightly 
detrimental to overall yield. Yet for longer reads, there are clear benefits to the adaptive sampling 
approach. Our data also indicate that there is still much potential to improve on current adaptive 
sampling implementations and to increase the enrichment by yield significantly. Our analysis 
showed that around 40% of on-target reads were falsely rejected. Where this value was highest, in 
the mean 10.6kbp run, we observed slightly lower enrichment by composition values than those 
predicted by our model, and believe these incorrect rejections to be an explanation for the 
difference. Reducing incorrect ejections could increase target yield significantly and thus result in 
much higher enrichment factors. ONT provide two implementations of their GPU basecalling 
algorithm - a faster, less accurate one and a slower, more accurate approach. The adaptive 
sampling basecalling is performed with the higher speed, lower accuracy algorithm. When 
hardware progression or algorithmic improvements enable the use of the more accurate 
basecalling algorithm, this will likely bring a reduction in false negative ejections. Additionally, 
improvements to the alignment and decision making approaches employed, as well as to the 
underlying ReadUntil API, will also bring  improvements. 
 
In evaluating the use of adaptive sampling in a particular metagenomic application, a prime 
consideration will be the ability to prepare DNA that is long enough to derive meaningful 
enrichment. ONT and a number of users have demonstrated megabase read lengths from genomic 
samples[29,30], but it is not possible to imagine such read lengths in complex metagenomic samples 
due to the need to lyse different cell types, including some that are particularly troublesome to 
break open. A move away from mechanical lysis approaches such as bead beating towards newer 
enzymatic techniques will be key. The desire to target particular species with known cell wall 
characteristics - e.g. for assembly - may mean that harsher lysis approaches are unnecessary for 
that species. Even with bead beating, we have previously demonstrated DNA extractions from 
faeces (not the simplest of samples) can produce nanopore data with mean read lengths as high 
as 8.1kbp[2], and in other experiments we have generated mean read lengths of up to 15kbp from 
soil metagenome samples (Heavens D, unpublished data). Our data indicates that significant 
enrichment is achievable at these lengths. If input material is not limited, then physical (bead or gel 
based) size selection can be used to increase the mean read length further. Even the 4.7kbp run 
presented here produced enrichment of 2x, which could mean experiments cost half as much 
money or take half as long to complete. This reduction in time could be particularly important in 
clinical applications or for environmental pathogen detection. 
 
Previous studies have shown a faster decline in active sequencing channels for flowcells 
undergoing adaptive sequencing, which may be due to the act of rejecting molecules or that the 
likelihood of clogging is statistically related to the number of molecules captured by a pore[17,20]. 
Our own data shows a slight decline in active channels (Figure 6b), but not as much as seen 
previously. Nevertheless, like others we find that overall yield including non-target yield is reduced 
compared to control channels (Figure 5), particularly when enriching for lower abundance 
organisms. We find that a nuclease flush appears to have a restorative effect on active channel 
count, but the effect on yield was less clear. It’s possible that 6 hours was too soon to derive much 
benefit and others have suggested flushing every 24 h[20]. 
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Overall, our results show that adaptive sampling can increase target yield significantly in real 
terms, provided that molecules of a modest length are used. Given the strong effect of read (library 
molecule) length it is likely that ONT ligation based libraries would outperform rapid based ones 
from the same material, as the transposase would decrease library molecule size. The use of 
adaptive sampling provides us with the benefits of library-based enrichment, without complex 
protocols or the bias that these may introduce. This is a significant advantage to researchers who 
may not have access to specialised laboratory equipment. Furthermore, it maintains the 
advantages of nanopore sequencing e.g. speed, longer read lengths, detecting methylation and 
other epigenetic modifications using the raw nanopore signal, and the possibility of conducting 
experiments in-field.  
 
We envisage several applications of adaptive sampling in the near future. One possibility is the 
targeting of molecules to close gaps in reference genomes. This could be achieved by enriching for 
molecules that align to sequences flanking gaps in the genome, and depleting everything else. 
Whilst we demonstrated over 4-fold enrichment in terms of yield, the potential read lengths for 
metagenomic applications are limited by the variety of DNA extraction methods required for the 
many cell types that may be present in the sample. Significantly higher average read lengths are 
possible for non-metagenomic samples, and so the potential for enrichment is greater. 
 
