
1 
 

Harnessing genetic diversity in the USDA pea (Pisum sativum L.) germplasm collection 1 

through genomic prediction 2 

Md. Abdullah Al Bari1, Ping Zheng3, Indalecio Viera1, Hannah Worral2, Stephen Szwiec2, Yu 3 

Ma3, Dorrie Main3, Clarice J. Coyne4, Rebecca McGee5, and Nonoy Bandillo1* 4 

1 Department of Plant Sciences, North Dakota State University, Fargo, ND 58108-6050, USA  5 
2

 NDSU North Central Research Extension Center, 5400 Highway 83 South Minot, ND 58701, 6 
USA 7 
3 Department of Horticulture, Washington State University, Pullman, WA 99164, USA 8 
4 USDA-ARS Plant Germplasm Introduction and Testing, Washington State University, 9 

Pullman, WA 99164, USA 10 
5 USDA-ARS Grain Legume Genetics and Physiology Research, Pullman, WA 99164, USA 11 

Corresponding Author: Nonoy Bandillo, *email: nonoy.bandillo@ndsu.edu 12 

Abstract 13 

Phenotypic evaluation and efficient utilization of germplasm collections can be time-intensive, 14 
laborious, and expensive. However, with the plummeting costs of next-generation sequencing 15 
and the addition of genomic selection to the plant breeder's toolbox, we now can more efficiently 16 

tap the genetic diversity within large germplasm collections. In this study, we applied and 17 
evaluated genomic selection's potential to a set of 482 pea accessions – genotyped with 30,600 18 
SNP markers and phenotyped for seed yield and yield-related components – for enhancing 19 
selection of accessions from the USDA Pea Germplasm Collection. Genomic prediction models 20 
and several factors affecting predictive ability were evaluated in a series of cross-validation 21 

schemes across complex traits. Different genomic prediction models gave similar results, with 22 

predictive ability across traits ranging from 0.23 to 0.60, with no model working best across all 23 

traits. Increasing the training population size improved the predictive ability of most traits, 24 
including seed yield. An increasing trend in predictive ability was also observed with an 25 

increasing number of SNPs. Accounting for population structure effects did not significantly 26 
boost predictive ability, but we observed a slight improvement in seed yield. By applying the 27 
genomic prediction model from this study, we then examined the distribution of nonphenotyped 28 

accessions, and the reliability of genomic estimated breeding values (GEBV) of the USDA Pea 29 
accessions genotyped but not phenotyped. The distribution of GEBV suggested that none of the 30 

nonphenotyped accessions were expected to perform outside the range of the phenotyped 31 
accessions. Desirable breeding values with higher reliability can be used to identify and screen 32 
favorable germplasm accessions. Expanding the training set and incorporating additional 33 

orthogonal information into the genomic prediction framework could enhance prediction 34 
accuracy.  35 
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Introduction 41 

Pea (Pisum sativum L.) is a vitally important pulse crop that provides protein (15.8-32.1%), 42 

vitamins, minerals, and fibers. Pea consumption has cardiovascular benefits as it is rich in 43 
potassium, folate, and digestible fibers, which promote gut health and prevent certain cancers 44 
(Mudryj et al., 2014; Tayeh et al., 2015). Considering the health benefits, the US Department of 45 
Agriculture recommends regular pulses consumption, including peas, to promote human health 46 
and wellbeing (http://www.choosemyplate.gov/). In 2019, more than 446,000 hectares of edible 47 

dry pea were planted with production totaling 1013,600 tonnes in the USA, making it the fourth-48 
largest legume crop (http://www.fao.org) (USDA, 2020). Growing peas also help maintain soil 49 
health and productivity by fixing atmospheric nitrogen (Burstin et al., 2015). Recently, pea 50 
protein has emerged as a frontrunner and showed the most promise in the growing alternative 51 
protein market. The Beyond Meat burger is a perfect example of a pea protein product gaining 52 

traction in the growing market. About 20-gram protein in each burger comes from pea 53 
(https://www.nasdaq.com/articles/heres-why-nows-thetime-to-buy-beyond-meat-stock-2019-12-54 

05). Another product made from pea, Ripptein, is a non-dairy milk product of pea protein that is 55 
gaining tremendous interest as an alternative dairy product 56 

(https://www.ripplefoods.com/ripptein/). Additionally, peas are gaining attention in the pet food 57 
market as it is grain-free and an excellent source of essential amino acids required by cats and 58 

dogs (PetfoodIndustry.com) also serves as animal feed (Facciolongo et al., 2014). As the demand 59 
for pea increases, particularly in the growing alternative protein market, genetic diversity 60 
expansion is needed to double the current rate of genetic gain in pea (Vandemark et al., 2015).  61 

Germplasm collections serve as an essential source of variation for germplasm enhancement that 62 

can sustain long-term genetic gain in breeding programs. The USDA Pisum collection, held at 63 
the Western Regional Plant Introduction Station at Washington State University, is a good 64 

starting point to investigate functional genetic variation. To date, this collection consists of 6,192 65 
accessions plus a Pea Genetic Stocks collection of 712 accessions. From this collection, the 66 

USDA core collection comprised of 504 accessions was assembled to represent ~18% of all 67 
USDA pea accessions at the time of construction (Simon and Hannan 1995; Coyne et al., 2005). 68 

