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Abstract— Alzheimer’s disease (AD) is a devastating neuro-
logical disorder primarily affecting the elderly. An estimated
6.2 million Americans age 65 and older are suffering from
Alzheimer’s dementia today. Brain magnetic resonance imaging
(MRI) is widely used for the clinical diagnosis of AD. In
the meanwhile, medical researchers have identified 40 risk
locus using single-nucleotide polymorphisms (SNPs) informa-
tion from Genome-wide association study (GWAS) in the past
decades. However, existing studies usually treat MRI and GWAS
separately. For instance, convolutional neural networks are
often trained using MRI for AD diagnosis. GWAS and SNPs
are frequently used to identify genomic traits. In this study,
we propose a multi-modal AD diagnosis neural network that
uses both MRIs and SNPs. The proposed method demonstrates
a novel way to use GWAS findings by directly including
SNPs in predictive models. We test the proposed methods on
the Alzheimer’s Disease Neuroimaging Initiative dataset. The
evaluation results show that the proposed method improves
the model performance on AD diagnosis and achieves 93.5%
AUC and 96.1% AP, respectively, when patients have both
MRI and SNP data. We believe this work brings exciting
new insights to GWAS applications and sheds light on future
research directions.

Index Terms — CNN, MLP, MRI, GWAS, SNP

I. INTRODUCTION

Alzheimer’s disease (AD) is a chronic neurodegenerative
disease, which will cause progressive damage to patients’
ability in memory, language, behavior, and problem solv-
ing [1]. An estimated 6.2 million Americans age 65 and
older are suffering from Alzheimer’s dementia today. In
2019, official death certificates recorded 121,499 deaths from
AD in the US, and this trajectory of deaths from AD was
likely exacerbated in 2020 by the COVID-19 pandemic [2].
However, no treatment available at this time can cure or
completely stop the progression of AD [3]. The difficulty
in finding treatments for AD is most likely due to a lack
of clear understanding of the cause and the fact that AD
patients cannot be easily identified at early stages [4]. For
this reason, early diagnosis is crucial for AD treatment and
potential drug development.

Magnetic resonance imaging (MRI) is a widely used
neuroimaging technology for AD diagnose. An MRI is a
pseud-3D image composed of 2D imaging slices. The voxels
in MRIs are corresponding to the physical locations in pa-
tients’ brains. In recent years, machine learning techniques,
especially convolutional neural networks (CNN), have been
successfully applied in the diagnosis of AD patients using

MRI images [5]–[8]. Compared with traditional computer-
aided diagnosis tools, CNN does not rely on pre-defined,
hand-crafted features. It can learn features directly from
images which makes the method more robust and suitable
for detecting heterogeneity of AD [9], [10].

When making an AD diagnosis, CNN models normally
take an MRI as input and output the probability of the patient
has AD. The range of the probability is between 0 and 1,
with 0 indicates a cognitively normal (CN) patient and 1
indicates an AD patient. The number of the predicted prob-
ability also indicates the degree of uncertainty. For instance,
a probability of 0.05 may indicate more than likely
to be a CN patient, 0.75 may indicate probably
is an AD patient, and 0.5 may indicate not sure.
Normally, when a CNN model makes decisions, 0.5 is
usually used as the decision cut-off. If the probability is
smaller than 0.5, the network predicts CN; otherwise, the
network predicted AD. However, such a method may be
problematic when the predicted probability close to 0.5,
which indicates extreme uncertainty for the prediction (i.e.,
the model has low confidence in its prediction). In clinical
practice, additional tests are ordered when a medical expert
is not certain in his/her decision. Inspired by the clinical
practice, we proposed to use additional information to refine
the CNN model prediction when the predicted probability is
extremely uncertain or prediction confidence is low.