Another possible application of adaptive sampling is the improvement of MAGs. In Section 2.6 we 
demonstrated the improved time-to-assembly of a known bacteria using adaptive sampling. In the 
future, we plan to develop a pipeline to assemble metagenomic reads de novo in real time during 
the experiment. Using adaptive sequencing, we could deplete molecules that cover regions that 
are already well assembled, or even enrich for reads with sequence at the ends of contigs and 
pointing into the unknown region, maximising the useful data to improve the assembly . Even 
rejected reads (~500bp) need not go to waste as these can be used for digital abundance 
measurements and for polishing assemblies. Existing software such as Readfish[20] already 
enables the updating of target regions during a run, thereby allowing continual adjustment of 
targets to refine the assembly as the sequencing progresses. We believe this would lead to 
improved MAG quality, particularly for low abundance species. 
 
4. Conclusions 
 
Through ONT’s adaptive sampling software, we demonstrated enrichment in terms of both yield 
and composition, in a synthetic mock metagenomic community. We found that enrichment was 
higher for lower abundant species, and for libraries with a higher average molecule length, showing 
that extraction methods that can preserve molecule length are key to obtaining the highest 
enrichment. We developed a mathematical model to estimate the enrichment by composition that 
can be expected based on experimental factors, and showed that the model’s predictions 
correlated strongly with the observed data. We also observed that the occurrence of false 
negatives affects the achieved enrichment, but expect that improvements in hardware and 
software will minimise this in the future. By performing targeted enrichment on a low abundance 
species, we were able to significantly reduce the time taken to achieve a high-accuracy, single 
contig assembly, compared to non-targeted sequencing. Notably, we found that the repeated 
ejection of molecules from the pores had less effect on pore stability than has been previously 
reported. We conclude that adaptive sampling will prove to be a useful tool for many nanopore-
based metagenomic studies. 
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5. Methods 
 
5.1. Bacterial cell culture and DNA extraction 
 
Seven bacterial strains were identified from the NCTC that had a fully assembled single 
chromosome genome, varying GC content and sizes with no plasmids. Full strain details and 
assemblies available at https://www.sanger.ac.uk/resources/downloads/bacteria/nctc/. Bacteria 
were grown overnight in 3ml of 2xYT in a 5ml tube in an Eppendorf Thermomixer C at 37°C 
shaking at 400rpm. Following the incubation the tubes were spun at max speed in an Eppendorf 
5427R centrifuge for 5 minutes to pellet the cells and the supernatant discarded.  
 
For the Gram positive bacteria cell pellets were resuspended in 160𝝁l of Qiagen P1 buffer, 
transferred to a 1.5ml tube and then 20𝝁l of 100mg/ ml lysozyme added, mixed and incubated for 
30 minutes at 37°C shaking at 900rpm in an Eppendorf Thermomixer C. To this 20𝝁l of proteinase 
K was added and incubated for 30 minutes at 56°C shaking at 900rpm. The tube was then cooled 
on ice and 2𝝁l of RNase added and incubated at room temperature for 2 minutes.  
 
To precipitate the DNA onto beads 150𝝁l of ATL was added followed by 15𝝁l of MagAttract 
Suspension G and 280𝝁l of MB buffer. This was incubated for 3 minutes at room temperature 
shaking at 1 400rpm. The beads were then pelleted on a magnetic particle concentrator (MPC), the 
supernatant discarded and the beads washed twice with 700𝝁l MW1 buffer and twice with PE 
buffer resuspending the beads on each occasion.  
 
Two 700𝝁l water washes were then performed whilst the beads remained on the MPC incubating 
for 1 minute at a time. DNA was then eluted from the beads by mixing the beads for 3 minutes at 
room temperature shaking at 1 400rpm in 100𝝁l AE buffer.  
 
For the Gram negative bacteria cell pellets were resuspended in 180𝝁l of ATL buffer, transferred to 
a 1.5ml tube and 20𝝁l of proteinase K was added and incubated for 30 minutes at 56°C shaking at 
900rpm. The tube was then cooled on ice and 2𝝁l of RNase added and incubated at room 
temperature for 2 minutes.  
 
To precipitate the DNA onto beads 150𝝁l of ATL was added followed by 15𝝁l of MagAttract 
Suspension G and 280𝝁l of MB buffer. This was incubated for 3 minutes at room temperature 
shaking at 1 400rpm. The beads were then pelleted on a MPC, the supernatant discarded and the 
beads washed twice with 700𝝁l MW1 buffer and twice with PE buffer resuspending the beads on 
each occasion.  
 
Two 700𝝁l water washes were then performed whilst the beads remained on the MPC incubating 
for 1 minute at a time. DNA was then eluted from the beads by mixing the beads for 3 minutes at 
room temperature shaking at 1 400rpm in 100𝝁l AE buffer.  
 