Subsequently, single-seed descent derived homozygous accessions were developed from a subset 69 
of the core to form the 'Pea Single Plant'-derived (PSP) collection. The PSP is used to facilitate 70 

the collection's genetic analysis (Cheng et al., 2015). The USDA Pea Single Plant Plus 71 
Collection (PSPPC) was assembled and included the PSP and Chinese accessions and field, snap 72 
and snow peas from US public pea-breeding programs (Holdsworth et al., 2017).  73 

Genomic selection (GS) takes advantage of high-density genomic data and rapidly increases the 74 
rate of genetic gain (Meuwissen et al., 2001). As genotyping costs have significantly declined 75 
relative to current phenotyping costs, GS has become an attractive option as a selection decision 76 

tool to evaluate accessions in extensive germplasm collections. A genomic prediction approach 77 
could use only genomic data to predict each accession's breeding value in the collection 78 
(Meuwissen et al., 2001; Habier et al., 2007; VanRaden, 2008). The predicted values would 79 
significantly increase the value of accessions in germplasm collections by giving breeders a 80 
means to identify those favorable accessions meriting their attention from the thousand available 81 

accessions in germplasm collection (Longin et al., 2014; Crossa et al., 2016; Jarquin et al., 2016). 82 
Several studies used the genomic prediction approach to harness diversity in germplasm 83 
collections, including soybean (Jarquin et al., 2016), wheat (Crossa et al., 2016), rice (Spindel et 84 
al., 2015), sorghum (Yu et al., 2016), maize (Gorjanc et al., 2016), and potato (Bethke et al., 85 
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2019). A pea genomic selection study for drought-prone Italian environment revealed increased 86 
selection accuracy of pea lines through genomic prediction (Annicchiarico et al., 2019; 87 

Annicchiarico et al., 2020). To the best of our knowledge, no such studies have been performed 88 
using the USDA Pea Germplasm Collection, but a relevant study has been made using a diverse 89 
pea germplasm set comprised of more than 370 accessions genotyped with a limited number of 90 
markers (Burstin et al., 2015).  91 

To date, methods to sample and utilize an extensive genetic resource like germplasm collections 92 
remain a challenge. In this study, a genomic prediction approach targeting complex traits, 93 
including seed yield and phenology, was evaluated to exploit diversity contained in the USDA 94 
Pea Germplasm Collection. No research has been conducted on genomic prediction for the 95 
genetic exploration of the USDA Pea Germplasm Collection. Different cross-validation schemes 96 

were used to answer essential questions surrounding the efficient implementation of genomic 97 

prediction and selection, including determining best prediction models, optimum numbers of 98 

markers and population size, and impact of accounting population structure into genomic 99 
prediction framework. We then examined the distribution of all nonphenotyped accessions using 100 
SNP information in the collection by applying genomic prediction models.  101 

Material and Methods 102 

Plant materials 103 

The Pea Single Plant Plus Collection (Pea PSP) of 292 USDA pea germplasm accessions (Cheng 104 
et al., 2015) was used in this study for phenotypic assessment. The USDA Pea Core Collection 105 

contains accessions from different parts of the world and represents the entire collection's 106 
morphological, geographic, and taxonomic diversity. These accessions were initially acquired 107 

from 64 different countries and are conserved at the Western Regional Plant Introduction Station, 108 

USDA, Agricultural Research Service (ARS), Pullman, WA (Cheng et al., 2015).  109 

DNA extraction, sequencing, SNP calling 110 

Green leaves were collected from seedlings of each accession grown in the greenhouse with the 111 

DNeasy 96 Plant Kit (Qiagen, Valencia, CA, USA). Genomic libraries for the Single Plant Plus 112 

Collection were prepped at the University of Minnesota Genomics Center (UMGC) using 113 

genotyping-by-sequencing (GBS). Four hundred eighty-two (482) dual-indexed GBS libraries 114 

were created using restriction enzyme ApeKI (Elshire et al., 2011). A NovaSeq S1 1 x 100 115 

Illumina Sequencing System (Illumina Inc., San Diego, CA, USA) was then used to sequence the 116 

GBS libraries. Preprocessing was performed by the UMGC that generated the GBS sequence 117 

reads. An initial quality check was performed using FastQC 118 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).  Sequencing adapter remnants were 119 

clipped from all raw reads. Reads with final length <50 bases were discarded. The high-quality 120 

reads were aligned to the reference genome of Pisum sativum (Pulse Crop Database 121 

https://www.pulsedb.org/, Kreplak et al., 2019) using the Burrow Wheelers Alignment tool 122 

(Version .7.17) (Li and Durbin, 2009) with default alignment parameters, and the alignment data 123 

was processed with SAMtools (version 1.10) (Li et al., 2009). Sequence variants, including 124 

single and multiple nucleotide polymorphisms (SNPs and MNPs, respectively), were identified 125 

using FreeBayes (Version 1.3.2) (Garrison and Marth, 2012). The combined read depth of 10 126 

was used across samples for identifying an alternative allele as a variant, with the minimum base 127 
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quality filters of 20. The putative SNPs from freeBayes were filtered across the entire population 128 

to maintain the SNPs for biallelic with minor allele frequency (MAF) < 5%. The putative SNP 129 

discovery resulted in biallelic sites of 380,527 SNP markers. The QUAL estimate was used for 130 

estimating the Phred-scaled probability. Sites with a QUAL value less than 20 and more than 131 