Genome-wide association study (GWAS) is an approach
used in genetics research to associate specific genetic varia-
tions with particular diseases by investigating associations
between single-nucleotide polymorphisms (SNPs) and a
variety of phenotypes [11], [12]. Genetic factors play an
important part in the development of AD. Ridge et al.
indicated that although most AD cases involve multiple
genetic, environmental, and lifestyle factors, genetics can
account for up to 53% of total phenotypic variance [13].
In the past decades, multiple GWAS studies have identified
hundreds of SNPs associated with AD [14]. By using genetic
linkage analysis, these SNPs can help to locate predictive AD
biomarkers and genetic risk factors. Therefore, SNPs became
a natural choice for the additional information to refine the
CNN model prediction.

This study proposes to use SNPs to refine CNN model
performance by ensemble the SNP predicting result with
the CNN result when the prediction confidence of the
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Fig. 1: An illustration of the proposed multi-modal model. An MRI and a set of SNPs are feed into a 2D CNN model
(top) and an MLP model (bottom), respectively. The ensemble gate opens when the image branch (top) has low prediction
confidence, the SNP branch (bottom) is used to refine the overall prediction.

CNN model is low. We evaluate the proposed method on
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset (https://adni.loni.usc.edu). Our experimental result
shows that the ensemble model using both SNP and MRI
features improves the AD diagnosis performance than only
using MRI images.

We consider our contributions to this work as the follow-
ing:

• propose a cross-domain deep neural network that uses
SNPs to refine CNN model prediction when the pre-
dicted confidence is low;

• demonstrate a novel way to use GWAS results in clinical
practice by directly using SNPs in predictive models for
AD diagnosis;

• improve the AD diagnosis performance from 92.4%
AUC to 93.5% when patients have both MRI and SNPs;

• discuss the proposed method in detail and provide a
clear research direction to future researchers.

II. APPROACH

The proposed ensemble model contains two sub-networks,
an image processing network and an SNP processing net-
work (Figure 1). The image processing network and SNP
processing network take an MRI and a set of SNPs as input
and predict whether the patient is AD or CN separately.
An ensemble gate (σ) is included in the ensemble model.
If the image processing network has low confidence, the
ensemble gate is open, and the SNP prediction is used to
refine the image prediction. Otherwise, the ensemble gate
remains closed; the image prediction result is used as the
final prediction for the patient. Both of the networks can
be trained jointly or separately. In this project, we train the
networks separately for simplicity.

A. Image Processing Network

The image processing network is a 2D CNN model that is
based on our previous work [8]. The 2D CNN model includes
three components, a pre-trained feature extractor, a temporal
pooling operation, and a shallow CNN classifier.

The 2D slices of an MRI are first passed through the
feature extract separately. A feature block with the shape
of H ×W ×K × Z is extracted, where W is the width of
a feature map, H is the height of a feature map, K is the
number of feature maps that extracted from one slice, and Z
is the number of slices in the MRI (Z ≥ 1). Temporal pooling
operation is then applied to the slice dimension of the feature
block. The temporal pooling operation aims to convert the 3D
MRI features with different lengths to fixed-size 2D image
features by replacing the values on the temporal dimension
(or the slice dimension) with a single value. The output shape
of the temporal pooling operation is H×W×K×1. Finally,
the fixed-size feature block is used as the input of the shallow
CNN classifier for AD diagnosis. Max-pooling is used as the
temporal pooling operation according to our previous work.
Cross-Entropy loss is used to train the CNN classifier.

B. SNP Processing Network and SNP Selection

The SNP processing network is a multilayer perceptron
(MLP) network that takes a set of SNPs as input and predicts
the probability of being the AD class.