5.2. DNA QC 
 
DNA concentration was determined using the Life Technologies Qubit broad range and high 
sensitivity assay kits. A 1𝝁l aliquot of DNA was combined with 198𝝁l of the appropriate buffer and 
1 𝝁l of dye in a 0.5ml qubit tube, vortexed and left at room temperature for 2 minutes. DNA 
concentration was then measured on a Qubit 3 fluorometer. If DNA concentration between the high 
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sense and broad range assays differed by more than 10% then the extractions were repeated. 
DNA was then calculated by averaging the measurement from each assay. 
 
To confirm molecule length extracted DNA was run on either the Agilent Tapestation or Agilent 
Femto Pulse. For the initial extractions DNA was diluted, if required, to < 50ng/ 𝝁l and a 1𝝁l aliquot 
run on an Agilent Genomic Tape on a Tapestation instrument according to the manufacturer's 
instructions. For the second set of extractions DNA was diluted to 0.25ng/ 𝝁l and a 1𝝁l aliquot run 
on an Agilent Femto Pulse instrument according to the manufacturer's instructions 
Electropherograms for each bacterial species can be seen in the supplementary material. 
 
5.3. Construction of the synthetic mocks 
 
Two synthetic mocks consisting of all 7 species at 7 different proportions were constructed. For 
both mocks we targeted 50% A. xylosoxidans,  25% M. morganii, 12% L. richardii, 6% P. 
aeruginosa, 4% M. wisconsensis, 2% P. vulgaris and 1% S. dysgalactiae based on average Qubit 
measurements.  The first was used for the 1.7kbp, 4.7kbp and 12.8kbp runs and the second for the 
10.6kbp runs. 
 
To remove smaller molecules and improve average read lengths a size exclusion step using the 
Sage Scientific BluePippin was performed. Four 5𝝁g aliquots of the unfragmented mock were run 
on a High Pass cassette on a BluePippin to remove molecules <15 kbp according to the 
manufacturer's instructions, collecting the size selected material in 40𝝁l of running buffer. 
 
To target read N50s around 6kbp a 5𝝁l aliquot of the unfragmented mock in 100 𝝁l was placed in a 
G- tube and spun for 2x 1 minute at 10 000 rpm in an Eppendorf 5415 centrifuge. To confirm the 
size of the fragmented DNA a 1𝝁l aliquot was run on a Agilent Tapestation genomic tape according 
to the manufacturer's instructions(see supplementary material). 
 
5.4. Library construction and Sequencing 
 
Libraries for the 4.5 kbp, 12.8kbp size exclusion, 10.6 kbp and 16.4 kbp runs were constructed 
using the Oxford Nanopore Technologies (ONT) SQK-LSK109 kit according to the manufacturer's 
instructions except that Kapa beads (Roche, UK) were used to perform the clean up steps rather 
than Ampure XP beads. To target average sequence reads of 1.7 kbp,100ng of G-tube fragmented 
mock was used in a 10 𝝁l reaction using the ONT RAD004 kit according to the manufacturer's 
instructions. 
   
In all cases final libraries were sequenced on individual R9.4.1 Rev D 106 flowcells on an ONT 
GridION.  
 
When targeting successive enrichment of each individual species within the mock, runs were set 
up with no enrichment for the first hour to ascertain their baseline composition. At the end of the 
hour the run was stopped and restarted enriching for the next target genome. This process was 
repeated and sequence data collected for one hour until all seven targets had been selected. For 
the 1.7kbp, 4.7kbp and 12.4kbp size exclusion runs all 512 pores were chosen to enrich. For the 
10.6kbp and 16.4kbp runs pores 1 to 256 were chosen to enrich and pores 257 to 512 were 
chosen for controls.  
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Additional runs involved sequencing a 10.6kbp library for 6 hours enriching for S. dysgalactiae only 
followed by a nuclease flush and re loading the library and running for a further 6 hours enriching 
for S. dysgalactiae only, running a 10.6kbp library and enriching for M. morganii and collecting for 
72 hours, running a 10.6kbp library and enriching for S. dysgalactiae and collecting for 72 hours, 
running a 10.6kbp library and depleting for M. morganii and collecting for 72 hours and running a 
10.6kbp library and depleting for M. morganii, A xylosoxidans and L. richardi  and collecting for 72 
hours. In each case pores 1 to 256 were chosen to enrich and pores 257 to 512 were chosen for 
controls. 
 