80% missing values were removed from the marker matrix. The rest markers were further 132 

filtered out so that heterozygosity was less than 20%. The filters were applied using VCFtools 133 

(version 0.1.16) (Danecek et al., 2011) and in-house Perl scripts. 134 

Missing data were imputed using a k-nearest neighbor genotype imputation method (Money et 135 
al., 2015) implemented in TASSEL (Bradbury et al., 2007). Single Nucleotide Polymorphism 136 
(SNP) data was converted to a numeric format where 1 denotes homozygous for a major allele, -137 

1 denotes homozygous for an alternate allele, and 0 refers to heterozygous loci. Finally, 30,646 138 
clean, curated SNP markers were identified and used for downstream analyses.  139 

Phenotyping 140 

Pea germplasm collections (Pea PSP) were planted following augmented design with standard 141 
checks ('Hampton,' 'Arargorn,' 'Columbian,' and ‘1022’) at the USDA Central Ferry Farm in 142 

2016, 2017, and 2018 (planting dates were March 14, March 28, and April 03, respectively).  143 
Central Ferry farm is located at Central Ferry, WA at 46°39’5.1’’N; 117°45’45.4” W, and 144 
elevation of 198 m. The Central Ferry farm has a Chard silt loam soil (coarse-loamy, mixed, 145 

superactive, mesic Calcic Haploxerolls) and was irrigated with subsurface drip irrigation at 10 146 
min d-1.  All seeds were treated with fungicides; mefenoxam (13.3 mL a.i. 45 kg-1), fludioxonil 147 

(2.4 mL a.i. 45 kg -1), and thiabendazole (82.9 mL a.i.45 kg -1), insecticide; thiamethoxam (14.3 148 
mL a.i. 45 kg -1), and sodium molybdate (16 g 45 kg -1) prior to planting.  Thirty seeds were 149 
planted per plot; each plot was 152 cm long, having double rows with 30 cm center spacing. The 150 
dimensions of each plot were 152 cm x 60 cm. Standard fertilization and cultural practices were 151 
used.  152 

The following traits were recorded and are presented in this manuscript. Days to first flowering 153 

(DFF) are the number of days from planting to when 10% of the plot's plants start flowering. The 154 
number of seeds per pod (NoSeedsPod) is the number of seeds in each pod. Plant height (PH cm) 155 

is defined as when all plants in a plot obtained full maturity and were measured in centimeters 156 

from the collar region at soil level to the plants' top. Pods per plant (PodsPlant) is the number of 157 
recorded pods per plant. Days to maturity (DM) referred to physiological maturity when plots 158 
were hand-harvested, mechanically threshed, cleaned with a blower, and weighed. Plot weight 159 
(PlotWeight, gm) is the weight of each plot in grams after each harvest. Seed yield (kg ha-1) is 160 
the plot weight converted to seed yield in kg per hectare.  161 

Phenotypic data analysis  162 

A mixed linear model was used to extract the best linear unbiased predictors (BLUPs) from this 163 
trial for DFF, NoSeedsPod, PH, PodsPlant, DM, and seed yield using the following model: 164 

𝑦𝑖𝑗 =  𝜇 + 𝐺𝑖 + 𝑇𝑗 + (𝑇 ∗ 𝐺)𝑖𝑗 +  𝑒𝑖𝑗                                             (1) 165 

where 𝑦𝑖𝑗 is the observed phenotype, 𝜇 is the overall mean, 𝐺𝑖 is the random genotypic effect, 𝑇𝑗 166 

is the random year term, (𝑇 ∗ 𝐺)𝑖𝑗 is the genotype by year interaction, and 𝑒𝑖𝑗 is the residual 167 

error. 168 
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The heritability or repeatability for each assessed trait was calculated to evaluate the quality of 169 
trait measurements following the equation:  170 

𝐻2 =  
𝜎𝐺

2

𝜎𝐺
2 + 𝜎𝐺𝐸

2 /𝑒 + 𝜎𝑒
2/𝑒𝑟

                                                       (2) 171 

where 𝜎𝐺
2 is the genetic variance, 𝜎𝐺𝐸

2  is variance due to genotype by year interaction, 𝜎𝑒
2 is the 172 

error variance, e is number of environments (number of years), and r is the harmonic mean of the 173 
replicates (number of relative occurrences of each genotype in a trial). The R package, lme4 174 
(Bates et al., 2015), was used to analyze the data. The trait values derived from BLUPs were 175 
used to measure correlation with the ggcorrplot package using ggplot2 (Wickham 2016). 176 

Genomic selection models  177 

The genomic selection models were fitted to a univariate genomic selection model as follows: 178 

𝑦𝑖𝑗 =  𝑋𝛽 + 𝑍𝑢 + ɛ                                                           (3) 179 

Where y is a vector of the observed phenotype, X is a fixed effect matrix relating fixed effects of 180 

individuals, 𝛽 is a vector of fixed effect, Z is a matrix of random effect, u is a random effect 181 

vector, and ɛ is a residual vector.  182 

Seven genomic selection methods were used to predict genomic estimated breeding values in 183 
phenotypic forms: ridge regression best linear unbiased prediction approach (RR-BLUP), 184 