In GWAS, millions of common coding and non-coding
genetic variants across the genome are tested for association
with a trait. Instead of directly genotyped, functional genes
usually were found according to linkage disequilibrium (in
which restricted recombination between loci causes non-
random transmission of alleles) with genotyped SNPs. In
general, after GWAS identifies hundreds of genetic locus
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TABLE I: SNPs with Identified Genes

SNP Name Chr Position Nearest gene P value

rs4575098 1 161155392 ADAMTS4 2.05× 10−10

rs11771145 7 143110762 EPHA1 8.8× 10−10

rs17125944 14 53400629 FERMT2 7.9× 10−9

rs10498633 14 92926952 SLC24A4 1.5× 10−7

rs3865444 19 51727962 CD33 5.1× 10−8

rs4985556 16 70694000 IL34 3.7× 10−8

rs12444183 16 81773209 PLCG2 3.2× 10−8

rs2718058 7 37841534 GPR141 4.8× 10−9

TABLE II: SNPs Identified by Multiple Studies

SNP Name Chr Position Number of independent studies

rs2075650 19 50087459 9
rs11136000 8 27520436 2
rs157580 19 50087106 3
rs3818361 1 205851591 2
rs3851179 11 85546288 2
rs6859 19 50073874 3
rs744373 2 127611085 3

associated with traits, a lot of informatics and functional
characterization are still needed to further identify functional
variants and genes. For this reason, thousands of SNPs could
be identified as associated with one disease phenotype from
a single GWAS study, but successfully finding one related
functional gene is still challenging.

To effectively utilize SNP data and exploit its application
in machine learning, we manually chose 41 SNPs from
literature. Due to data availability in ADNI database, 15
SNPs were used for SNP model construction. Out of these,
8 SNPs have been identified as linked to a functional gene.
As shown in Table I, rs11771145, rs17125944, rs10498633,
rs2718058 and rs3865444 were chose from a 2013 AD
GWAS which used two-stage meta-analysis for 74,046 indi-
viduals of European ancestry [15]. In 2018, another GWAS
used 314,278 participants from the UK Biobank, with 14,338
CN and 27,696 AD samples [16]. Participants were excluded
if their parents were younger than 60 years, died before the
age of 60 years, or if no age was reported. In this study,
rs12444183, rs4985556 along with their linked genes PLCG2
and IL34 were identified as new risk loci for AD. ADAMTS4
and its lead SNP rs4575098 were chosen from a new GWAS
that was published in Nature Genetics, 2019 [17]. This
GWAS included a sample size more than eightfold greater
than that of the 2013 GWAS by accumulating the genetic
data of 635,000 individuals, including a new data set never
used before (about 48,000 AD and 330,000 CN).

Although no linked functional genes were found for the
other 7 SNPs yet, meta-analysis did by [18] using 2429
GWAS studies (which including 1818 phenotypes and 28,462
SNPs) showed that at least two independent GWAS studies
identified these SNPs have a significant association with AD
(Table II). It is worth noting that nine independent GWAS
studies have associated rs2075650 with AD, which is worthy
of future functional investigation.

The ADNI study has been divided into several phases,

including ADNI-1, ADNI-GO, and ADNI-2, which started in
2004, 2009, and 2011, respectively. Due to the limitation of
assessment technology or data collection methods, SNP data
for patients from different phases of the ADNI study were not
unified. According to our preliminary study, the following
values were selected as SNP features for training and testing
the SNP model: Allele1-Top, Allele2-Top, Allele1-Forward,
Allele2-Forward, Allele1-AB, and Allele2-AB.

C. Refine the Image Network Performance with SNPs

The SNP processing branch is used to refine the perfor-
mance of the image processing branch when the prediction
confidence is low (i.e., the predicted probability, p, is close
to 0.5). An ensemble gate, σ, opens when p is close to 0.5.
Then, the SNP processing branch result is assembled with
the image processing branch prediction to form the final
prediction. A hyper-parameter Θ is used as the threshold
to control the ensemble gate that contains two values, θhigh
and θlow. When θlow ≤ p ≤ θhigh, σ is open. Otherwise, σ
is closed. In order to keep the ensemble stage intuitive and
straightforward, we simply average the prediction probability
of the two predictions when σ is open.