All sequencing data are available in the European Nucleotide Archive (http://www.ebi.ac.uk/ena) 
repository under accession number PRJEB44844. ONT run reports, along with a table providing 
direct links to the ENA runs can be found at https://github.com/richardmleggett/adaptive_sampling. 
 
5.5. GridION Adaptive Sampling 
 
For each adaptive sampling run we supply MinKNOW with a reference file containing only the 
genome of the species we wish to target. This is the reference file that is used to perform the 
classification of the first ~450bps, upon which the molecule is either sequenced entirely or ejected 
from the pore. We also use MinKNOW’s “align” function to align all reads to a reference file 
containing the genomes of all species in the sample. This mapping does not affect the decisions on 
sequencing or ejecting molecules, and is the mapping we use for our classification. Because the 
initial classification used to inform the decision on whether to sequence or not must be done very 
quickly (before the molecule has passed through the pore), it does not necessarily coincide with 
the more thorough mapping done later. Misclassifications from the initial mapping have a moderate 
effect on the enrichment we observe. 
 
5.6. Adaptive sequencing model web app 
 
A web application was created in R using the “Shiny” library, to allow researchers to see the effect 
experiment parameters will have on the predicted enrichment, as detailed in Section 2.1. The app 
is available at  https://sr-martin.shinyapps.io/, and the source code can be found in the github 
repository https://github.com/SR-Martin/Adaptive-Sequencing-Analysis-Scripts. 
 
5.7. Bioinformatics analysis 
 
All bespoke scripts used in the analysis were written in Python and are freely available in the 
github repository https://github.com/SR-Martin/Adaptive-Sequencing-Analysis-Scripts. 
 
Sequences were basecalled during the experiment on the GridION using the MinKNOW software. 
Mappings of each read to the reference genomes of the seven species in the mock community 
were also created by MinKNOW. The script analyse_RU.py was used to cross reference the 
mappings with the reads, and report read and bp statistics for each species, split by channels used 
for adaptive sampling and all others (when appropriate). 
 
For the analysis of false negatives, the script RU_decision_stats.py was used to parse the adaptive 
sampling logs created by MinKNOW for each experiment. This script determines the signal sent to 
the pore for each read and uses these to split the read set into reads that have been ejected from 
the pore (“unblocked”) and those that were sequenced. These read sets were then cross 
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referenced with the file of mappings and reads were manually binned by species and signal type. 
The script get_read_stats.py was used to obtain statistics for each read set. 
 
The read length distributions in Figure 1a and the control distributions in Figure 4a were obtained 
by binning reads by length into bins of size 1,000. For the enrichment distributions in Figure 4a, 
reads were binned by length into bins of size 100.  
 
In Figure 3.c, yields were normalised by the number of active channels, where active channels 
were those that sequenced a molecule in the first 30 minutes of the experiment. For the plots of 
active channels over time (Figure 6b and Figure 7), a channel was defined as active from the 
beginning of the experiment, up until the time it sequenced its final molecule (as long as it 
sequenced at least one molecule). Active channels were counted using the script 
GetActiveChannels.py, with counts each hour for the 72-hour experiments, and every 15 minutes 
for the 6-hour nuclease flush experiment.  
 
For Figure 6d, the time between two successive target molecules was recorded for each channel 
using the script GetWaitingTimes.py. For Figure 6c the script GetTimeHist.py was used to get the 
target yield for channels 1-256 and 257-512 each hour. For the yield plot in Figure 7, a different 
approach was taken to reduce the effect of the mux scans; the script GetTimeHistFlush.py was 
used to get the total yield for channels 1-256 and 257-512 in sliding windows every 15 minutes. For 
the first six 15-minute intervals, the sliding window was the duration of the experiment up to that 
point. For the remaining intervals, the window was the 90 minutes before. The yield in each 
window was normalised by its duration. For Figure 5, the script GetYieldByTarget.py was used to 
determine the yield each hour, split by channels 1-256 and 257-512, and split by reference. 
 
All plots were created in Python using pandas and matplotlib in Jupyter Lab. 
 
5.8. MAG assembly 
 
Reads mapping to S. dysgalactiae were binned by their start time, with bins containing reads that 
were sequenced in the first hour, the first two hours, etc. up to all 12 hours, using the script 
GetReadsByTargetAndTime.py. After 6 hours a nuclease flush was performed. Each bin was 
assembled with Flye v2.8.1 using the command  
 
flye --nano-raw <read bin> --genome-size 2.1m 
 
Assembly statistics were collected with a custom script, and each assembly was compared to the 
reference genome using dnadiff (part of Mummer v3.23[31]). 
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