Gaussian kernel (GAUSS), partial least squares regression model (PLSR), elastic net (ELNET), 185 
random forest (RF), BayesCpi, and Reproducing Hilbert Kernel Space (RHKS).  186 

The RR-BLUP approach assumes all markers have an equal contribution to the genetic variance. 187 

One of the predominant methods for predicting breeding values is RR-BLUP, comparable to the 188 
best linear unbiased predictor (BLUP) used to predict the worth of entries in the context of mixed 189 

models (Meuwissen et al., 2001). The RR-BLUP basic frame model is: 190 

𝑦 =  𝑊𝐺𝑢 + ɛ                                                              (4) 191 

where u ~ N (0, Iσ2u) is a marker effect vector, G is the genotype matrix e.g., {aa,Aa,AA} = {–192 

1,0,1} for biallelic single nucleotide polymorphisms (SNPs) under an additive model, and W is 193 
the design matrix relating lines to observations (y).  194 

Often, breeders are interested in the total genotypic values rather than genomic estimated 195 
breeding values. Therefore, the Gaussian kernel model expands on the basic RR-BLUP to 196 

include epistatic effects and non-additive effects with an appropriate kernel function by 197 
reproducing kernel Hilbert space (RKHS) (Endelman 2011) to obtain total genotypic values. 198 

Both RR-BLUP and Gaussian kernel use the ‘RR-BLUP’ package to run genomic predictions.  199 

Professor Herman Ole Andreas Wold introduced partial least square regression (PLSR) circa 200 
1966 to deal with cases when there are more independent variables (p) than observations (n) 201 
(Colombani et al., 2012). PLSR was executed using the ‘pls’ package. In the estimation of 202 

regression parameters, PLSR can avoid multicollinearity effects which makes it suited for 203 
prediction.  204 
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Penalties from Lasso (L1 regularization) and Ridge (L2 regularization) regressions are 205 
incorporated into the elastic net (ELNET) model to select highly correlated variables to introduce 206 

a grouping effect (Zou and Hastie 2005). The ELNET model is more useful when many 207 
predictors (p) are higher than the number of observations (n), such as PLSR. The ‘glmnet’ 208 
package was used to develop an elastic net model (Friedman et al., 2010).  209 
Random forest is a machine-learning algorithm-based genomic selection model that uses an 210 
average of multiple decision trees to determine predicted values. This regression model was 211 

implemented using the ‘randomForest’ package (Breiman, 2001).  212 

BayesCpi was used to verify the influence of distinct genetic architectures of different traits on 213 

prediction accuracy. The BayesCpi assumes that each marker has a probability π of being 214 
included in the model, and this parameter is estimated at each Markov Chain Monte Carlo 215 

(MCMC) iteration. The vector of marker effects u is assumed to be a mixture of distributions 216 

having the probability π of being null effect and (1- π ) of being a realization of a normal 217 

distribution, so that
2 2| π, ~ ( , )

j g g
N u 0

 and the vector of residual effects was considered218 
2

e
~ ( ,σ )Ne 0

. The marker and residual variances were assumed to follow a chi-square distribution 219 
2 2

0
~ ( , )

g b
S  

and
2 2

0
~ ( , )

e b
S  

, respectively 0
ν 5=

, degrees of freedom as prior and b
S

shape 220 

parameters assuming a heritability of 0.5 (Pérez and de los Campos 2014). The last model used 221 
was the Reproducing Hilbert Kernel Space (RHKS). The method is a regression where the 222 

estimated parameters are a linear function of the basis provided by the reproducing kernel (RK). 223 
In this work, the multi-kernel approach was used by averaging three kernels with distinct 224 

bandwidth values chosen according to the rule proposed by de los Campos et al. (2010). 225 
Genomic selection methods RR-BLUP, GAUSS, PLSR, ELNET, RF were carried out using 226 
‘GSwGBS’ package (Robert Gaynorr 2015) while the Bayesian and RHKS were executed with 227 

the BGLR package (de los Campos et al., 2010). The predictive accuracy was estimated using 228 

80% of the observations as a training set and 20 % as a test set. This process was repeated 20 229 
times. 230 
All statistical models were analyzed in the R environment (R Core Team, 2020). We calculated 231 

each genomic selection model's predictive ability as the correlation coefficient between predicted 232 
genomic estimated breeding values (GEBV) and best linear unbiased predictors (BLUPs) of 233 
phenotypes for individual traits. The genomic prediction models also estimated the bootstrap 234 
confidence intervals for the predictive accuracy considering 10000 samplings (James et al., 235 

2013).  236 
 237 
Determining optimal marker density  238 

The markers were placed into subsets of one thousand (1 K), five thousand (5 K), ten thousand 239 

(10 K), fifteen thousand (15 K), twenty thousand (20 K), twenty-five thousand (25 K), thirty 240 
thousand (30 K), and all markers together, approximately 31 thousand (~31K) to determine 241 

optimal markers for highest prediction accuracy. A 5-fold cross-validation with 20 replicates was 242 
used to evaluate predictive ability among subsets of SNPs. The accuracies for each subset of 243 
SNPs were averaged across the replicates. All comparisons were made based on the correlation 244 
between the observed phenotype and the predicted breeding value. To evaluate the predictive 245 
ability of each subset of SNPs, we used the RR-BLUP genomic selection model.  246 