D. Implementation

The image processing network uses the AlexNet [19] as
the backbone. The network is pre-trained on the ImageNet
dataset [20]. After the network is trained, the first four con-
volutional (Conv) layers are used as the pre-trained feature
extractor. A 1 × 1 Conv layer and two FC layers with 512
neurons and 2 neurons are added to the feature. The Conv
layer aims to convert the ImageNet pre-trained features to
AD-specific classification features. The two FC layers are
used as an MLP classifier. We implement the network in
Pytorch [21] following [8]. Adam [22] optimizer with a
learning rate of 10−4 is used as the optimizer, and weighted
cross-entropy is used as the loss function.

The SNP processing network is an MLP network that
is implemented in scikit-learn [23]. The model has 1000
hidden layers with the Relu activation function. SGD with a
learning rate of 5 ∗ 10−3 is used as the optimizer. The max
training iteration is 10,000 steps, but early stopping criteria
are applied.

We set θlow = 0.3 and θhigh = 0.7 for the control of the
ensemble gate (σ). When 0.3 ≤ p ≤ 0.7, σ opens and SNP
prediction is used to refine the image prediction. Otherwise,
σ remains closed. We use the image prediction as the final
prediction of this patient.

III. RESULT

A. Evaluation Setup

T1 MRIs of 100 patients from the ADNI dataset are used
in this study, including 51 CN samples and 49 AD samples.
The images were pre-processed, the skulls were stripped out
from the brain images. Among the 100 patients, 75 patients
(35 CN vs. 40 AD) have both image and SNP information.
The MRI images were used to train the image processing
network. The 5-fold cross-validation is applied to get the
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TABLE III: Performance of Different Methods

Model # Patients AUC AP

Image 75 75 0.9235 0.9545
SNP 75 75 0.6807 0.6753
Refined 75 75 0.9357 0.9616

Image 100 100 0.8763 0.8905
Refined 100 100 0.8831 0.8919

prediction result of all the 100 patients. An additional 300
patients (140 CN vs. 160 AD) were selected for the SNP
processing network training and validation. The SNPs of the
75 patients who have MRIs are used only for testing the
SNP processing network. The image processing network was
trained for 100 epochs, and the SNP processing network was
trained for 10,000 interactions with early stopping criteria is
applied.

The area under the curve of Receiver Operating Charac-
teristics (AUC) and Average Precision (AP) are used as the
evaluation metrics. The AUC score considers both the true-
positive rate (percentage of actual positives that are called
correctly) and the false positive rate (percentage of actual
negatives that are called incorrectly). The AP score sum-
maries the area under the precision and recall curve (PRC)
that combines precision and recall in a single visualization.
For both of the metrics, a higher score indicates a better
performance. A classifier that works perfectly would have
a score of 1, and a classifier that guessed randomly would
result in a score of 0.5.

B. Classification Performance

Table III shows the evaluation result of i) using only the
image processing branch performance (denoted as Image X,
where the subscript, X, indicates the number of patients that
was used in the testing), ii) using only the SNP processing
branch (denoted as SNP X), and iii) the proposed method (i.e.,
SNPs are used to refine the imaging branch performance,
denoted as Refined X) of the 75 patients who have both
MRI and SNPs and the overall performance of the total 100
patients. The Refined 100 performance of the 100 patients is
derived by combining the performance of the Refined 75 with
the image-only performance of the 25 patients who do not
have SNPs. Figure 2 and 3 show the AUC and precision-
recall curve (PRC) for the 75 patients and 100 patients,
respectively.

The result shows that for the 75 patients who have both
MRI and SNPs, when using only the image processing net-
work (Image 75), the network gets a 0.9235 AUC and 0.9545
AP. When using the SNPs to refine the image processing
network (Refined 75), both the AUC and AP can be improved
to 0.9357 AUC and 0.9616 AP. The result reveals that
although the performance of the SNP model (SNP 75) was
not very impressive (0.6807 AUC and 0.6753 AP), the image
model was still beneficial from combining SNP features.
Similar results were also obtained in the models using the
100 patients.

Fig. 2: AUC (left) and PRC (right) of the 75 patients who
have both the MRI and SNPs. Orange line: Image-only result.
Green line: SNP refined result.