Determining optimal training population size 247 
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The impact of training population size on predictive ability was evaluated using a validation set 248 
comprising 50 randomly selected lines and training sets of variable sizes. The validation set was 249 

formed by randomly sampling 50 lines without replacement. The training population of size n 250 
was formed sequentially by adding 25 accessions from the remaining accessions such that its size 251 
ranged between 50 to 175. We subset the collection into subgroups of 50, 75, 100, 125, 150, and 252 
175 individuals each. The RR-BLUP model was used to predict specific traits. This procedure 253 
was repeated 20 times, and accuracies of each training population size were averaged across 254 

iterations. A similar procedure was followed to predict subpopulation 5 using variable training 255 
populations 50 to 175 with an increment of 25. 256 

Accounting for population structure in the genomic prediction framework  257 

We explored the confounding effect due to population structure on predictive ability. We 258 
investigated subpopulation structure on 482 accessions genotyped with 30,600 SNP markers 259 

using the ADMIXTURE clustering-based algorithm (Alexander et al., 2009). ADMIXTURE 260 
identifies K genetic clusters, where K is specified by the user, from the provided SNP data. For 261 
each individual, the ADMIXTURE method estimates the probability of membership to each 262 

cluster. An analysis was performed in multiple runs by inputting successive values of K from 3 263 
to 20. The K‐value was determined using ADMIXTURE's CV values. Based on >60% ancestry, 264 
each accession was classified into seven subpopulations (K=7). Using ADMIXTURE, we 265 

obtained eight subpopulations. Principal component (PC) analysis was also conducted to 266 
summarize the genetic structure and variation present in the collection.  267 

To account for the effect of population structure, we included the top 10 PCs or, the Q-matrix 268 

from ADMIXTURE into the RR-BLUP model and performed five-fold cross-validation repeated 269 
20 times. Alternatively, we also used the subpopulation (SP) designation as a factor in the RR-270 
BLUP model. Albeit a smaller population size, we also performed a within-subpopulation 271 

prediction. As stated above, a subpopulation was defined based on >60% ancestry. Only three 272 

significant subpopulations with this cut-off were used: SP5 (N=51), SP7 (N=58), and SP8 273 
(N=41). A leave-one-SP-out was used to predict individuals within the subpopulation with the 274 
RR-BLUP model.  275 

 276 
Estimating reliability criteria and predicting unknown phenotypes: 277 

The reliability criteria for each of the nonphenotyped lines were calculated using the formula 278 
(Hayes et al., 2009; Clark et al., 2012) as follows: 279 

𝑟(PEV) = √(1 − (𝑃𝐸𝑉/𝜎𝐺
2)  280 

where PEV is the prediction error variance, and 𝜎𝐺 
2  is the genetic variance. Nonphenotyped 281 

entries were then predicted based on the best-performing model using SNP markers only. 282 

Results 283 

Phenotypic heritability and correlation 284 

Recorded DFF had a wide range of variability from 60 to 84 days with a mean of 71 days. The 285 
estimated heritability for DFF was 0.90 (Table 1). For the number of seeds per pod, the mean 286 
was 5.7 with a heritability estimate of 0.84. The heritability for plant height was 0.81, with an 287 
average height of 74 cm. Pods per plant had a heritability estimate of 0.50 with a mean of 18 288 
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pods per plant and ranged from 15 to 23 pods per plant. DM had a mean of 104 days with an 289 
estimated heritability of 0.51. Seed yield per hectare ranged widely from 1734 to 4463 kg ha-1 290 

with a mean yield of 2918 kg ha-1 and a heritability value of 0.67. The number of pods per plant 291 
was highly and positively correlated with seed yield. Correlation estimation also suggested seed 292 
yield was positively correlated with plant height (PH), days to maturity (DM), days to first 293 
flowering (DFF) (Supplementary Figure S1).  294 
 295 

Predictive ability of different genomic selection models 296 
No single model consistently performed best across all traits that we evaluated (Table 2), 297 
however Bayesian model BayesCpi, Reproducing Kernel Hilbert Space (RKHS), and RR-BLUP, 298 
in general, tended to generate better results. Roughly the predictive abilities from different 299 
models were similar, although slight observed differences were likely due to variations on 300 

genetic architecture and the model’s assumptions underlying them. For DFF, the highest 301 

predictive ability was obtained from the RR-BLUP and GAUSS (0.60). RR-BLUP, Random 302 
Forest (RF), and RKHS models generated the highest predictive ability for pods per plant (0.28). 303 

The number of seeds per pod (NoSeedPod) was better predicted by RR-BLUP and Bayes Cpi 304 

(0.42). For plant height (PH) highest prediction accuracies were obtained from RF and BayesCpi 305 
(0.45). BaysCpi also gave the highest prediction accuracies for DM (0.47). For seed yield, RKHS 306 
had slight advantages over other models (0.42). As mentioned above, some differences between 307 

the model's accuracy were only marginal and cannot be a criterion for choosing one model 308 
(Table 2). For example, among the tested models, the highest difference in predictive accuracy, 309 

considering NoSeedsPod, had a magnitude of 0.02, a marginal value. The lack of significant 310 
differences among genomic prediction methods can be interpreted as either a good 311 
approximation to the optimal model by all methods or there may be a need for further research 312 

(Yu et al., 2016). Unless indicated otherwise, the rest of our results focused on findings from the 313 

RR-BLUP method.  314 

 315 

Determining optimal marker density 316 

In general, predictive ability increased with an increasing number of markers (Figure 1). The 317 
highest reported predictive ability was for the number of seeds per pod (0.30) at 30K markers. 318 
Days to first flowering, pods per plant, and plant height obtained the highest predictive ability 319 

when all ~31K markers were utilized. We obtained the highest prediction accuracy for seed yield 320 
at 15K markers (0.40) than the rest marker densities evaluated.   321 

Determining the optimal number of individuals 322 

Increasing the training population size led to a slight increase in the predictive ability overall for 323 

all traits. Across all traits except days to first flowering and plant height, predictive ability 324 

reached a maximum with the largest training population size of N=175 (Figure 2). A training 325 
population comprised of 50 individuals had the lowest predictive ability across all traits. For 326 
days to first flowering, and plant height predictive ability did steadily increase up at N= 150, and 327 
prediction ability reached the maximum for most traits at highest training population size with 328 
N=175. Regardless of population size, predictive ability was consistently higher for days to first 329 

flowering, whereas predictive ability was consistently lower for pods per plant (Figure 2). 330 
However, while predicting subpopulation 5 highest predictive ability was obtained for plant 331 
height (Supplementary Figure S2). 332 
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Accounting for population structure in the genomic prediction model 333 

Population structure explained some portion of the phenotypic variance, ranging from 9-19%, 334 
with the highest percentages observed for plant height (19%) and seed yield (17%). Using either 335 
ADMIXTURE or PCA to account for the effect due to population structure, we improved the 336 
predictive ability. We observed a 6% improvement for days to first flowering and 32% for seed 337 
yield compared with models that did not account for population structure.   338 

We also performed within-subpopulation predictions. Presented here are the predictive abilities 339 
for subpopulations 5, 7, and 8, as they had at least 40 entries. Subpopulation 8 had the highest 340 
predictive ability for days to first flowering (0.68), plant height (0.33), days to maturity (0.43), 341 

and seed yield (0.37). The highest predictive abilities for the number of seeds per pod (0.40) and 342 
pods per plant (0.12) were obtained from subpopulation 7 (Table 3). Notably, predictive ability 343 
was generally higher when all subpopulations were run in the model compared to when 344 

predictions were made within subpopulations.  345 

Predicting nonphenotyped accessions 346 

The genomic selection model was then used to predict nonphenotyped entries based on their 347 
marker information. Based on the distribution of predicted values, none of the predicted 348 
phenotypes for nonphenotyped accessions exceeded the top-performing observed phenotypes for 349 
seed yield (Figure 3). The mean seed yield of predicted entries was 2914 kg/ha, very close to the 350 
mean 2918 kg/ha of observed genotypes. The mean of observed and predicted entries were very 351 
close for the other five traits (Supplementary Table 1). The predicted phenotypes based on 352 

genomic estimated breeding values (GEBV) for number of pods per plant, number of seeds per 353 
pod (Supplementary Figure S3 and S4), days to first flowering, and days to maturity all fall 354 

within the range of observed phenotypes (Similar Figures not added). 355 

 356 

Reliability estimation 357 

We obtained reliability criteria across six traits on seed yield and phenology for the 244 358 
nonphenotyped accessions. The average reliability values ranged from 0.30 to 0.35, while the top 359 

values ranged from 0.75 to 0.78 for evaluated traits. The higher reliability values were 360 
distributed in the top, bottom, and intermediate predicted breeding values (Supplementary 361 

Table S2 to S7). For seed yield (kg ha-1), the highest reliability was obtained from the bottom 50 362 
genomic estimated breeding values (GEBV) (Figure 4). Higher reliability criteria are primarily 363 
distributed among the intermediate and top GEBVs for days to first flowering. Predicted 364 
intermediate plant height showed the highest reliability, as presented in Figure 4.  365 

Discussion 366 

Widely utilized plant genetic resources collections, such as the USDA pea germplasm collection, 367 
hold immense potential as diverse genetic resources to help guard against genetic erosion and 368 

serve as unique sources of genetic diversity from which we could enhance genetic gain, boost 369 
crop production, and help reduce crop losses due to disease, pests, and abiotic stresses (Crossa et 370 
al., 2017; Holdsworth et al., 2017; Jarquin et al., 2016; Mascher et al., 2019). As the costs 371 
associated with genotyping on a broader and more accurate scale continue to decrease, 372 
opportunities increase to utilize these collections in plant breeding. Relying on phenotypic 373 
evaluation alone can be costly, rigorous, and time-intensive. However, by incorporating high-374 
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density marker coverage and efficient computational algorithms, we can better realize the 375 
potential for utilizing these germplasm stocks by reducing the time and cost associated with their 376 

evaluation (Yu et al., 2016; Li et al., 2018; Yu et al., 2020). In this study, we evaluated the 377 
potential of genotyping-by-sequencing derived markers for genomic prediction. We found that it 378 
holds promises for extracting useful diversity from germplasm collections for applied breeding.  379 