Fig. 3: The overall performance of the 100 patients, AUC
(left) and PRC (right). Orange line: Image-only result. Green
line: SNP refined result.

IV. DISCUSSION

A. 2D CNN vs. 3D CNN

An MRI data is a pseudo-3D image that contains multiple
2D slices. 3D CNNs are a natural choice when applying
neural networks to MRI analysis tasks. However, 3D CNNs
are usually much larger than 2D models in terms of the
number of trainable parameters. For instance, the 3D ResNet
used in [8] has over 50 million trainable parameters, but the
2D CNN model only has approximately 2.5 million trainable
parameters. In general, more trainable parameters usually
lead to a longer training time and request more training
data, which increases the training cost of 3D CNNs over 2D
CNNs. More importantly, transfer learning has been proved
useful in improving CNN performance on small datasets and
has been widely applied in the medical imaging domain [24],
[25]. With transfer learning, a CNN model is pre-trained on
a large dataset, such as ImageNet [20], then fine-tuned on a
small medical dataset. However, there is no widely accepted
3D imaging dataset that can be used to pre-train a 3D CNN
model. Thus, we use 2D CNNs in this study. According to
our previous study [8], the selected 2D CNN model improved
the network performance by over 10% compared with the 3D
competitor. The 2D CNN also reduces the overall training
time by approximately 95%, from 3,916 minutes to 213
minutes.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 9, 2021. ; https://doi.org/10.1101/2021.05.07.443184doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.07.443184


B. Ensemble Gate (σ) Threshold

For a binary classification task, the output of neural
networks is often given as the probability (p) of one sample
to be a positive class. The possible range of p is between 0
and 1, with 0 indicate CN and 1 indicate AD. Normally, the
deep learning world may use 0.5 as the cut-off because any
value of p below 0.5 shows a larger probability to be CN;
oppositely, the values larger than 0.5 shows a greater chance
to be AD; when the value of p more close to 0.5, it shows
more uncertainty or low confidence of the decision.

We propose to use SNPs to refine the image predicting
result when the predicted confidence is low. The refinement
is done by assembling the image prediction and SNP predic-
tion. An ensemble gate (σ) is used to control the ensemble
process. We use 0.3 and 0.7 to define the lower bound and
upper bound, respectively, of the low confidence prediction.
More specifically, when the imaging predicted, p, within this
range (0.3 ≤ p ≤ 0.7), we say the prediction has low
confidence, σ opens, and SNP prediction is used to refine
the image prediction. Otherwise, σ remains closed.

We choose 0.3 and 0.7 as the thresholds partly because it
is about one standard deviation from the mean of the range
of the possible probabilities. In addition, our SNP model
only has about 70% accuracy, which could be inferred as
an average 70% prediction confidence or p = 0.7 for being
positive cases, according to [26]–[28]. Thus, we do not use
the SNP to refine the image predictions that have p > 0.7 or
p < 0.3 because the predictions in those two ranges have
higher confidence, which hypothetically is more accurate
than the SNP predictions. Note that p < 0.3 means the
prediction has a smaller than 30% chance to be a positive
case, which means there is a more than 70% to be a negative
case.

C. Limitation of SNP

GWAS have been very successful in identifying novel
variant–trait associations [29]–[31]. In the past decades,
several large AD GWAS have been published that involved
millions of people, which provide us extensive numbers of
SNP information [15]–[17], [32]. Candidate functional SNPs
in regulatory and coding regions affect genes differently.
Those occurring within the protein coding region can affect
protein structure or lead to alternative splicing, potentially
resulting in altered function or in some cases loss of func-
tion. Genetic variants located in non-coding regions often
influence phenotypes by altering the expression of nearby
genes [33]. By using this SNP information, 40 risk locus
associated with AD have been discovered. Thus, exploit the
application of SNP in AD using machine learning is not only
tempting but also promising.