In this study, prediction ability values were generally similar among methods, and there was no 380 

single model that worked across traits, consistent with results obtained by other authors (Burstin 381 
et al., 2015; Spindel et al., 2015; Yu et al., 2016; Azodi et al., 2019). For example, considering 382 
only the punctual estimates, RR-BLUP and Gaussian kernel models were the best for DFF, 383 
however for PH, DM, and seed yield, the best models were BayesCpi and RF, BayesCpi and 384 
RKHS, respectively. In recent work, Azodi et al., (2019) compared 12 models (6 linear and 6 385 

non-linear) considering 3 traits through 6 different plant species, and they did not find any best 386 

algorithm for all species and all traits. Newer statistical methods are expected to boost prediction 387 

accuracy; however, the biological complexity and unique genetic architecture of traits can be 388 
regarded as the root cause for getting zero or slight improvement on prediction accuracy (Yu et 389 
al., 2020; Valluru et al., 2019). As data collection accelerates in at different levels of biological 390 
organization (Kremling et al., 2019), genomic prediction models will expand and nonparametric 391 
models, including machine learning, may play an essential role for boosting prediction accuracy 392 
(Azodi et al., 2019; Yu et al., 2020). 393 
 394 

A related work in pea has been published but only based on a limited number of markers 395 
(Burstin et al., (2015). This work assessed genomic prediction models in a diverse collection of 396 

373 pea accessions with 331SNPs markers and found no single best model across traits, which is 397 
consistent with our findings. In this work, the authors reported that traits with higher heritability, 398 
such as thousand seed weight and flowering date, were easier to predict, which is expected. We 399 

also verified DFF as having the highest heritability and predictive accuracies through all the 400 

models. Interestingly, yield components like the number of seeds per pod and pods per plant 401 
showed lower predictive accuracy, independent of the model. Consistent with our results, Burstin 402 
et al. (2015) also found yield components (seed number per plant) as having lower predictive 403 

accuracy and higher standard deviation for prediction. This trait is highly influenced by the 404 
environment and showed a lower correlation for prediction coefficients through the years. 405 

We observed an increase in predictive ability for traits as the number of SNPs included in the 406 
model increased, but beyond 15K markers, we noted a slight decrease in prediction accuracy for 407 
seed yield. Such a decrease in the prediction accuracy could be due to overfitting the model with 408 

too many markers resulting in a reduced predictive ability after saturation could be due to the 409 
non-genetic effects of the beyond saturated markers (Norman et al., 2018; Hickey et al., 2014). 410 
Similarly, the predictive ability increased for all traits except plant height when we increased the 411 

model's training population size, suggesting that adding more entries in the study could boost 412 
predictive ability. By accounting population structure into genomic prediction framework, we 413 
observed an improved prediction accuracy for some traits – seed yield and DFF – but not others. 414 
Although the population structure explained 9-19% of the phenotypic variance, we cannot fully 415 

and conclusively answer the effect of population structure in prediction accuracy due to smaller 416 
population size. In addition, the relatedness among individuals in the training and testing sets 417 
needs to be accounted for (Lorenz and Smith, 2015; Rutkoshi et al., 2015; Riedelsheimer et al., 418 

2013). 419 
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Previous studies have indicated the importance of considering reliability values when using 420 
prediction ability values to select genotypes (Yu et al., 2016). Our study found higher reliability 421 

estimates to be spread across all predicted values rather than clustering around one extreme 422 
prediction or another. Such findings are advantageous as an extreme predicted value is not 423 
always the target for selection. Those accessions with top predicted values and high-reliability 424 
estimates would be most well-suited as candidates for a breeding program in selecting for seed 425 
yield. However, for a trait such as days to flowering in pea, even low or intermediate predicted 426 

values would be suitable candidates when paired with high-reliability values. When predicting 427 
nonphenotyped accessions, the means of those predicted entries were close to observed 428 
accessions and did not exceed phenotyped germplasm accessions for seed yield. Several 429 
accessions in the USDA pea germplasm collection could be readily incorporated into breeding 430 
programs for germplasm enhancement by incorporating above-average accessions with high or 431 

moderately high-reliability values (Yu et al., 2020). 432 

Conclusions and Research Directions 433 

The research findings demonstrated that the wealth of genetic diversity available in a germplasm 434 
collection could be assessed efficiently and quickly using genomic prediction to identify valuable 435 
germplasm accessions that can be used for applied breeding efforts With the integration of more 436 
orthogonal information into genomic prediction framework (Kremling et al., 2019; Valluru et al., 437 
2019) coupled with the implementation of more complex genomic selection models like a 438 

multivariate genomic selection approach (Rutkoski et al., 2015), we can considerably enhance 439 
predictive ability. This research framework could greatly contribute to help discover and extract 440 

useful diversity targeting high-value quality traits such as protein and mineral concentrations 441 
from germplasm collection.  442 
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 652 
 

Table 1. Heritability and summary statistics for seed yield and other agronomic 

traits 

Trait Mean Range SD CV(%) H2 

DFF (days) 71 60-84 4.8 6.7 0.90 

NoSeedsPod (Nos.) 5.7 4.4-6.9 0.5 8.5 0.84 

PH (cm) 74 37.6-108.3 11.5 15.5 0.81 

PodsPlant (Nos.) 18 15-23 1.5 8.3 0.50 

DM (days) 104 99-112 2.4 2.3 0.51 

SeedYield (Kg ha-1) 2918 1734-4463 451 15.4 0.67 

DFF is days to first flowering; NoSeedsPod is the number of seeds per pod, PH is plant height, 653 