During the experiments, various predictive models and
network architectures were evaluated. However, the best
result we can achieve is about 70% accuracy, 0.6801 AUC,
and 0.6753 AP with an MLP model. Though this number
is not very impressive, we think this number is generally
acceptable partly because it may within the range of human
experts on many medical tasks. For instance, the average

TABLE IV: SNP Feature List

Feature Description

Allele1-Top Allele 1 on the top strand. Illumina-designated top
strand A allele genotype.

Allele2-Top Allele 2 on the top strand. Illumina-designated top
strand B allele genotype.

Allele1-Forward Allele 1 on the forward strand. Illumina-designated
forward strand A allele genotype.

Allele2-Forward Allele 2 on the forward strand. Illumina-designated
forward strand B allele genotype.

Allele1-AB Allele 1 in A/B notation.

Allele2-AB Allele 2 in A/B notation.

Chr The chromosome of the SNP.

Position The chromosomal position of the SNP .

GC Score Call score for that SNP from the GenTrain cluster-
ing algorithm.

Cluster Sep Cluster separation score. A measure of the cluster
separation for the SNP that ranges between 0 and
1.

SNP SNP allele.

Theta The normalized Theta-value of this SNP for the
sample.

R The normalized R-value of this SNP for the sample.

X The normalized intensity of the A allele.

Y The normalized intensity of the B allele.

X Raw The raw intensity of the A allele.

Y Raw The raw intensity of the B allele.

B Allele Freq The B allele theta value of this SNP for the
sample, relative to the cluster positions. This value
is normalized so that it is zero if theta is less than
or equal to the AA cluster’s theta mean, 0.5 if it is
equal to the AB cluster’s theta mean, or 1 if it is
equal to or greater than the BB cluster’s theta mean.
B Allele Freq is linearly interpolated between 0 and
1, or set to NaN for loci categorized as “intensity
only.”

Log R Ratio For loci included in BeadStudio statistics: the base-
2 log of the normalized R value over the expected
R value for the theta value (interpolated from the
R-values of the clusters). For loci categorized as
“intensity only”: adjusted so that the expected R
value is based upon the weighted mean of the
cluster itself.

diagnosis performance of radiologists on breast cancer is
only 0.71 AUC [34], [35].

One potential limitation for the SNP model performance
is limited data availability in the ADNI database. Although
hundreds of SNPs were associated with AD, we can only
use 15 of them, which are available in the ADNI genetic
database. Many newly identified SNPs do not exist in the
ADNI database. With the access of more SNPs and a
reasonable SNP selection of SNPs, the performance of the
SNP predicting model may be improved significantly.

In addition, a feature selection may be applied to extract
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useful features from SNPs. According to ADNI, each SNP
has 19 features (Table IV). In the downstream genomic
studies of GWAS, Allele1-AB and Allele2-AB are the two
commonly used features. However, according to our experi-
ences, these two features cannot provide enough information
to the predictive model. We end up using six features:
Allele1-Top, Allele2-Top, Allele1-forward, Allele2-Forward,
Allele1-AB, and Allele2-AB. In future studies, an optimized
feature selection method with statistical and pathological data
support might lead to better results.

V. CONCLUSION

In this study, we propose a novel multi-modal deep
neural network. The model uses both MRI and SNPs for
Alzheimer’s disease diagnosis. When the imaging branch has
low prediction confidence, the SNP branch is used to refine
the imaging branch performance. The model is inspired
by clinical practice such that when the medical expert is
uncertain in his/her decision, additional tests are ordered
to help to make the decision. Our result shows that the
proposed method improves the Alzheimer’s disease diagnosis
performance to 93.5% AUC and 96.1% AP, respectively,
when all the patients have both MRI and SNP data.

According to our best knowledge, this is the first work
that uses GWAS results, i.e., SNPs, directly in multi-modal
predictive models for Alzheimer’s disease diagnosis that
accompany MRI data. We believe this work demonstrates
a novel way to use GWAS results in clinical practice. It can
serve as a strong baseline for future researchers.
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