PodsPlant is the number of pods per plant, DM is days to physiological maturity, SeedYield is 654 

seed yield per hectare, SD is the standard deviation, CV is coefficient of variance, H2 is 655 

heritability in the broad sense.  656 

Table 2. Predictive ability of genomic selection models for seed yield and agronomic traits 657 

Traits RR-BLUP GAUSS PLSR ELNET RF BayesCpi RKHS 

DFF (days) 0.60 

(0.57-0.63) 

0.60  

(0.58-0.63) 

0.57  

(0.53-0.61) 

0.57 

 (0.52-0.61) 

0.55 

(0.52-0.58) 

0.59  

(0.55-0.63) 

0.54 

(0.5-0.58) 

NoSeedPod 0.42 

(0.37-0.48) 

0.41 

(0.37-0.47) 

0.41 

(0.36-0.46) 

0.41  

(0.35-0.48) 

0.40 

(0.35-0.45) 

0.42  

(0.38-0.46) 

0.40 

(0.34-0.48) 

PH (cm) 0.39 

(0.33-0.44) 

0.38  

(0.33-0.44) 

0.42 

(0.38-0.48) 

0.37  

(0.31-0.42) 

0.45 

(0.4-0.5) 

0.45  

(0.41-0.48) 

0.43 

(0.39-0.48) 

PodsPlant 0.28 

(0.22-0.33) 

0.26  

(02-0.32) 

0.25 

(0.2-0.31) 

0.23  

(0.17-0.29) 

0.28 

(0.22-0.34) 

0.23  

(0.17-0.29) 

0.28 

(0.23-0.34) 

DM (days) 0.42 

(0.36-0.47) 

0.41  

(0.36-0.47) 

0.44 

(0.39-0.5) 

0.40 

 (0.34-0.46) 

0.41 

(0.35-0.46) 

0.47 

 (0.43-0.5) 

0.45 

(0.4-0.48) 

SeedYield (kg 

ha-1) 

0.38 

(0.34-0.42) 

0.38  

(0.34-0.42) 

0.31 

(0.27-0.36) 

0.38  

(0.33-0.48) 

0.39 

(0.35-0.44) 

0.35 

(0.31-0.39) 

0.42 

(0.37-0.48) 

DFF is days to first flowering, PH is Plant height in cm, DM is days to physiological maturity.  658 

 

Table 3. Predictive ability within and across subpopulations using RR-BLUP and all markers 

Sub pops DFF NoSeedPod PH PodsPlant DM SeedYield 

Sub pop 5 (51) 0.27 0.26 0.08 -0.01 0.02 0.18 

Sub pop 7 (58) 0.34 0.40 0.22 0.12 -0.01 0.01 
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Sub pop 8 (41) 0.68 0.35 0.33 0.07 0.43 0.37 

SP- 0.50  0.45  0.47  0.25  0.51  0.34  

SP+ 0.53  0.35  0.42  0.25  0.48  0.45  

SP PC10 0.51  0.41  0.44 0.18  0.20  0.43  

Var exp (R2) 0.13 0.09 0.19 0.15 0.15 0.17 

DFF is days to first flowering, PH is plant height, DM is days to physiological maturity, SP- does 659 

not account for population structure, SP+, refers to the population structure addressed in the 660 

model, SP PC10 addresses population structure with 10 PC, Var exp (R2) refers the variance 661 

explained by population structure after fitting a regression model, within parenthesis represent 662 

the number of entries in each subpopulation. 663 

 664 

 665 

Figure 1. Predictive ability with an increasing number of markers using different models, the x-666 

axis markers are in kilo (K) base pairs, and genomic selection models are within parentheses 667 
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 668 

Figure 2. Predictive ability with increasing population size, the x-axis represents the number of 669 

populations used in the genomic selection model, and the y-axis is the predictive ability 670 

 671 

 672 

 673 

Figure 3. Distribution phenotyped and predicted non-phenotyped accessions of USDA pea 674 

germplasm collections for seed yield and plant height  675 
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 676 

 677 

  678 

Figure 4. Reliability criteria for nonphenotyped lines, the top 50 of the genomic estimated breeding 

values are blue, and bottom 50 are in red, intermediates are in green. A. reliability estimates for seed 

yield (Kg/ha), B. days to first flowering, C. plant height, D. seeds per plant 
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 679 

Supplementary Figure S1. Phenotypic correlation among seed yield and agronomic traits 680 

evaluated in this study, DFF is days to first flowering, PH is plant height in cm, SeedYield is 681 

seed yield in kg ha-1, DM is the days to physiological maturity 682 
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 683 

Supplementary Figure S2. Predictive ability of subpopulation 5 with increasing training 684 

population 685 

 686 

Supplementary Figure S3. Distribution of phenotyped and predicted non-phenotyped accessions 687 

for seed yield and number of pods per plant in the USDA germplasm collections 688 

 689 

 690 

 691 
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 692 

Supplementary Figure S4. Distribution of phenotyped and predicted non-phenotyped accessions 693 

for seed yield and number of seeds per pod in the USDA germplasm collections 694 
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